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Abstract

We consider the delivery of video assets over a best-effort network, possibly through a caching proxy located close to the clients generating
the requests. We are interested in the joint server scheduling and prefix/partial caching strategy that minimizes the aggregate transmission
rate over the backbone network (i.e. average output server rate) under a cache of given capacity. We present multiple schemes to address
various service levels and client resources by enabling bandwidth and cache space tradeoffs. We also propose an optimization algorithm
selecting the working set of asset prefixes. We detail algorithms for practical implementation of our schemes. Simulation results show that
our scheme dramatically outperforms the full caching technique. © 2002 Published by Elsevier Science B.V.
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1. Introduction

Streaming media represents a unique opportunity for
Service Providers — unlike other web objects which are
enhanced by edge delivery, quality video actually requires
edge of network services to attain reasonable user experi-
ence. As access providers roll out faster last-mile connec-
tions, upstream congestion in the provider’s backbone,
peering links and best-effort Internet will limit their ability
to meet customer expectations for these premium links.
While streaming media brings additional complexities
(very large objects, isochronous delivery and interactivity),
there are clearly many advantages of edge delivery. Attri-
butes making it especially well-suited for edge delivery
include its static nature, high value to Content Providers,
distribution and delivery revenue potential to Content
Delivery Service Providers and the potential for content
services (transcoding, ad insertion, digital rights manage-
ment) best offered through decentralized techniques.

Techniques to address the lack of end-to-end bandwidth
to support streaming media include (i) multicasting to
groups of clients and (ii) caching at streaming proxies
located closer in the network to the end user.

Multicast scheduling strategies, such as Periodic Broas-
casting and Batching, have been proposed to simulate on-
demand access. Although multicast significantly reduces
network bandwidth, it is often considered impractical due
to its reliance on a fully multicast-enabled network. Addi-

* Corresponding author.
E-mail address: ovl @us.ibm.com (O. Verscheure).

0140-3664/02/$ - see front matter © 2002 Published by Elsevier Science B.V.

PII: S0140-3664(01)00413-3

tional drawbacks of multicast scheduling strategies include
client requirements for receiving multiple streams, large
client buffers and lack of flexibility in providing user-level
quality of service (QoS). Because video distribution and
delivery incurs high storage and transmission costs, and
requires specialized servers at the edge, Service Providers
will target valued content, for which QoS guarantees are a
must and best-effort service is unacceptable.

Caching audio/video objects in streaming proxies at the
network edge is another attractive solution. Besides provid-
ing improved performance to the end-user, caches save on
network bandwidth between the access provider network
and the origin server. Caching strategies for video objects
range from caching of full video objects to caching partial
video objects by segmenting the video in the temporal and/
or spatial domain(s). There are at least two issues with the
caching of whole videos. First, the time and bandwidth
required to bring an entire video into the cache associates
a very high penalty with erroneous caching decisions.
Second, ongoing streams may prevent deletion at cache
replacement time causing the cache to be less reactive and
to drift away from the optimal operating point.

Therefore, our objective is to create a content distribution
system for streaming media, as opposed to a best-effort
video caching system. We achieve this by placing a stream-
ing proxy in the path between the server and the clients. We
develop a scheme, which combines stream scheduling at the
origin server and caching at the proxy to minimize the
aggregate transmission rate over the network while main-
taining configured user-level QoS constraints. The QoS
constraints are expressed in terms of maximum playback
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Fig. 1. Illustration of our joint scheduling and proxy caching strategy.

delay and application-level packet loss ratio (PLR). Object
prefixes reflecting either popularity or contracted service
levels are positioned at proxies to reduce startup latencies
and enable on-demand access.

The paper is organized as follows. In Section 2, we
present relevant research in the multicast and streaming
media caching areas. In Section 3, we present our scheme
for video stream delivery along with simulation results high-
lighting the bandwidth savings and cache space usage trade-
offs under different scenarios. Section 4 describes a practical
algorithm that is being implemented in our prototype and
discusses practical issues. Finally, we present our conclu-
sions and future work in Section 5.

2. Related work

Streaming video over multicast consumes less network
bandwidth and imposes less of a load on the sender than
does streaming video over multiple unicast channels.
Among schemes that attempt to capitalize on the benefits
of multicast for VOD are those based on the Periodic Broad-
cast idea [1-4] The video is divided into many portions
which are continuously broadcast over multiple channels
and are as such bandwidth efficient only when the request
arrival rate is high. Another technique is the simple batching
scheme where the server accumulates requests over a batch-
ing interval and starts a new multicast stream at the end of
each interval if there were any requests in the batch. A more
bandwidth efficient scheme is that of Patching [5,6]. In this
scheme, each batch is served over one or two channels —
either a regular channel (RC) alone or the combination of a
RC and a patching channel. A RC delivers the full video
from start to finish while a patching channel delivers only
the missing part of the video from the start until the point at
which the clients join the RC. The client receives both the
patch and the ongoing stream and buffers the latter while
playing back the former. Once the patch is exhausted, the
client switches to the buffered regular multicast (RM). Hua
et al. [5] compared the performance of patching with simple
batching and found that patching was able to support true
VOD at much higher request rates for a typical server
configuration. Further research in this area can be found in
Ref. [7], where the authors present the Optimized patching
scheme which defines a Patching Window beyond which it
is more efficient to start a new RM rather than generate
patches. Finally, Ref. [8] extends the above technique to

allow client-controlled latency/cost trade-off to provide
classes of service by varying the batching interval (Fig. 1).

The other relevant body of research is that of video cach-
ing. Techniques range from caching whole videos (applying
conventional memory caching techniques with modifica-
tions to account for the size) to partial objects segmented
in the temporal and/or spatial domain(s). Segmentation in
the temporal domain is achieved by splitting the video into
constant time length (CTL) segments and segmentation in
the spatial domain is achieved by encoding videos at multi-
ple resolutions.

Full-caching strategies for video in a cluster of caches is
considered in Ref. [9]. Key conclusions are that in streaming
proxies, replication or striping of objects based on explicit
tracking of request frequencies achieves higher hit rates
rather than doing LFU or LRU on a per-request basis.
They found that the cache replacement policy (LRU or
LFU) did not make any difference because most videos
had ongoing streams and could not be chosen for replace-
ment. For this reason and the fact that bringing a large video
file to a cache is very expensive, partial caching (including
prefix caching) were proposed.

In Ref. [10], the authors present a caching scheme for
adaptive, layered video (segmented in the temporal and
spatial domains) such that the guality of the cached stream
is proportional to its popularity. They also combine it with a
fine-grained cache replacement strategy that tracks statistics
per layer of video and eliminates the least popular segments
of the video. The scheme has been designed with the goal of
being adaptive to the network but not with the explicit goal
to minimize the bandwidth streamed out of the origin server.
Secondly, although this method results in caching the most
popular parts of a video, the quality of video playback can
be variable among different viewers of the same video,
which might be undesirable. Finally, the adaptive scheme
works well with layered encoding of videos, which is not
employed in most popular formats. Another work that
considers partial caching is MiddleMan [11]. This scheme
works over a cluster of proxies on a LAN and the combined
space is managed by a central MiddleMan who does the
cache replacement decisions. The caches store only as
much of the object as is played back by the client. Other
video caching schemes include Resource-based Caching
RBC [12] which focuses on the management of resources
in the cache. RBC determines which objects (partial or
whole) to cache such that the space and bandwidth of the
cache are uniformly utilized. Prefix caching is proposed in
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Fig. 2. Optimized batch patching versus optimal patching. This graph shows how the normalized backbone rate evolves with the size of the patching window
W for different average inter-arrival rates following a Poisson distribution A. The duration of the video asset 7' is 90 min. The batching interval b is set to 1 min.

Refs. [13,14]. Although caching the prefix can hide the
startup latency and jitter in the network, this scheme does
not reduce the aggregate transmission from the origin
server.

In this paper, we build on some of the ideas in the multi-
cast research area to minimize the aggregate bandwidth
streamed out of the origin server and also present a practical
scheme in which videos are cached in a proxy such that the
space used by the video can be proportional to its popularity
and the available bandwidth to the server.

3. Partial caching and batch patching

In this section, we develop a scheme which combines
efficient stream scheduling at the server, and both prefix
and partial caching in a proxy located close to the clients
generating the requests.

Our main objective may be formulated as follows: given a
set of video assets and their respective characteristics, mini-
mize the average rate streamed out of the origin server under
a cache of fixed capacity y. We assume that the network is
ideal (i.e. jitter- and error-free environment) and that the
clients wish to be served instantaneously (i.e. null playback
delay). Section 4 explains why these apparently strong
assumptions do not lead to any loss of generality.

The motivation behind this problem formulation results
from the following observation: minimizing the average
backbone rate is equivalent to maximizing the average
byte hit ratio (BHR) at the proxy under a given server sche-
duling strategy. The problem formulation is refined in
Section 3.5 after the complete description of our joint strat-
egy. The study is first performed on a single video asset.
Then, we consider a heterogeneous set of video assets and
related request patterns. We now describe the server sche-
duling strategy we build our scheme on.

3.1. Optimized batch patching

White and Crowcroft have recently introduced the
concept of optimized batch patching [8], which aims at
minimizing the average server output rate (i.e. backbone
rate). Basically, client requests are batched together on an
interval basis before requesting either a patch or a RM from
the server. The interval is fixed and noted b. Following the
reasoning from Ref. [7], there is an optimal Patching
Window, noted W, after which it is more bandwidth efficient
to start a new RM rather than send patches.

They refer to an RM-epoch as one in which a RM was
started and a non-RM epoch as one in which a RM did not
begin. The average backbone rate, R, is calculated in terms
of the mean of the aggregate number of bytes contained in
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where P, = P,(0) denotes the probability of gathering zero
request in a batch of duration b (empty batch), T'is the duration
of the video and r denotes the streaming rate of the video asset.

The optimal patching window W is derived by differentiating
R and setting the result equal to 0. This yields

we bt VP,b* +2(1 — P,)bT
N b(1 — Pp)

@

This scheme outperforms other multicast-based techni-
ques in terms of average backbone rate over a large range
of request rates. Fig. 2 compares the normalized backbone
rate (that is, R/r) required by this scheme versus the optimal
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Fig. 4. Optimized batch patching with and without prefix caching. This graph shows how the normalized backbone rate evolves with the duration of the
batching interval b (duration of the prefix) for different average inter-arrival rates A following a Poisson distribution. The duration of the video asset is 90 min.
The patching window is computed from Eq. (2) with T being replaced by T — b when a prefix of b is cached.
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patching algorithm [7] for different Poisson request rates
(that is, P, = efb)‘) and a batching interval b set to 1 min.
Optimized batch patching clearly outperforms optimal
patching, albeit at the expense of higher latency (playback
delay). Actually, the higher the interval b over which
requests are batched, the better the performance is. There-
fore, the authors integrated the concept of classes of service
(CoS) in their scheme. In addition, these multicast-based
techniques rely on multicast-enabled routers. In the remain-
der, we propose an extension to this scheme which alleviates
the above problems and even adds some flexibility.

3.2. Partial caching applied to batch patching

We build on the optimized batch patching idea by intro-
ducing a proxy cache in the path from the origin server to
the clients cloud. We adopt the intuitive approach consisting
of storing the first b units of time in the proxy cache (i.e.
batching period). That is, the proxy permanently caches a
prefix of b units of time. Moreover, we impose the proxy
cache to play the role of a client for the origin server. That
is, all the patches and RMs streamed out of the server are
requested by the proxy and are thereby streamed through it.
This design approach has several advantages among which,
(i) it eliminates the need for network-level multicast, (ii) it
allows for client-based stream adaptation (heterogeneous
client capabilities) and (iii) it has the potential to decrease
the number of streams concurrently streamed to a given
client. The former leads to a change of terminology. In
the remainder, we use regular channel and patch channel
instead of regular and patch multicasts.

Our scenario is illustrated by Fig. 3. The proxy divides the
time axis into intervals [#;_, ;] of duration b units of time.
Assume a request arrives at the proxy at time t; € [f;—1, ).
The proxy immediately starts streaming the requested asset
to the client. Assume the most recent RC was started at time
t,, with £, < t; is an integral number of b units of time. If#; is
such that 7, <z, + W, the proxy joins the RC at time 7, and
streams it through to the client, which buffers the stream
while playing back the prefix. Also at time t#;, the proxy
requests a patch of duration #, — #, and passes it on to the
client. However if f, = t, + W, a new RC of the asset of
duration 7 — b (the prefix of duration b is sitting in the
proxy) is requested from the server at time #,. In practice,
the streams requested from the server are unicast to the
proxy, which implements multicast at the application level
to provide the services mentioned above.

The average backbone rate is computed from Egs. (1) and
(2) by replacing T with T — b. Fig. 4 compares the opti-
mized batch patching technique with and without prefix
caching in terms of the required normalized backbone rate
versus the duration of the prefix b in minutes. We again
assume a Poisson arrival process such that P, = e " The
two techniques provide approximately the same normalized
backbone rate for small values of b. The difference becomes
noticeable for » > 10 min. Also, each technique provides

the same performance independent of the request rate for
batching intervals » = 15 min. Note that increasing b is
equivalent to increasing either the client playback delay
(without prefix) or the cache occupancy (with prefix).
Note also that for b = T/2, the optimal patching window

is zero (W™ = 0) when a prefix is cached. Therefore, R/r
reduces to

R T—-b(1—-P

R_T=bd =P = (1 - Py).

r b

The drawbacks of this straightforward extension are
twofold. First, the link connecting the requesting client to
the proxy must accommodate up to three concurrent
streams. Indeed the first client of a batching period will
have already triggered the streaming of the RC and of the
patch, which will be needed by the late arrivals in the same
batching period, which are still playing back the prefix.
Second, the client buffer must accommodate up to W + b
units of time at the streaming rate r. Indeed the client must
buffer the on-going RC while receiving the patch of maxi-
mum size W. In addition, the last client of the batching
interval must store up to b extra units of time. Thus, B =
(W + b)r, which may not be practical.

Therefore, we extend this first approach by considering
the remporary partial caching of either (i) the patch only or
(ii) the patch and the RC. In the first case, the proxy elim-
inates the need to stream the patch to the clients by tempora-
rily caching the right portions of it (the client manages only
up to two concurrent streams). In the second case, the proxy
caches whatever it takes to allow for sequential streaming of
the asset from beginning to end to the clients (the client
manages only a single stream).

We now examine these two extensions separately and
derive the equations leading to the estimation of the average
backbone rate R, the average cache occupancy X and the
client buffering requirements B. The derivations of all the
equations are not presented here due to space constraints
and can be found in Ref. [15].

3.3. Partial caching of patch only

The proxy eliminates the second stream to the client by
caching the patch. Let [f;_;,f;) denote a batch which
requires a patch of k buffers in the interval b to kb. At #,,
the proxy determines which patch intervals are not cached'
and starts fetching the first required interval and completes it
at t;.1. At this time, it is aware of whether or not there are
requests in [f;, f;+1). If there are requests, it does not free the
buffer when all the requests in [#,_,;) are serviced but
retains it to service requests in [fy,%;+;) and subsequent
non-zero batches. Every time there is a batch with zero
requests, the buffer is released once it has been streamed
to all the clients in the previous batch.

By caching the patch, we clearly save on bandwidth from

! It needs to fetch at least one patch interval which is between (k — 1)b to
kb.
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Fig. 5. Optimal batch patching with prefix and patch caching. This graph shows how the normalized backbone rate evolves with the duration of the patching
window W for different average inter-arrival rates A = {8,0.25} req/min following a Poisson distribution, and prefix durations » = {1, 10} min.

the server compared to the previous approach. The number
of patch buffers streamed from the server, in units of time, is
given by w (refer to Ref. [15] for details)

%] 1] Ll .
p=>b > [il =PYPy"1 + > 2j— A = PP,
i=1 j=

=1

3

The normalized average backbone rate R/r is thus
obtained from

R wr+ (T —by

r bl+n
where n is the mean number of batches between two RCs
and is derived in Ref. [8] as

n= w + Py(1 — Py)
b

Note that the reason why we average over (n + 1) inter-
vals instead of over the entire duration of the stream is that
the patch buffers obtained for one period of n + 1 cannot be
used in the next n + 1 interval. This is because of the one
intervening batching interval that triggers a RC. Requests in
this batching interval do not require any patch and will
consequently release the buffer [, 2b], which will be needed

by the next batching interval. This triggers a new cycle of
patch byte requests to the server as described earlier.
The cache buffer occupancy, which includes the prefix of
duration b, is given by Eq. (4) below Ref. [15].
w
7]
=1

X=b+b ([%J— 1)(1—P) STa-pyAtT @

The client still needs to buffer the on-going RC while
playing back the patch. Late clients in a batching period
buffer an additional b units of time. Thus, B = (W + b)r.

Fig. 5 shows the evolution of the normalized backbone
rate R/r versus the duration of the patching window W under
different average inter-arrival request times A following a
Poisson distribution and batching intervals b. Clearly, the
longer the patching window is, the lower the backbone rate
is. That is, the backbone rate may no longer exhibit a mini-
mum value for a patching window duration within [0, T —
b]. Indeed the longer the duration W, the higher the tempor-
ary patch buffer size required at the proxy.

Fig. 6 highlights this remark. Note that for A =8, P,
tends to zero and therefore, W =T — b leadsto X =T (b
permanently stored and 7 — b units of time temporarily
buffered). The tradeoff between permanent (prefix) and
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Fig. 6. Optimal batch patching with prefix and patch caching. This graph shows the cache occupancy versus the duration of the patching window W for
different average inter-arrival rates A = {8,0.25} req./min following a Poisson distribution, and prefix durations b = {1, 10} min.

temporary buffers is also shown. Increasing the prefix dura-
tion leads to a gain in normalized rate (see Fig. 5) at the
expense of higher buffer occupancy (see Fig. 6). The set of
equations clearly indicates that the optimal solution to our
optimization problem is full asset caching if the proxy cache
can accommodate for it. We elaborate on this in Section 3.5.
Finally, note that the slope of these straight lines is dictated
by the factor bA.

3.4. Partial caching of patch and regular channel

In this scheme, the client receives a single unicast stream
from the proxy. The proxy caches data from the RC and
forwards it to the clients. The client buffer requirement is
zero in this case. Since the proxy serves all the requests in an
interval of W + b from a single RC, it has to maintain a
circular buffer of up to (W + b) units, continuously saving
data from the RC, for the entire duration of the video. This
buffer is required for each instance of the RC, which is
triggered every (n + 1) intervals. The size of this buffer
for each RC depends on the batching intervals that have
non-zero requests. If there are requests in an interval
[#.—1, ) that require a patch of (k — 1) buffers, then kb
needs to be buffered from the ongoing stream while these
requests are playing back the patch and/or the prefix. This is

irrespective of whether or not the previous batching interval
had any requests.

The scheme is better explained with an example. Suppose
there are five batching intervals ([t,—; — #;),i = 1,5)in W +
b, that is, W = 4b. The interval [y, ;) triggers the RC at #,.
The proxy buffers b from the RC to accommodate late
requests in this interval that are playing back the prefix.
Suppose [t; — t,) had requests, then at #, the proxy adds
another buffer to circular buffer and does not request the
server for any patch bytes. Suppose the next two intervals
do not have any requests and the fifth interval [#4 — #5) has a
request. At #s, the 2b-long circular buffer allocated by the
first two intervals would have advanced with the RC and
will contain the interval [3b — 5b]. The fifth interval
requires the buffer to be 5b long and so it adds three more
buffers of size br to the circular buffer. The proxy then
fetches the missing patch bytes in the intervals [b — 2b]
and [2b — 3b] from the server while storing the interval
[5b — 6b] from the RC.

Here again, we reuse buffers that are allocated by each
interval of W for subsequent intervals. Each RC results in
the caching of the stream equivalent to the circular buffer
(X) allocated to it, thereby reducing the length of the stream
to be transmitted by the server by X. Taking this into
account, the average backbone rate R/r over the total asset
duration is given by Ref. [15]
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where w is obtained from
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and the cache occupancy X computed over (n + 1) batch-
ing intervals is
2]
X" =b Y i(l—PPET
i=1

To obtain the cache occupancy X, over the total asset
duration, we simply multiply X* by T — b/n + 1, to account
for the multiple RCs that are active simultaneously, each of
which uses a storage of X". Therefore, if we have a request
in every single interval of b (i.e. P, = 0), we end up caching
the whole stream in average.

The same conclusions about R/r versus W for different As
and bs as in the previous scheme hold in this scheme as well.
However, this scheme clearly uses more temporary buffer at
the proxy (higher likelihood to fully cache the assets), while
decreasing the backbone rate significantly. Moreover, this
scheme results in a single stream to the clients and requires
no storage from the client device (i.e. B = 0), which makes
this approach well suited to streaming multimedia assets to
handheld devices. This scheme is very similar to Interval
Caching [16] where W + b is the length of an interval. The
difference is that this interval is cached in the proxy and is
stored for use by future intervals.

3.5. Multiple assets

The multiple assets problem may be formulated as
follows: Given a cache of capacity y, and a set of N videos
assets characterized by their streaming rate r;, duration 7;
and interval-based request probability P, find the tuple
{b;, W;}V1 = i = N that minimizes the aggregate backbone
rate R = S| R;, under the constraint >~ X; < y.

Clearly, this problem can be solved via standard optimi-
zation techniques. However, its multi-dimensional nature
makes it computationally expensive. Therefore, we propose
a simplification which relies on the previous observation
that both an increase of the prefix duration b; or the patching
window W, for asset i always result in a lower backbone rate
R; and a corresponding increase of the temporary buffer X;.
Also, we have shown that W; must be null for b; = T;/2.
These observations lead to the following simplification: we
impose W; = b; for all b; < T;/2. This simplification slightly
degrades the performance of our system but dramatically
decreases the complexity.

We now briefly describe the algorithm based on the above
simplification: First, we impose a video unit (e.g. a group-

of-pictures) by which the prefixes b; will either be decreased
or increased. Then we calculate for every asset, the product
of its popularity by its respective size (similar to the SLRU
technique). Assume that all the b; are first set to 7;. We
eliminate a number of video units from the prefix duration
b;. This number is inversely proportional to the product
value for asset i. Finally, we iterate until the sum va X =
X-

We compared the full caching technique with the optimal
batch patching with prefix and patch caching scenario. We
assumed a Poisson distribution of the request inter-arrival
times, a Zipf distribution of the asset popularity with various
parameters (from which the A; are derived), a set of 100
videos with constant streaming rates and durations
uniformly distributed in, respectively [56, 1500] kbps and
[15,90] minutes, and a cache size y three times smaller than
the sum of all the asset sizes. Preliminary results show that
the gain in backbone rate is tremendous (from approxi-
mately 4 to 8 times lower depending on the parameter of
the Zipf distribution). Moreover, our scheme rapidly adapts
to changes in request statistics, while this is a known draw-
back of a full caching scenario.

In the remainder, we detail algorithms for practical imple-
mentations of the schemes proposed in this section.

4. Practical issues

In all of the scenarios, the proxy receives the client
requests, immediately starts streaming the prefix and also
batches them, on a per asset basis. At the end of each batch,
the proxy determines if a RC needs to be started or a patch
needs to be requested from the origin server, based on the
value of W computed using the expression in Section 3.

The proxy also runs the optimization algorithm described
in Section 3.5 periodically to determine the prefixes that
need to be stored in the cache. Initially, the cache starts
out with CTL prefixes of the most popular videos. The
optimization algorithm may be triggered either periodically,
when the network utilization at the proxy falls below a
certain threshold or when the access probabilities of assets
change significantly. In all cases, the algorithm requires an
estimate of P, for each of the assets, to determine the length
of the prefix to cache and thereby maximize the BHR. Note
that the value of P, changes with the value of b. The bigger
the chosen b is, the smaller is the probability of having zero
requests in the batch. Various methods can again be adopted
to determine the value of P,. As a simple approach, we
could assume the inter-arrival request rate follows a Poisson
distribution and track the inter-arrival time of requests over
a certain time window. A more accurate but complex
method would be to track the inter-arrival times, fit it to a
well-known distribution and use the characteristics of the
distribution to estimate Pj,.

The optimization algorithm determines the value of the
prefix b for each asset, given the access probabilities. The
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ProcessRequest (r)

CreateThread(StartStreamToClient (r));

// add this request to the current batch

addRequestToCurrBatch(r);

// Incr. the rqst count in each relevant

// interval

for (i=1; i<=currBatch.numPatchIntervals; i++)
IntervalTable([i] .RequestCount++;

StartStreamToClient (r)

StreamPrefix();

//b time units have elapsed and the

//next reqd. patch has been fetched

for (i=1; i<currBatch.numPatchIntervals; i++)
StreamInterval (IntervalTable([i] .buffer);

// This runs on a separate thread.
CloseCurizntBatch ()

for(;;:) {
Sleep(b) // wait for batch to end
currBatch = startNewBatch();
currBatch.startTime = now;
currBatch.endTime =
currBatch.startTime + b;
If (newRCReqd())
currRC = StartNewRC();
// Add clients to regular channel
currRC.AddBatchedClients () ;
for (i=1;i<=currBatch.numPatchIntervals;i++) {
if (IntervalTable(i].RequestCount == 0)
// If there are no requests, free it
// This happens if currBatch has zero
// requests
free(IntervalTable[i] .buffer);
else if (IntervalTable(i].buffer == NULL) {
// get patch in new segment buffer
IntervalTable[i] .buffer = newBuffer();
//Fetch patch interval so that it is
//available when needed by
// StartStreamToClient
FetchFromOriginServer((i-1) *b, i*b);
// once the segment is fully obtained,
// update the table and get next segment

Fig. 7. Algorithm at the proxy for scenario 2.

proxy then updates the cache to the new state computed by
the algorithm. With the prefixes stored in the cache, it
streams videos to clients using one of the three scenarios.
The following subsections describe the algorithm in the
proxy for the three different schemes described in Section 3.

4.1. Cache prefix only

The proxy only stores prefixes of videos. When a request
is received, the proxy may send up to three concurrent
streams to the client — the prefix, the patch stream and
the RC. In our scheme, an application level multicast is
used to stream the latter two. The client listens on three
ports for streams from the proxy — the prefix, the patch
and the RM. While playing back the prefix, if data is
received from the patch stream, it is cached and so is the

data from the ongoing multicast. The buffer used by the
client is at most (W + b)r.

4.2. Cache prefix and patch

In this scenario, the proxy caches data from the patch,
besides the prefix, and streams these to the client thus redu-
cing the number of streams to the client to two. For each
asset that has ongoing streams, the proxy maintains an inter-
val table, which holds information about which intervals of
the video are currently cached. Each interval buffer is b time
units long and is retained as long as there are requests being
served from it. Since a patch can be at most W time units, we
have W/b intervals in the interval table. The pseudocode for
the proxy is presented in Fig. 7.

Each time a request is received by the proxy, it incre-
ments the request count against each of the patch intervals
that this request needs. Moreover, at the end of each batch,
the proxy checks to see if the batch triggers a RC or a patch.
If it triggers a RC, the proxy requests a unicast stream from
the origin server and application-level multicasts it to all the
clients in the batch. If not, it determines which of the
required patch intervals are locally cached, and fetches the
remaining intervals from the server over a unicast patch
channel. The patches are not multicast, but are streamed
to the client individually since they may be at different
points in the playback of the prefix. The proxy also joins
all the requests in this batch to the ongoing RC.

The client receives two streams in this case — the patch
and the RC. It buffers the RC while playing back the patch.
The client may buffer a maximum interval of W + b from
the RC while it is playing back the prefix and the patch.

4.3. Cache prefix, patch and regular channel

In the third scenario, we save significantly in the required
client storage and also in the number of simultaneous

CloseCurrentBatch ()

for(;ii) {

Sleep(b) // wait for batch to end

currBatch = startNewBatch();

currBatch.startTime = now;

currBatch.endTime =
currBatch.startTime + b;

If (newRCReqd()) {
currRC = StartNewRC () ;
CircularBuffer = new CircBuffer (b);

if (currBatch.numRequests > 0) {
n = currBatch.numPatchIntervals+l -
numAllocatedIntervals;
CircularBuffer.Grow(n*b);
numAllocatedIntervals++;

CreateThread (
FetchMissingPatchIntervals())
BufferRegularChannel ()

Fig. 8. Algorithm at the proxy for scenario 3
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streams to the client. The client needs to buffer nothing and
receives only one unicast stream from the proxy. The proxy
stores data from the RC and serves patches from this buffer
instead of requesting it from the origin server. Although this
reduces the bandwidth streamed from the server, it requires
a larger buffer in the cache on average. For a discussion in
the bandwidth/buffer tradeoff, see Section 3.

The difference between this scenario and the previous one
is that, in the previous case, in addition to the prefix, only
patch buffers were being allocated at the proxy. At any time,
there can be a maximum of W/b buffers active. However,
when data is stored from the ongoing stream, the cache has
to hold on to the buffer allocated in each window of W + b,
for the duration of the video, continuously caching ahead
from the ongoing stream. The algorithm; whose pseudo-
code is given in Fig. 8; is applied by proxy separately for
each RC.

At the end of each batch, the proxy determines how large
the interval cache is. It would consist of as many intervals as
was required by the last non-zero batch in this patching
window. It then increases the circular buffer to be as big
as the patch required for this batch plus the extra b. This can
be better explained with an example. For ease of explana-
tion, batch b; refers to a batch which requires a patch of bi
segments. For instance, if we are at the end of batch b, at 5,
and the last non-zero batch was b,, then the interval cache
for this RC would be 2b + b long and since it is caching the
ongoing stream, the buffer would contain intervals 2b — 3b,
3b — 4b and 4b — 5b. Batch b, needs b — 2b as a patch and
buffer 56 — 6b from the RC. So, it allocates two buffers and
starts storing the ongoing stream in one while simulta-
neously filling the other with the patch b — 2b from the
origin server, while the clients are playing back the prefix.
Once the requests complete the prefix, the interval b — 2b is
available in the buffer and they continue to play back the
stream and continue through the circular buffer until the end
of the stream. Note that in this scheme, each client gets an
individual stream and true application-level multicast is not
done.

The number of active intervals in each W + b is as large
as the number of non-zero batches. Intuitively, if all batches
during the duration of the stream have non-zero requests,
this video is really popular and we much cache the entire
video and not have to request the origin server. This is the
result the optimization algorithm yields. If it determines that
the space used by the prefix and the interval cache is as large
as the entire video, it instructs the proxy to do a full-caching
of the video.

4.4. Discussion

When discussing streaming video using batching and
multicasting, it is important to address issues such as
network delays, jitter and random seeking (VCR functions),
that most multicasting schemes do not address. The fact that

our design uses application level multicasting addresses the
network delay and jitter issues.

First, since all the data flows through the proxy and the
proxy is aware of the network bandwidth to the server and to
all the clients, it can perform QoS-related adaptations to the
stream. Our implementation considers network adaptation
on two planes. The optimization algorithm determines the
prefix to cache for each asset depending not only on the
popularity of the asset, but also on the bandwidth available
to the server. The prefix cached is enough to mask the
network latency and jitter to stream from the server. Also,
when the proxy determines that it has to request a stream
from the server (patch or RC), it determines the available
bandwidth on the link and requests the stream from the
server a 6t time earlier. The time estimate could also be
influenced by contracted service levels for given objects.
Additionally, the proxy has the ability to also perform
stream adaptation services to cater to heterogeneous clients.

As part of ongoing work, we are investigating schemes to
support VCR functions in our framework. Various schemes
for supporting VCR functions in a multicast-based VOD
system are presented in Refs. [17-19].

5. Conclusions

In this paper, we present a joint server scheduling and
proxy caching scheme aimed at minimizing the bandwidth
streamed from the origin server. The scheme combines the
bandwidth-saving merits of multicast streaming with QoS
and content adaptation service capabilities of a proxy. We
present multiple schemes with different bandwidth and
cache-space tradeoffs that are applicable in different scenar-
ios with different service requirements. Our schemes enable
the honoring of service levels (SLAs) at the network-edge
streaming proxies by adopting different tradeoffs for assets
with different SLAs. From our simulations, it is evident that
our scheme far outperforms full-caching schemes where an
asset is cached fully or not at all. We are working on various
aspects of this scheme currently, one of which is the support
for VCR functions. We are also in the process of implement-
ing a prototype version of this technique in IBMs Video-
Charger Server [20].
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