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Abstract

In order to reduce temporal redundancies, most video codec make use of
motion estimation. The most used approach is called block-matching. It
decomposes the current frame into blocks and for each one tries to find its
origin in the previous frame by minimizing the mean square error of each
block. From these information it creates a matrix of motion vectors called
a motion field. This approach does not search the real motion vectors but
rather the nearest ones in term of error. Such techniques introduce the so
called blocky effect at low bit-rate. The Human Visual System (HVS) is
very sensitive to regular patterns. Thus, even if block-matching minimizes
the errors, the resulting artifacts are visible.
The aim of this project is to find a motion estimation method that works

in combination with block matching in order to reduce the visible artifacts.
The proposed solution tries to extract the real motions taking place in a
sequence. The developed algorithm is a region based motion estimator. We
associate to regions of general shape motion parameters which describe an
affine transformation on the plane. The traditional block matching is then
used for smaller transformations.
The key fact behind the developed algorithm is that the relation between

a region and a motion is very strong. The developed algorithm is iterative.
It alternatively considers the motion and the region as being constant and
refines the other one according to this hypothesis. The results will show
that it converges and leads to good results if big objects are moving in a
sequence.
In order to be able to work in a efficient manner with both kinds of

motions, a framework had to be defined and created. This project also deals
with the creation of a structure for region-based and for block-based motions.
The block-based one consists in a kind of quad tree decomposition of the
image created in the optic of multi scale motion estimation. The region-
based motion structure has the property to be very modular, the information
about motion is separated from the region. Thus, we can combine many
motions and zones together.
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Chapter 1

Introduction

There are many applications in which a compact representation of a video
sequence is used. For storage, it saves space. Due to the fact that the
networks have a limited bandwidth, sequences have to be compressed before
they are sent.

Video compression techniques rely mainly on the reduction of redundan-
cies in the data. In order to reduce temporal redundancies, most of the
coders make use of a technique called Motion Estimation. They aim to pre-
dict a frame from its predecessor. Compression also tries to work with the
limitation of the Human Visual System (HVS).

Traditional motion estimators try to find a motion field by simple match-
ing strategies. The current frame is partitioned into blocks, and each block
corresponds to a vector which indicates the best matching block according
to a given criterion. In general, this criterion is the Mean Square Error
(MSE). These techniques are called block-matching. For all the blocks of a
frame they try to find the best translation.

Block-matching tries to find an apparent motion field which minimize
a given criterion. This report presents a region-based motion estimator
which estimates the real motion of bigger regions in a frame according to
the past one. The regions do not have a fixed shape. The information
about the motion of the regions are made of few parameters which allow to
describe complex motions (rotation, zoom, . . . ). Thus, region-based motion
estimation aims to find the real motion instead of an apparent motion like
the block-matching does.

This project takes place in the context of the new video coder of Vi-
sioWave. From a general point of view, the schema of this coder is near
from a MPEG-style coder. Chapter 2 will explain more in detail how it
works. From the point of view of motion estimation, it has the ability to do
region and block-based motion estimations.

This work mainly treats two different topics. The first one, is the creation
of the structure dealing with motions in the new coder of VisioWave. The
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8 Chapter 1. Introduction

second topic is about the region-based motion estimation.
Adding new features to a program is sometimes a difficult task. The

region and the block-based structures are created to avoid such problems.
Chapter 3 explains more in detail the goals and constraints that are fixed
in order to have a flexible and evolutive framework for motions in a video
codec.
At low bit-rate, the amount of bits used to encode the block-based motion

information is not negligible. Thus, the structure has been created to encode
the data about motion in an efficient manner. We will see in chapter 3 that
the solution we looked at is a quad-tree decomposition of the frame where
only the minimum of needed information is encoded.
For the region-based motion’s structure, the key idea is the separation

of motion and region. A region-based motion is the combination of the
concepts of motion and of region. We will see later on, the responsibilities
each of them has to deal with.
In general, a motion in a sequence of images is due to a motion of the

camera or to objects moving in the scene. In literature, most of the time, a
motion of the first kind is called a global motion and in the second case, we
speak about local motion. In this work, we call global motion the association
of a region and an affine transformation on the plane.
The key problem, in fact, is not compression but rather the quality we

have at low bit-rate! The human visual system is very sensitive to regu-
lar patterns such as the one we obtain if we use block-matching technics
which creates ”blocky” images. The solution we propose to overcome this
problem is to create associations between bigger regions of the images and
affine transformations on the plane. This association is called Region-Based
Motion. Using this method, we are going to reduce the spacial redundancy
within video sequences. Keeping a global approach avoids the appearance
of blocks at low bit-rate. If the motion is uniform on the whole image, a
region-based motion estimation uses only few parameters to describe a com-
plex motion. Thus, it will also lead to a gain in compression even if this
was not our main goal. Using region-based motions is not optimal from the
point of view of the mathematical error. But, the HVS is less sensitive to
this kind of error.
Chapter 4 shows the proposed method to solve the estimation of the

regions and their associated motions. It consists in a recursive algorithm.
At each scene change, we choose initial regions and estimate their motions.
The recursive phase is then to refine the motions parameters and to find for
all pixels of the border of a region if it belongs to the current region, the
neighbor region or if it is not part of a global motion.
Chapter 5 will be devoted to some annex problems encountered during

the project. We will focus on what we called the half-pel problem. Using
region-based motion estimation increases the mean square error; we will look
at the reasons and also propose a solution that reduces this effect.



Chapter 2

Context

2.1 VisioWave V6 Coder

This section is a fast overview of the coder used for this project. The next
one will more precisely deal with the place motion has in this coder.

Figure 2.1 shows the general aspect of the coder. The input of the coder
is the current frame to encode. The output is then the data about the
motion between the last frame and the current one and the spacial data
which is the error between the prediction and the input frame.

Pre-filter

Motion
Estimation

Motion
Compensation

Key Frame
Detection

Rate
Control

Spatial 
Coding

MSE MSE

Quality

Motion
data

Motion
Coding

Motion
data

Figure 2.1: General shape of the coder (VisioWave V6).

The encoded information will be used by the decoder to recreate the
sequence of image. Figure 2.2 is an illustration of how the decoding is done.
The input is made of the data about motion and the spacial information.
The motion compensator takes the last frame and the motion information
and creates an estimate of the current frame. We add the spacial information
to this estimate to create the output frame.
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10 Chapter 2. Context

Motion
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Spatial 
Decoding

Post 
Filter

Motion
Decoding

Figure 2.2: General shape of the decoder.

2.2 Motion Estimation in V6

There are two types of motion estimations: region-based and block-based.
From the point of view of implementation, there is only one object that
does both tasks; it has two main functions namely estimateGlobal and
refineLocal. In addition to the motion estimation task, these functions
return values to the coder allowing it to do scene change detection. The
first function should return a scene change probability and the second one
returns the MSE obtained during the block matching.
There are three possible combinations of motion estimations in VisioWave

V6.

1. Only Block-based

2. Only Region-based

3. Region-based followed by Block-based

In the figures describing each of this possibilities, Frame i represents the
frame to encode, Frame i-1 is the last encoded image. Most of the time, it
is different from the last image to encode. This is due to the quantification
step that the coder does when encoding the difference between the prediction
and the input frame.
In the first case (figure 2.3), block matching is used to create a local

motion field1 describing from where the blocks come in the last frame. Using

1See chapter3



2.2. Motion Estimation in V6 11

the compensator, the estimated image is created and the difference is sent
to a coder. The motion field is also encoded.

Frame i

Frame i-1

Motion Estimator : 
refineLocal()

LocalMotionField_V6

Frame i
Estimated

Local Motion
Compensator

Coder

Figure 2.3: Purely block-based motion estimation.

In the second case (figure 2.4), only region-based motion is used to de-
scribe the changes between frame i−1 and frame i. Choosing only this kind
of motion can be a very interesting solution if a transformation is only due
to the camera (translation, panning, zooming, rotation,...). The container2

compensates a frame according to the information it stores. The other steps
are the same as before. A coder is used to encode the difference between
the prediction and the reference frame.

Frame i

Frame i-1

Motion Estimator : 
estimateGlobal()

GM_Container_V6

Frame i
Estimated

Coder

Figure 2.4: Purely region-based motion estimation.

The last case (figure 2.5) where a region-based motion estimation is
followed by a block-based one, is the one treated in this project. In this
situation, we want to encode image i. First, the frame passes through the
region-based motion estimator (estimateGlobal) which will give a global
motion container. Frame i−1 is compensated according to the information of

2See chapter3



12 Chapter 2. Context

the container and gives a first estimate of the frame to encode. The second
stage of motion estimation consists in a block-based estimation between
the found estimate and the reference frame. Using one object doing both
estimations allows to use the information found during the region-based step
at the block-based estimation. For example, if there is a part of the image
we are very confident in the results of the region based procedure, this part
of the image is encoded as a null motion in the local motion field.

Frame i

Frame i-1
Motion Estimator : 

estimateGlobal()
GM_Container_V6

Frame i
Estimated

Motion Estimator : 
refineLocal()

LocalMotionField_V6

Frame i
Estimated

Local Motion
Compensator

Coder

Figure 2.5: Region-based motion estimation followed by a block-based re-
finement .



Chapter 3

Structure

3.1 Region-based motion

3.1.1 Goals and constraints

The need for an efficient and evolutive structure is important for this kind
of motion. One has to be aware that in the future, region-based motion will
be an important part of the next generation coder of VisioWave. Thus, a
base structure which is able to deal with the kind of information that will
be added had to be created.

We defined the notion of region-based motion as a combination of a
motion1 and a zone2 where the motion is located. Both concepts are clearly
separated in the implementation. Thus, the new structure has to deal with
the fact that a motion could not know all kind of zones. This lead to the
creation of unified interfaces.

The structure should to be capable to handle many kind of zones and
motions on the same frame. But, having many motion and zones should not
increase the complexity for the developer.

At a first glance, these goals and constraints can look very restrictive.
But, it is well known that having a well designed structure is very helpful
when one wants to add something new. One just has to create new objects
with the defined functions and variables.

The following sections are about the choices made in order to satisfy the
constraints and to reach the fixed goals. Some examples will illustrate the
working of the created structure.

3.1.2 Architectural principles

In order to be able to add new kind of motions in the future without modify-
ing zones or other things, the responsibility to deal with the compensation is

1A motion has a type and parameters.
2A zone is also defined by a type and according parameters.
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14 Chapter 3. Structure

given to the motion. This means that when a developer adds a new type of
motion, he also has to implement the corresponding compensation function.
This also leads to create a structure that ensures that any motion can deal
with any zone. In the worst case, a motion should be able to compensate an
image from generic information sent by a zone. This information is a binary
mask describing which parts of the image are part of the global motion and
which are not.

From a general point of view, a task is given to the object which store
the information related to it. This is the reason why a zone is responsible to
compute its parameters from a binary mask describing the region to encode.
This has also another big advantage, we could for example imagine to have
a pool of different zones and to ask each one to encode a given region. The
motion estimator then chooses the best one according to some criterions
as the number of bits needed to encode the zone or the amount of badly
classified pixels (pixels added that were not in the mask or pixels in the
mask that have not been encoded).

Annex B shows the interfaces of the implemented objects described in
this chapter.

3.1.3 Generic Motion

The generic motion defines the interfaces a motion must have in order to
satisfy the fixed constraints. Such a motion can directly be integrated in
the motion estimator. Basically, a generic motion is described by a set of
parameters and a type3 giving a semantic meaning to these parameters.
Some other responsibilities have been given to a motion. A motion has to
be able to store its parameters to a stream and has also to be able to retrieve
them. In addition to this, the motion has to be capable to compensate an
image according to its parameters and a zone. The reason of this choice is
simply due to the fact that we wanted to give this work to the object which
knows most about the motion.

The motion has the responsibility to estimate its parameters from a set
of vectors and positions. The example about translation and zoom included
in this chapter on page 16 explains more in detail how this estimation is
done. A model should also be able to refine the values of its parameters
given a set of vectors and positions. The estimation and the refinement of
the parameters has a great influence on the behavior of the region-based
motion estimation algorithm as shown in chapter 4.

A motion should also be capable to compute the distance from another
motion to it. We want this function to return a value between 0 (equal) and
1 (completely different).

A motion also has to be able to compute the distance (in term of MSE)

3Rotation, translation for example
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from a block to itself.

A motion also has a state. For example, in the implementation, the
translation and zoom motion first estimate its parameters as if it was a pure
translation; when a refinement of the parameters is asked, it tries to evolve
to a more complex model.

From an external point of view, it is impossible to say if a motion is null
or not according to the parameters without knowing the meaning of these
parameters. For this reason, there is also a function (nullMotionTest())
returning true it the motion is null on the whole image.

3.1.4 Generic Zone

As for motion, a generic version of a zone has been developed. It defines the
interfaces that has to be implemented for a zone in order to be compatible
with the rest of the system. A zone estimates its parameters from a binary
mask describing the region to encode. Most of the time, when a zone es-
timates its parameters, the resulting solution is not exactly what was the
binary mask. Thus, a minimization type attribute has been added; it allows
a user to tell to the zone how it has to approximate a mask. For example,
in some applications, a zone should not add pixels. Or, in some other cases,
a user wants to use as few as possible bytes to encode the zone and thus,
does not mind if some pixels are added or removed.

As for the motion object, a zone has to be capable to store and retrieve
its parameters. The example on page 20 of a zone using a quad-tree decom-
position of the binary plane illustrates how the streaming can be done. It
also shows how the estimation of the parameters from a binary mask can be
done.

3.1.5 Motion Description

The motion description represents the ”real” region-based motion. It repre-
sents the association of a zone and a motion. Apart from this, it is used to
create a simple interface to work with a region-based motion.

It provides an interface to deal in a very simple manner with more com-
plicated tasks. It is able to store itself to the stream. The compensation of
a frame can be directly called trough it. It relays the user’s invocations to
the right place. Thus, the programmer does not have to deal with complex
calls; the motion description does the needed work for him.

3.1.6 Motion Container

We said that there can be more than one region-based motion on a frame.
The motion container reflects this. It holds 1 to n motion descriptions.
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It provides a simple interface for a developer to deal with many motion
descriptions. The calls to this object will be forwarded to the right under-
lying object. Figure 3.1 shows a general overview of the container and how
the region-based motion structure has to work.

GM_Container_V6

GM_Description_V6

1 n

GM_Description_V6

GM_MotionType_Generic_V6 GM_Zone_Generic_V6

Figure 3.1: Global motion structure overview.

3.1.7 Translation and zoom as example

Introduction to the example

This example passes trough the different phases of the parameters estimation
and the model refinement. It also illustrates the streaming abilities.
As we said before, the motion has a state; in the case of translation and

zoom, there are three possibilities:

1. Translation.

2. Zoom centered in the middle of the sequence.

3. Zoom and translation.

We will assume that a zoom can only result from a camera-zoom. This
kind of zoom has the property that it is centered in the image; so, the most
complex motion we could have is a zoom combined with a translation. This
hypothesis limits the complexity.
The parameters we want to find are defined by the following equation:

(

x′

y′

)

=

(

cx
cy

)

+ ρ

(

x− cx

y − cy

)

+

(

tx
ty

)

(3.1)

(x′, y′) represent the position of the point (x, y) in the last frame, ρ is the
zoom factor, tx and ty are the translation parameters. Finally, (cx, cy) is the
center of the image.
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The number of parameters to find depends on the state of the motion.
In the first case, we have only a translation, so the zoom factor is equal to
1. The motion has to find tx and ty.

In the second state, the translation is null so, the motion only has to find
the zoom factor ρ. Even if there is only one parameter to find, this problem
is more difficult. The zoom factor has to be found more precisely than a
translation. Assume that the difference between the true zoom factor and
the current one is 0.01 and that the current point is at position (0, 0) the
upper-left corner of our image. The resulting error will then be 0.01cx for
the x axis and 0.01cy on the y axis. Typical values for cx and cy are 180 and
144. This means that the error corresponds to 1.8 pixels on the x axis and
1.44 pixels on the other axis. Knowing that compensation uses half-pel, the
error are now of 2 and 1.5 pixels!

The last case represents the fact that someone zooms with a camera
while moving it in a translational manner.

There are many ways to find the parameters. In this project, a genetic
algorithm has been used. The working of a genetic algorithm will not be
explained in detail. From the point of view of the user, it needs an objective
function to minimize. The choice of this function has a big influence on the
behavior of the region-based motion estimation. Thus, it will be explained
later on in this report.

Estimation of parameters

The meaning of parameters estimation is in fact to find the initial parameters
for the motion. The estimation always starts with small regions. It reflects
the assumption that locally, even a complex motion, can be represented in
a translational manner. The grey rectangle on figure 3.2 shows that locally,
a zoom can be seen as a translation.

There are mainly two reasons to create initial regions with only trans-
lation as motion. The first reason is related to complexity considerations.
Computing the mean of a set vectors is very fast. The second reason fol-
lows from the fact that if we have a region-based motion, the regions are
small enough to be local approximations of this motion. If we do not have
a global motion, the local approximation would be false and the region will
never grow and move to a more complex models. They are detected as
non region-based motions and are destroyed. Thus, the initial translation
approximation can also be a fast test to know if there is a global motion.

For the estimation of parameters, we first have a list of motion vectors
and a list of corresponding points. In order to estimate translation, the
returned solution is the mean of all the vectors.
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Figure 3.2: A zoom can locally be approximated by a translation.

Refinement of parameters

This is the most important task our motion has to do. It is done once or
many times per frame. It can be divided into two steps:

1. Check if the current state is accurate. Try to evolve or to regress.

2. Update the parameters according to the chosen state and positions of
vectors.

In the first step, one of the following tasks is done: evolve, regress or
do nothing. In order to illustrate the evolution procedure, assume that the
motion is in the translation state. From there, it is possible to evolve to a
zoom or to a zoom and a translation. To check the different possibilities,
a fast evolution testing algorithm has been developed. Figure 3.3 shows an
example of this test. The information at disposal are the motion vectors
and the associated points. Algorithm 1 tests if the motion could evolve and
if it is the case, returns an estimate of the parameters. We will see later on
the use of the returned values.
The more complex a model is, the more parameters the motion has to

find. Thus, it increases the computational complexity. For this reason, there
is also a test to see if it is possible to regress to a simpler model. One can
see that there is no regression from zoom to translation. A change from
zoom to translation will pass through the zoom and translation state and
then regress to translation.
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Algorithm 1 Test possible state and find estimate of motion parameters

g0 = gravity center of received coordinates
v0 = mean translation of the received motion vectors
for all points on one side of line defined by g0 and v0 do

g1 = gravity center of coordinates of R1
v1 = mean translation of R1

end for

for all points on the other side of line defined by g0 and v0 do

g2 = gravity center of coordinates of R2
v2 = mean translation of R2

end for

i01 = intersection of g0 + αv0 and g1 + βv1

i02 = intersection of g0 + αv0 and g2 + βv2

i12 = intersection of g1 + αv1 and g2 + βv2

if i01, i02 and i12 not near from each other then
return motion is not a zoom

end if

i the mean of i01, i02 and i12
if i near from the center then
knowing i, find ρ the zoom factor
return state is 1, center i with zoom factor of ρ and translation is null

else

knowing i, find ρ the zoom factor
knowing i and ρ, find tx and ty the translation
return state is 2, center i with zoom factor of ρ and translation of tx
and ty

end if

Experimental results show that the state of a motion remains relatively
constant on a large amount of frames.

Once that the current state is found, the motion estimates the corre-
sponding parameters. There are many ways to do this; in the implementa-
tion, we choose a genetic algorithm to do this. First, an initial population
of genes (corresponds to an array of the parameters) is created then the
best is chosen according to an objective function to minimize. Once the
best is found, the genetic algorithm randomly creates new genes near from
this one. These operations are called mutations and crossovers. The genetic
algorithm also constructs randomly chosen new genes.

The evolution test returns an estimate of the parameters. Generally, the
values returned are near the real parameters. A genetic algorithm is very
good to converge to the minimum if the initial gen is near the optimal value.
The initial population will contain the values returned by the evolution test
and slightly modifications of this. It also contains the last found gen. An-
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Intersection of mean vectors

v2

g0

g1

g2

v0

v1

g0 : gravitiy center of region R0
v0 : mean translation of region R0
g1 : gravitiy center of region R1
v1 : mean translation of region R1
g2 : gravitiy center of region R2
v2 : mean translation of region R2

R2

R1

R0=R1+R2

Figure 3.3: Test possible state.

Algorithm 2 Try to regress to a simpler model

if not evolved and state is different from translation then
if state is zoom plus translation then
if zoom factor is very close to 1 then
state is translation and zoom factor ρ = 1

else if translation is very close to 0 then
state is zoom, tx = 0 and ty = 0

end if

end if

end if

other interesting property of the genetic algorithm is that the computational
complexity is not too high.

The translation and zoom motion has the choice between two kind of
objective functions to minimize. A fast and less fast one. The first consists
in finding the parameters that minimize the distance between the passed
motion vectors at each point and the resulting motion vector found at the
same point in function of the motion parameters. The second version of
the objective function adds to this distance the resulting mean square error
obtained when using these parameters.

3.1.8 Quad-tree zone as example

Goal of this zone

The first tests of region-based motion estimation algorithm were made with
a zone named multi-rectangles. It approximates the binary mask with a list
of rectangles. This solution is not optimal in the general case where zones
have complex shapes. However, it is very good in describing the zones which
correspond to the whole image (unique global motion for the current frame)
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or to a regular inner part of the frame (zoom out motion).

The quad-tree zone decomposes the image into a tree-based structure.
The next section describes how the parameters are estimated.

Parameters estimation

A binary mask that describes the zone is received. The zone has to find
the parameters corresponding to this zone to encode it. They correspond to
the description of the quad-tree decomposition of the received binary mask.
Figure 3.4 shows an example of this kind of decomposition. This procedure
is applied to the mask. The resulting parameters are the values shown near
to the nodes in part d. of figure 3.4. They describe in a unique manner the
decomposition.

Thus, the encoding is very easy, we simply pass the 0 and 1 bits to the
decoder. The example on figure 3.4 would need 30 bits to be encoded. If
we had used the multi-rectangles zone, we would have had 16 parameters to
encode. Assuming that the size of a rectangle can not be bigger than 1024,
the amount of bits needed would have been 160!

3.2 Block-based motion

3.2.1 Goals and constraints

Amotion field has to be a natural instrument to deal with multi-scale motion
estimation. It should also be able to store a lot of information; we would
like, for example, to be able to store more than one motion vector per
region. And the motion vectors are not only two dimensional vectors but
four dimensional ones. Two parameters for the motion, one to store the
mean square error of the block and a confidence value. At low bit-rate, the
size of a motion field is no longer a negligible part of the information to
encode. Thus, our field should also include an efficient method to store the
minimum amount of information used by the decoder to the stream and to
retrieve them. Another constraint, is that the complexity should be hidden
from the point of view of the user working with this kind of motion field.

In order to satisfy these constraints, we decided to create a kind of
modified quad-tree based decomposition of the image where the nodes store
information related to the region they are responsible for. The next section
describe this more in detail.

3.2.2 Architectural principles

Local Motion Field Node

This section describes how a node behaves and how the tree is built.
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Figure 3.4: a. regions corresponding to a node in the tree b. binary mask
c. shape of the region we want to encode d. tree with binary code to pass
for each node

The tree structure is built deterministically; this avoids to have to pass
information about the decomposition to the decoder and thus to loose pre-
cious bits. The tree is built in order to be efficient for multi-scale estimation.
The block-based motion estimator implemented in the VisioWave coder V6
is able to deal with blocks having a size equal to a power of two. Typically
the dimension of the blocks goes from 32x32 to 4x4 pixels. Knowing this,
our goal is to create a maximum of blocks corresponding to this criterion.
The coder for which this structure is implemented crops the images to be a
multiple of eight in height and in width. The creation of the tree makes use
of the knowledge of the size of the biggest divider of the image we are sure
to have. Assume this size is bd standing for biggest divider. It has to be a
power of two equal or bigger than the size of the smallest estimable block.

A node is always responsible for a region on the image. The root node
is responsible for the whole frame. A node can have two or four children
according to its shape.

The algorithm used to create the tree decomposition can be divided into
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smaller parts. The first one consists in finding the shape of a node according
to the parameters it stores about the region it is responsible for. The shape
determines how the children have to be created. The second deals with the
creation of the children according to the previously found shape.

Algorithm 3 finds the shape of a region according to the parameters a
node stores.

Algorithm 3 Find the shape of a region.

width the width of the current node’s region
height the width of the current node’s region
sizeRatio = (width)/(height)
if sizeRatio < 0.5 then
the shape is vertical. It leads to a horizontal division of the region in
two parts.

end if

if sizeRatio > 2.0 then
the shape is horizontal. It leads to an vertical division of the region in
two parts.

end if

if sizeRatio > 0.5 AND sizeRatio > 2.0 then
the shape is regular. It leads to the division of the region in four sub-
regions.

end if

As shown in algorithm 3, there exists three different shapes. Thus we
also have three different cases to treat when we want to create new children
for a node. Let us have a look at each of these algorithms.

If the shape we obtained is vertical we divide the region horizontally in
two parts. This will lead to the creation of two new nodes. Algorithm 4
finds the parameters of those new nodes and creates them. They will be
set as the children of the current node. In order to create a new node, we
have to find its position on the image and the size of the region it will be
responsible for. Assume a new node is then created as follows:

node = createNode(ulx, uly, width, height)

where ulx, uly are the coordinates of the upper left corner of the region
and width, height define the size of the region.

The second case is very similar to the first one. Instead of having a
vertical shape, we have an horizontal one. Thus the region has to be divided
horizontally. This procedure is illustrated by algorithm 5.

The regions are not cut in the middle. They are divided at the multiple
of bd in the middle. This ensures that the algorithm will never lead to the
creation of blocks that are not estimable.
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Algorithm 4 Create new nodes if the shape is vertical.

(ulx, uly) and (drx, dry) the coordinates of the upper left and down right
corners of the region of the current node.
set the current number of divisions of this node to two
divY = ((buly/bdc+ bdry/bdc)/2) ∗ bd
first child is createNode(ulx, uly, drx− ulx, divY − uly)
second child is createNode(ulx, divY, drx− ulx, dry − divY )
set parent of the created nodes as the current one.

Algorithm 5 Create new nodes if the shape is horizontal.

(ulx, uly) and (drx, dry) the coordinates of the upper left and down right
corners of the region of the current node.
set the current number of divisions of this node to two
divX = ((bulx/bdc+ bdrx/bdc)/bd) ∗ bd
first child is createNode(ulx, uly, divX − ulx, dry − uly)
second child is createNode(divX, uly, drx− divX, dry − uly)
set parent of the created nodes as the current one.

The last case is the most interesting one for use. As we have seen before,
one of our goals in this decomposition is to have blocks that divides hierar-
chically from the biggest estimable size to the smallest one. Thus, we try to
make blocks that are as big as possible, square and whose size is a power of
two. The last case is divided in four subparts.

Figure 3.5 illustrates in which order the children will be stored in the
tree according to the kind of shape we have. The order in the tree is very
important and is well known by all participants in the local motion field.
This allows a node to know how its children are placed according to its
shape. Thus to relay the information and other actions to the right child.

The following example make use of the previously described algorithm
in order to create a full tree4. Algorithm 7 creates such a tree for a given
frame. The first three steps are illustrated by figure 3.6. A tree is created for
an image of size 360x288. To make the algorithm simpler, we also assume
that we have a function getNextNode that returns the next node to divide
or No more nodes if we are finished. The next node is defined as being the
leaf node most left in the tree that is bigger than the smallest estimable
block. In typical cases, the smallest estimable block has a size of 8x8 or 4x4.
We have to make sure that this size is smaller or equal to the biggest divider
of the image we are sure to have. As we have seen before, in our case, the
size of this divider is eight.

This algorithm is very simple. The getNextNode function is also simple

4All leaf nodes have the same size as the smallest estimable block can be created for

an image
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Figure 3.5: Order of children of a node in function of the shape of the
parrent.

to obtain. It is a Depth-First Search (DFS) algorithm.

Local Motion Field

One of our goals is to hide complexity from the point of view of the user
working with this structure. Most of the information, a user wants to handle,
is stored in the tree. The Local Motion Field is an interface that gives the
ability to work with the data without having to get worry about how it is
internally managed. The Local Motion Field also deals with the information
that is common to all the nodes.

The annex C shows the interfaces the local motion field gives to a user
in the implementation.

3.2.3 Encoding

One important constraint for the created structure is the efficiency in term of
place used to store the information about motion in a compressed sequence.
This section describes the store and retrieve algorithms of the local mo-
tion field. Another aim of the created structure is the ability to contain
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Figure 3.6: Three steps of the creation of the tree structure for the local
motion field.

many different kind of information that are used during by the block-based
estimator. There is no need to send everything to the decoder. The local
motion field tries to send only the minimal amount of information needed
by the decoder to compensate the image.

The following data is used at the decoder to compensate the image and
is sent:

• the pel divider which gives sense to the values stored in the motion
vectors

• the biggest and the smallest estimable block

• the size of the image

• the two first values of the motion vectors at first position of the leaf
nodes

• the binary description of the tree

To encode these information, the local motion field makes use of an
arithmetic coder. This coder works very well to encode bits given a context
that modifies the probability for the current bit to be 0 or 1. For each node,
the tree has to send a boolean value indicating if this node has children



3.2. Block-based motion 27

or not. The ability an arithmetic coder has to encode bits is thus very
interesting. The motion vectors also need to be sent. Other non binary
data like the motion vectors also have to be sent. This fact led to the
creation of two functions codeAmplidude and decodeAmplitude that use
the arithmetic coder to encode integers values.

The motion vectors are not encoded as they are. The motion field first
tries to predict the motion vector and then encodes the difference between
the predicated and the real motion vector. This procedure tries to reduce
the spacial redundancy contained in the motion field.

The encoding algorithm does a Depth-First Search in the tree and stops
at each node to encode the information it contains. Algorithm 8 illustrates
the encoding procedure in a simpler manner. Assume for this example that
there is a function called getNextNode that implements the DFS algorithm
and returns the next non-fully treated5 node it encounters on his walk trough
the tree or No more nodes if we parsed the whole tree. This function starts
from the root node.

Algorithm 8 describes this simplified encoding procedure. Algorithm 9
illustrates the corresponding decoding function.

The simplified version does send the divide/not-divide bit for each node.
The following example shows that if we make use of some other knowledge
and hypothesis, this bit has not to be sent for all the nodes. Figure 3.7 is
the reference tree for this example. It represents a fictive case where the size
of the image is 12x12 and the sizes of the estimable blocks are 8x8 and 4x4.

0

61 9 10

7 832 54 11 12

2 3 7

5 4 8

11 12 9

Figure 3.7: Example of a tree we want to encode.

The first case shown in table 3.1 illustrates which nodes are treated by
the simple algorithm. For the second case, the algorithm gets rid of encoding
the bits for the nodes on its way when going up in the tree. This is due to
the fact that the division bit has already been sent for this node. In this
case, the algorithm has to walk up to the next non-fully treated node and

5A node is defined as fully treated if all its children have been parsed.
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Case Ordered list of nodes where the divide bit is encoded bits used

1 0 1 2 1 3 1 4 1 5 0 6 7 6 8 0 9 0 10 11 10 12 21

2 0 1 2 3 4 5 6 7 8 9 10 11 12 13

3 0 1 6 10 4

4 1 1

Table 3.1: Encoding of the information about the tree decomposition.

to act as if it received a divide bit for this node. The third case makes
use of the information about the size of the smallest estimable block. The
algorithm knows that such a node can not be divided. Thus, there is no need
to pass the divide bit for such nodes. The last line shows an example that
is not efficient in most of the cases. The algorithm assumes that motions
are only encoded for block that correspond to an estimable size. Thus, the
algorithm encodes the divide/not-divide bit only for the nodes whose region
have an estimable size larger than the smallest one. This case leads to the
best results for this example. In general, this is not true. The problem is
that this methods prevents the algorithm from grouping children with equal
motion vectors into their parent node if the size of the parent is bigger than
the biggest estimable block.

For the previously explained reasons, the third method is used to encode
the information about the tree in the created structure.

In order to reduce the size needed to encode a motion field, predicate of
the motion vector is used. This is done by creating a list of neighbor motion
vectors that have already been encoded. The predicate value will be the
median vector. In a matrix-based structure, obtaining a list of neighbors is
very easy. In our tree based structure, this task is no longer trivial. A node
does not have the knowledge of the structure over it. A node has to ask
its father to give him this list of motion vectors. If a node receives such a
call for its child at position n, the children from 1 up to n− 1 have already
been encoded and have neighbors nodes in their subtree. Thus, the node
will ask them to find motion vectors that have this property and to put
them in a list. Let us cut this problem in three smaller parts. The first
algorithm (10) will ask the parent for the list of vectors and find the median
one. The second part is the call that goes up in the tree. This will locate
potential neighbor subtrees; illustrated by algorithm 11. The last part goes
down in these subtrees to find the motion vectors. This procedure is shown
in algorithm 12.

3.2.4 Results

In order to analyze the results, the performances of the created block-based
motion field used in the VisioWave coder V6 are compared to the motion



3.2. Block-based motion 29

field of a MPEG-2/4 coder. This motion field is a matrix whose width and
height are the one of the image divided by the size of the blocks (bSize).
At each point (x, y) of this matrix, we store a motion vector (dx, dy) for the
block of size bSize at position (x · bsize, y · bsize).

The encoding of the motion field of a MPEG-2/4 coder is done the follow-
ing way. The encoding algorithm passes trough the matrix horizontally. For
each point, it predicts the current vector according to its encoded neighbors
and then passes the difference to a Huffman coder.

To have comparable results, the estimation mode is only block-based.
We obtain a tree-based motion field. From this tree, a MPEG-2/4 motion
field is created. The size of the matrix depends on the smallest estimable
block used in the V6 block-based estimator. The two different motion fields
store the same information and are thus comparable.

The measures of the performances are done by encoding both and com-
paring the size in bytes they need to encode the same data into a video
stream.

Figure 3.8 shows the amount of bytes used to encode both motion fields
for different sequences at each frame. As one can see, for these test se-
quences, the structure of V6 uses less bytes than to one from MPEG-2/4.
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Figure 3.8: Size of encoded motion field per frame for different sequences.

At low bit-rate, the size of the motion field is not a negligible part of the
total size of an encoded sequence. Thus we wanted to create a motion field
which is small in terms of bytes used to encode. Figure 3.9 shows the same
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sequences encoded at different qualities. For each quality, the mean size of
the motion field per frame is computed. At low quality, the part of the total
size used by the motion fields is high.
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Figure 3.9: Part of the total size used by the motion fields in encoded
sequences at different qualities.
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Algorithm 6 Create new nodes if the shape is regular.

width the width of the region and height its height
maxPower2 = biggest power of 2 such that maxPower2 ≤
min(width, height)
if width equals maxPower2 and height is different from maxPower2
then

set the current number of divisions of this node to two
divY = maxPower2 + uly
first child is createNode(ulx, uly, drx− ulx, divY − uly)
second child is createNode(ulx, divY, drx− ulx, dry − divY )
set parent of the created nodes as the current one.

end if

if width! = maxPower2 AND height == maxPower2 then
set the current number of divisions of this node to two
divX = maxPower2 + ulx
first child is createNode(ulx, uly, divX − ulx, dry − uly)
second child is createNode(divX, uly, drx− divX, dry − uly)
set parent of the created nodes as the current one.

end if

if width equals maxPower2 and height equals maxPower2 then
set the current number of divisions of this node to four
divX = (ulx+ drx)/2 and divY = (uly + dry)/2
first child is createNode(ulx, uly, divX − ulx, divY − uly)
second child is createNode(divX, uly, drx− divX, divY − uly)
third child is createNode(divX, divY, drx− divX, dry − divY )
last child is createNode(ulx, divY, divX − ulx, dry − divY )
set parent of the created nodes as the current one.

end if

if width different from maxPower2 and height different from
maxPower2 then
set the current number of divisions of this node to four
divX = maxPower2 + ulx AND divY = maxPower2 + uly
first child is createNode(ulx, uly, divX − ulx, divY − uly)
second child is createNode(divX, uly, drx− divX, divY − uly)
third child is createNode(divX, divY, drx− divX, dry − divY )
last child is createNode(ulx, divY, divX − ulx, dry − divY )
set parent of the created nodes as the current one.

end if
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Algorithm 7 Create a full motion field tree.

root node is createNode(0, 0, widthOfFrame, heightOfFrame)
find the shape of the root node
create the children given the shape of the root node.
while current node given by getNextNode) is different from No more

nodes do

find the shape of the current node
create the children given the shape of the current node.

end while

Algorithm 8 Store a local motion field. Simplified version.

encode information contained in the motion field
while current node found by DFSNextNode different from No more nodes

do

if current node is not a leaf node then
encode one bit equal to 1

else

encode one bit equal to 0
get predicate of this motion vector
encode difference between motion vector and predicate

end if

end while

Algorithm 9 Retrieve a local motion field. Simplified version.

if root node does not exist then
create root node

end if

set the current node to root node
while not finished do
divide = get next bit from stream
if divide == 1 then
if current node does not have children then
create children of the current node

end if

else

get predicate of this motion vector
decode difference from stream
set the motion vector for this node as predicate + difference

end if

current node updated from DFSNextNode

if current node is No more nodes then

construction is finished
end if

end while
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Algorithm 10 Retrieve a list of motion vector and find the median one.

create an empty list of motion vectors
the number of motion vectors in the list is set to 0
define the numbers of levels we want to go up in the tree
ask the parent node to fill up the list of motion vectors. The current node
passes its coordinates and how many times he want this call to go up in
the tree.
return the median motion vector contained in the list

Algorithm 11 Go up in the tree to find subtrees that could contain a
neighbor to the node that first made this call.

n the child from which the call is issued
for i = 1 to n− 1 do
ask child i to put motion vectors in list if possible

end for

if I am not the root node and levels left to go up then
ask the parent node to fill up the list of motion vectors. Pass the
information received from the node that called my.

end if

Algorithm 12 Go down in a subtree and find leaf nodes that are neighbor
of node and put their motion vectors in a list

if we are neighbor of node which asked for the vectors then
if I am a leaf node then
add my first motion vector to the list of vector

else

for all my children do
ask for motion vector to put in list if possible

end for

end if

end if





Chapter 4

Region-based Motion

Estimation

4.1 Algorithm principles

Region-based motion estimation is seen in this project as an unsupervised
classification problem. Our goal is to classify the pixels of a frame in n
different classes. The upper bound on the number of motions is fixed.

There exists a lot of papers1 dealing with region-based motion estima-
tion. In many cases, they start from a given region to find a motion or start
from some kind of motion to find the corresponding region. Starting from
the point that the relation between motion and its corresponding region is
strong, we developed an iterative algorithm that refines the motion accord-
ing to the region and then slightly modifies the region according to the new
motion parameters. Experimental results show that this kind of algorithm
converges to a coherent solution and that the non-coherent one will rapidly
be detected and removed. We also make use of temporal redundancy by
assuming that a region-based motion is constant from one frame to the next
in order to create the current initial state for the algorithm.

This chapter is devoted to region-based motion estimation. The first
section describes the algorithm from a general point of view. The second
section deals with the information and the variables that are used by the
algorithm. We will then pass trough the different phases it is made of.

4.1.1 Algorithm overview

A frame is divided into atomic parts. Let us call the smallest element of a
region a chunk. Typically, it is a block of 2x2 pixels. Thus, the resolution
of the regions is rather high.

1Some are listed in the bibliography.

35
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The general shape of the region-based motion estimation algorithm (13)
is rather simple. It can be divided in three parts. An initialization phase
if we do not have access to information from the past. This happens after
each key frame. An update phase to create a new initial state if there was
no key frame just before. And finally the recursive phase which will refine
the motions and the regions.

Algorithm 13

if Previous frame was a key frame then
Initialization. Create regions and associated motion.

else

Update. Assuming motion is constant, displace the old regions ac-
cording to the motions in order to create the actual estimate of the
zones.

end if

for number of recursion do
Refine motions and random check. According to the actual re-
gions and motions, refine the motions. For randomly chosen chunks,
test their adequation to the model and remove them if they are too
bad.
Create new models. If we have enough place, create new zones and
estimate their motion.
Dynamic parameters update. There are some variables that depend
on the sequence that are dynamically computed.
for number of border checks do

Border checks. A border chunk of a zone can have another region
a neighbor or an unassigned region. Find the region where the chunk
is more likely to belong to.

end for

Eliminate and merge. Try to merge regions and eliminate the false
or too small ones.

end for

Create the container.

The core of the algorithm relies on successive creation of region-based
motion candidates and on the elimination of those which do not satisfy
enough conditions to be region-based motion. The accepted one are then
refined. Their motion and region then evolve. The goal is to have as few
models as possible which cover as many pixels as possible.

4.1.2 Information and variables used

First of all, our algorithm needs the ability to estimate motion vectors for
blocks. We will simply make use of the same block-matching estimator as the
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one used by block-based motion estimation. If the block we want to estimate
is located in a region, we will use the motion vector it has according to the
motion related to this region as initial state for the block matching.

The region-based motion is the association of a motion and a region.
We will from now on call this pair a model. At each time, the algorithm is
aware of the number of models it is working with. This value changes each
time models are merged, created or deleted.

The current amount of pixels in a model is also known. The algorithm
also has access to the history of this information. This permits to the algo-
rithm to know the evolution in term of the size of a zone.

To each model, an age is associated. The elder a model is the more it
passed through the algorithm; thus, the algorithm is more confident in such
a model. In a way, the age reflects the experience a model has.

The models have a unique identifier. Spacial knowledge of the regions
is also needed. A mask stores for each chunk the identifier of the model it
belongs to. The size of this mask is the one of the frame divided by the size
of a chunk. The identifier gives also access to the motion corresponding to
a model.

It is known that the block-matching works better if the block we are
trying to match contains a border. In order to make use of this fact, we
create at the beginning a mask containing interesting point to do block-
matching on. Many different filters can lead to such a mask.

The region-based motion estimation algorithm has some fixed constraints.
These values mainly correspond to upper bounds. The maximum number
of models the algorithm is allowed to work with is fixed. The condition for
a model to be considered as a region-based motion relies on the amount of
pixels he is responsible for. Thus, this limit is also fixed. If this condition is
not satisfied, the model is destroyed.

The algorithm makes use of dynamically computed values. The pre-
vious chapter showed that the motions have the ability to compute their
distance to a block. The mean distance from the chunks of a region to their
corresponding motion is computed. These values are precious to give an in-
dication about the region. An uniform region for example will have a small
mean. The mean will thus be used to assign a chunk to a model.

4.1.3 Initialization phase

At this point, we have information neither about the motions nor about the
zones. Thus, we have to create an initial state for the motion estimation
algorithm. The frame is divided in a given number of initial regions and for
each one, a motion is estimated.

To achieve our goal, we will make use of a block-based motion estimator
that will create a motion field. The created local motion field contains
already a segmentation of the frame that we will use. In addition to spacial
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information, the motion vectors also store the mean square error of their
node according to their translation.

To find the initial segmentation, a greedy algorithm (14) is used. The
nodes with the smallest mean square error are taken. If a node has a small
MSE, the probability that a correct motion was found is bigger.

Algorithm 14 Greedy algorithm used to find a list of node with minimal
overall MSE.
Put the root node at position 0 of the list
while Not Finished do
Find node with the biggest MSE in list
n the number of children it has
if number of nodes in list +i− 1 ≤ wanted number of nodes then
remove the found node from the list
add the children of the found node to the list

else

We are finished
end if

end while

return the list and the number of nodes

Each node represents a part of the image, the coordinates they contain
are used to fill the mask of zones and the array of pixels per region. For
each region, we take some motion vectors and positions from the motion
field and pass them to the corresponding motion in our list of motions to
estimate the parameters. This task is done independently from the motion
estimation algorithm; as described in chapter 3, a motion is responsible for
the estimation of its parameters.

This procedure created n models. The more models the algorithm has
to deal with, the higher the complexity is. Thus, for all pairs of created
models, the distance between their motions is computed. If this distance is
small, both models are merged together.

4.1.4 Update phase

An update phase occurs if we have access to past estimations of zones and
motions. The goal of this part is to find the actual position of the zones. In
order to do this, we make the hypothesis that the motion is constant.

First, we create a temporary zone mask that is filled with the non treated
value. Then, for each non unassigned chunk at position (x, y) on the zone
mask, we ask to the model which chunk at position (x′, y′) has the following
property: x′ + mvx′ = x and y′ + mvy′ = y where (mvx′,mvy′)T is the
motion vector at (x′, y′) according to the motion of chunk (x, y).

We assign the motion of (x, y) to (x′, y′) in the temporary mask. If



4.1. Algorithm principles 39

there is a conflict, the priority is given to the elder model. If the motions
have the same age then the priority is given to the one having most pixels.
This conflict case is illustrated by figure 4.1. If we still can not decide,
the region with the smallest identifier is taken. In case of conflict between
an unassigned chunk and a non unassigned, the second one is always the
winner.

Region 1: age = 12

Region 2: age = 6

Frame i-1 Frame i (estimation)

Figure 4.1: An elder region has the priority during the update phase.

An unassigned chunk at position (x, y) leads to an analog chunk at same
position on the temporary mask if this position contains the not treated
value.

At the end, all chunks that remain not treated move to the unassigned
state.

The array that keeps the information about the number of pixels per
region is updated when there is a conflict between two chunks.

4.1.5 Recursive phase

Refinement of parameters and random validity check

Three ways can lead to a refinement of the parameters. After an initializa-
tion, after an update or if we pass more than once through the recursive
phase.

Apart from the first case, the refinement of parameters takes place af-
ter changes done on the zones by either the update or some borders check
phases.

During the update, our hypothesis was that motion is constant. This
hypothesis made it possible to get an estimate of the regions. In order to
refine the motions, we will assume that the regions are constant and correct.
From a general point or view, this motion estimation algorithm alternatively
considers the motions or the zones as being correct and constant and tries
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to refine the other ones.

The main part of the motion refinement is to choose the chunks to use.
It uses the points defined as interesting for the block-matching. For each
zone we fill a list of motion vectors and points as shown is algorithm 15. We
take every chunk containing an interesting point and 1 chunk every N. We
try to get the motion of uniformly distributed chunks.

Algorithm 15 Fill list of points and vectors for the parameters refinement.

for Each chunk in frame do
counter = counter + 1
if Contains interesting point OR counter == N then

if counter == N then

counter == 0
end if

if motion of current chunk is not unassigned then
Ask motion to give us the vector at this point.
Block matching with previous vector as initial state.
Put the result and current point in list corresponding to the current
model.

end if

end if

end for

Now, we have list of points and vectors that can be huge. K the number
of points and vectors we have for a motion. If K is less than the fixed upper
bound, we pass all point to the refinement function of the motion. If K is
bigger, the algorithm takes as much points as possible equally distributed
in the list. We assume that choosing equally distributed chunks in the list
will give us equally distributed chunks in the regions.

The next step is independent from the motion estimation algorithm. The
refinement of the parameters is up to the motion. The parameter refinement
and estimation have a big influence on the behavior of the motion estimation
algorithm. It decides if the priority is given to spacial or temporal persistence
of the motion. Spacial persistence is achieved when it is assumed that the
region associated to a motion has less chance to suddenly change than the
motion. On the other hand, temporal persistence consists in assuming that
a motion has less chances to change abruptly than the shape of the region.
Spacial persistence has to be chosen. It often happens that the motion
changes in a very fast manner from one frame to the next. If temporal
persistence is chosen, it results in having false parameters for a region. This
leads to the rapid destruction of the corresponding model.

The second task done in this phase consists in a random validity check.
This is done for two reasons. The first one is to detect changes in the
middle of a region that can not be detected by looking only at the borders
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of a region. The second reason is to decrease the time needed to destroy a
false model.

N chunks are randomly chosen on the frame. The distance to their
model is computed. If this value is over a given threshold depending on the
maximal distance allowed and the current mean distance of the region, we
remove this chunk from the region.

This procedure creates holes in a region. These holes will be interpreted
as borders by the border check phase. A false region contains many holes
and is rapidly destroyed during the border check phase. This reflects the
general goal of the algorithm which consists in creating candidates, modify-
ing them, deleting the false ones and keeping the good ones. The random
check decrease the time needed to delete false models and avoids having
objects in a region that are not part of the model.

If a region contains objects having different motions, the parameters
used during the update phase will be a mix of the motion vectors of these
different objects. Thus, the resulting parameters are wrong and the whole
model is destroyed. This is clearly not what we want!

Creation of new models

Moving regions can enter and leave the scene. Thus, the algorithm has to
be able to create new models. If something different is entering the scene,
the part containing the new object will be unassigned. If there are enough
unassigned pixels, this function will try to create convex regions made of
these pixels. Once this is done, motions are assigned to these regions and
their parameters are estimated.

The purpose of the algorithm is to create many models and to choose
the one having a chance to be region-based motions. The chosen ones then
evolve and converge.

This phase of the motion estimation is described by algorithm 16.

Algorithm 16 create new models during the region-based motion estima-
tion.
while enough unassigned pixels and limit of models not reached do
find a rectangle of unassigned chunks.
if size of the rectangle big enough then
assign the chunks in the rectangle to an unused model.
create a list of motion vectors and points for the chunks in the rect-
angle.
estimate the parameters of the motion from these values.

end if

end while

As for the initialization, the pairwise distance between the motion of all
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models is computed and merging is done if possible.

Borders probability check

Changes in the shape of a region can only happen at the borders. This phase
tries to expand or to shrink the regions. The border check phase can be seen
as a simple classification problem. For each treated chunk the algorithm has
to choose the best model in a list of possible models.
A border chunk is defined as being a chunk that has at least one neighbor

that belongs to a different model. A chunk that has changed to another
model is not treated again in the same border check. Three different cases
are treated:

• Region X v.s. Unassigned

• Unassigned v.s. Region X

• Region X v.s. Region Y

It can happen that a chunk has more than one type of neighbor. In this
case, the first encountered different model is chosen as neighbor.
For the first case, the current chunk belongs to region X. Its neighbor is

unassigned. The algorithm must decide if the current chunk is near enough
from model X to stay in it. This decision is taken in function of the distance
the chunk has to the model, the mean distance chunks have to this model
and the classification of the neighbors. The neighbors are taken in account
to include spacial information. This case is illustrated by algorithm 17. If
a motion has to search outside the image for a given chunk, the returned
distance is an infinity symbol.

Algorithm 17 Border check phase: case 1.

compute the distance from current chunk to current model.
if distance is bigger than (maximum allowed distance + mean distance of
model)/2 then
chunk is unassigned
if numbers of same class neighbors ≥ 7 AND distance smaller than
maximum allowed distance then
chunk belongs to model X

end if

else

chunk belongs to model X
end if

The condition on the distance depends from the mean of the tested
model. This comes from the fact that this mean holds information about
the other chunks in a model. A chunk can be over the first computed distance
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but stay in the current model if its neighbors are mainly in the same model.
This is done to keep local spacial consistency.

The second case (algorithm 18) deals with unassigned chunks that are
candidates to enter the motion. The decision is taken in a very similar way
as in the first case.

Algorithm 18 Border check phase: case 2.

compute the distance from current chunk to the other model.
if distance is bigger than (maximum allowed distance + mean distance of
model)/2 then
chunk is unassigned
if numbers of other class neighbors ≥ number of unassigned neighbors
AND distance smaller than maximum allowed distance then
chunk belongs to model Y

end if

else

chunk belongs to model Y
end if

The last case happens when two zones are adjacent. The algorithm has
to find the best fitting model for a chunk between two models or to change
the chunk to unassigned if non of the models fits. In addition to the values
needed to decide in the two first cases, the algorithm also takes in account
the ages of the concurrent models. If both models fits well to the chunk,
the priority is given to the elder one. The decision procedure is described
by algorithm 19.

Model elimination

The previously phases try to create and refine the population of models at
our disposal. The model elimination phase has to choose the ones that do
not correspond to our expectations.

The first step of the elimination consists in looking for models to merge
by checking pairwise the distance between the different motions. The second
step is the real elimination. It is done by checking constraints on the models.
The algorithm eliminates the models which:

• have a very small region

• are old but never grew up to a given size

• lost a big amount of pixels in one step

Deleting the bad models will permit the correct ones to grow. This step
leads to the creation of new unassigned chunks. From these, the algorithm
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Algorithm 19 Border check phase: case 3.

compute the distance from current chunk to model X.
compute the distance from current chunk to model Y .
if distance to model X is infinity then
if distance to model Y ≤ maximal allowed distance then
chunk belongs to model Y

else

chunk is unassigned
end if

else if distance to model Y is infinity then
if distance to model X ≤ maximal allowed distance then
chunk belongs to model X

else

chunk is unassigned
end if

else

if distance to the younger model ¿ distance to the elder model then
chunk belongs to the younger model

else

if distance to the younger model < distance to the elder model then
if amount of neighbors belonging to the elder model > amount of
neighbors belonging to the younger model then
chunk belongs to the elder model

else

chunk is belong to the model whose mean distance is nearest to
the computed distance

end if

else

chunk belongs to the elder model
end if

end if

end if

will be able, in another recursion, to create new models which will perhaps
grow into a new region-based motion.

4.1.6 Creation of the container

The last task of our algorithm is to create the container described in chapter
3 to encode the results. The algorithm may internally work with a huge
amount of different models regarding to the number of models it encodes at
the end. This step chooses the models that are worth encoding.

The encoding constraints are fixed. A lower bound on the number of
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pixels a model has to contain in order to be encoded is defined. Thus, there
is a tradeoff between the gain a model adds to the system and the amount of
information needed to encode it. An upper bound on the number of models
to encode is also fixed. This part will choose the most valuable models to
encode according to this limit.
For the encoding, a model X is better than a model Y if the number of

pixels in the region of X is bigger than the number of pixels in the region of
Y and if the motion of the model X is not corresponding to a null motion.
The algorithm creates the container according to these conditions and

to the encoding constraints.





Chapter 5

Annex problems

5.1 Using half-pel

5.1.1 Problem definition

Using half-pel during the estimation leads to more precise motions. However,
it also increases the mean square error between the reference frame and the
compensated one. Half-pel tries to recreate the missing information. To
do this, it interpolates pixels. Thus, the mean square error between the
interpolated pixel and the real one is high.

The goal of this section is to find a prefilter that would reduce the impact
of interpolation on the error. Assume one has access to an image in full
size and wants to encode a downsampled version of it while using half-pel.
Assume also that the decoder has access to the original image in full size.
Thus, it can compute the mean square error generated by the interpolation.

The key idea of the filter is to insert some information about the missing
pixels into the downsampled version to the image. Including information
can be done by applying a prefilter H before downsampling the image.

This section shows the existence of an optimal prefilter in the general
case. Numerical results are also shown.

Assume we have access to an image X delivered by a given source in full
size and that we want to encode it in CIF. Figure 5.1 shows the traditional
and the the proposed way to do this.

We want to know the error due to the interpolation. Figure 5.2 shows
how this error is computed. Our goal now is to find the filter H which
minimizes this error. If the filter H is equal to 1, we are in the first case
where no prefiltering is done.

5.1.2 Optimal prefilter

The best filter H is such that the MSE between Y and X is minimal. Let us
call this this value e(H(z)). Thus, the function to minimize in the z-domain
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Coder

CoderH

X

X

a.

b.

Figure 5.1: Part a. shows the normal downsampling. Part b. shows the
proposed solution with prefiltering.

HX Y MSEG

Figure 5.2: Compute the error due to the interpolation represented by the
upsampling.

is

e(H(z)) = E
[

(Y (z)−X(z))2
]

(5.1)

where Y (z) is

Y (z) =
X(z)H(z) +X(−z)H(−z)

2
G(z) (5.2)

The filter used for the interpolation is also known

G(z) =
1

2
z−1 + 1 +

1

2
z (5.3)

From this equation, we rapidly deduce that G(z) = G(z).

First, by developing the term in the expectation of 5.1, we obtain the
following equation

e(H(z)) = (Y (z)−X(z))(Y (z)−X(z))

= Y (z)Y (z)− Y (z)X(z)− Y (z)X(z) +X(z)X(z) (5.4)

To minimize the error, we want to find the derivative of e(H(z)) in
function of the filter H(z).

δe(H(z))

δH(z)
=

δY (z)

δH(z)
Y (z) +

δY (z)

δH(z)
Y (z)−

δY (z)

δH(z)
X(z)−

δx(z)

δH(z)
Y (z)
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−
δY (z)

δH(z)
X(z)−

δX(z)

δH(z)
Y (z) +

δX(z)

δH(z)
X(z) +

δX(z)

δH(z)
X(z)

=
δY (z)

δH(z)

(

Y (z)−X(z)
)

+
δY (z)

δH(z)
(Y (z)−X(z)) (5.5)

Let us now look at the terms of the right part of the previous equation.
For the first term

δY (z)

δH(z)
=

δH(z)

δH(z)
X(z)G(z)

1

2
+

δH(−z)

δH(z)
X(−z)G(z)

1

2

=
1

2
G(z)

(

X(z) +
δH(−z)

H(z)
X(−z)

)

(5.6)

The second term becomes

δY (z)

δH(z)
=

1

2
G(z)

(

δH(z)

H(z)
X(z) +

δH(−z)

H(z)
X(−z)

)

(5.7)

In order to simplify our problem, we can make the following hypothesis
on H(z): H(z) = H(z). We now have a simpler equation for 5.7.

δY (z)

δH(z)
=

1

2
G(z)

(

X(z) +
δH(−z)

H(z)
X(−z)

)

(5.8)

Even, with these simplification, the analytic solution remains difficult to
find. Thus, let us now look in the next part at a numerical solution found.

5.1.3 Numerical solution

In order to solve the problem numerically, we have to fix some parameters
for H and make hypothesis on the spectral density X(z) of the input signal.
Let us assume from now that X is white noise; so we have that X(z) = 1.
The desired filter is H(z) = a0z−1 + a1z−1 + a2 + a1z + a2z2.
Under these conditions, we find that the parameters of the optimal filter

are:

• a0 = −0.11764705882352941176

• a1 = 0.26470588235294117646

• a1 = 0.70588235294117647060

Figure 5.3 clearly shows us that this filter is low-pass one. These parameters
are very similar to the famous Cohen-Daubechies-Feauveau (5,3) wavelet
shown on figure 5.4.
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Figure 5.3: Frequency response of H
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Figure 5.4: Frequency response of Cohen-Daubechies-Feauveau (5,3) wavelet
[−1/81/43/41/4− 1/8].
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Mean Square Error

Filter Image No Horiz Vert Diag

Found 17.938957 5.326927 13.105896 23.170330 30.152675

[1] 22.353552 0.000000 17.382696 33.541153 38.490359

[1/4 1/2 1/4] 27.051030 13.256355 22.625163 32.476936 39.845666

[1/2 1/2] 45.195176 38.555800 41.376480 48.430684 52.417741

Table 5.1: Mean square errors with different prefilters.

5.1.4 Results

The following table shows different numerical values of the mean square
error for different filters H. The image used is lena. The mean square error
is computed between X and Y in a YCbCr color space on the Y plane.
There are five results per analyzed filter. The first analyzed filter is the one
we found. The second corresponds to apply no filter. Two other filters have
also been tested. This permits to compare the results to simple low pass
filters.

The different possible shifts are shown in figure 5.5. The column Image
is the mean square error between X and Y on the whole image. The four
other values reflect the possible kind of half-pel interpolation.

X X

X Xo

o oo

oy00 y01

y10 y11

x’01

x’10 x’11

x’00 o: missing pixels X: pixels from downsampled version

x’00 = y00 no interpolation (No)

x’01 = (y00 + y01)/2  horizontal interpolation (Horiz)

x’10 = (y00 + y10)/2  vertical interpolation (Vert)    

x’11 = (y00 + y01 + y10 + y11)/4  diagonal interpolation (Diag)

Figure 5.5: Different possible interpolations.

The second line correspond to the previously cited case where no pre-
filtering is done. As one can see, in this case, the mean square error on
the pixels where no interpolation is done is null but it is high in the other
cases. The first line stores the results when we used the found filter. One
can remark that the MSE is increased on the pixels where no interpolation is
done. The other terms are a lot lower. The main point is that the variance
of the found filter (89.7410) is smaller than the variance obtained when no
prefiltering is done (227.4874). Thus, if different kinds of interpolations are
done on an image, the error will be more uniform.

The third filter has a small variance but the mean is higher than the one
of the first and of the second filter. The last tested filter has the smallest
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variance (30.3244) but its mean is the highest. The two added filters are
clearly low-pass ones thus, the resulting downsampled image is blurred. The
found filter is also a low pass but the cutting frequency is high. Thus, the
resulting downsampled image is not too blurred.
As shown here, the found filter reduces the MSE resulting from a inter-

polation. The variance of the created error is also smaller. Thus, it is a
good idea to use such a filter. In real-time applications, it is important to
keep in mind that filtering the images increases the complexity. If one has
access to the full images from a camera, it could be possible to implement
this filter in the hardware.



Chapter 6

Results

This chapter presents the results for proposed region-based estimation algo-
rithm. They are derived from the measure of the mean square error between
the received frame to encode and the encoded one. No pre-filtering is done.

The used block-based motion estimator is the one of VisioWave. The
block-matching is done on blocks of size 8x8. The motion field produced is
of the same type than the one presented in chapter 3.

The region-based motion estimation is followed by a block-based refine-
ment. The resulting motion field is corrected the following way: the motion
vectors of the blocks whose pixels mainly belong to a region-based motion
are put to null.

There is no objective measure for the improvement in the visual quality.
Thus, for the results I decided to focus more on the aspect of compression.
One has to keep in mind that the main goal we wanted to achieve is a better
visual quality at a given bit-rate.

This chapter often refers to the quality at which a sequence is encoded.
This value determines the quantization step used for the spacial encoding.
Each time the quality is increased by 4, the resulting PSNR increases of 1
dB.

As shown in the general flowchart about the coder used in chapter 2, it
makes use of a rate control module. This module minimize the following
Lagrange multiplier to adapt the quality:

L = Rate+ λMSE

If for all qualities this measure is smaller for a given motion estimation
method, one can say that it is better than the other method. For each
tested sequence, the rate/distorsion curve, the rate/PSNR and the Lagrange
multiplier are shown.

There are natural and artificial testing sequences. The artificial one, also
enable to show the quality of the parameters estimation. On the other hand,
natural sequences lead to more realistic results.
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The region-based motion estimation for translation uses the translation
and zoom motion described in chapter 3. Translation should give us less
improvement than the other types of motions. This is due to the fact that
a translation can be well matched by the block-based motion estimator. In
addition to this, as we have seen in the chapter about the local motion
field, the node structure has the property to group the nodes if their motion
vectors are identical. This means that for a global translation, this structure
will use only few bytes. Thus, the gain one can hope by using a region-based
approach are not exceptional.

The testing sequence is an artificial one. It is made of a picture (lena)
moving from left to right. Figure 6.1 shows the MSE obtained at a given
rate for the region-based and for the block-based approach. The obtained
gain with the region-based algorithm is high a low-bit rate. The second part
of this figure shows the PSNR in function of the rate. The motion is really
uniform on the whole frame and detected as so by the algorithm. Thus,
the gain is very high. About 6dB at 1000 bits/sec. Figure 6.2 show the
function that the internal rate control of the coder tries to minimize. At
each different qualities, the region-based motion estimator is better. From
the point of view of the coder, the region-based approach is better.
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Figure 6.1: Artificial translation.

Figure 6.3 compares a compensated framed for both methods. The
region-based compensated image looks more low-passed but has an over-
all better visual quality. Even is the block-based compensated image is less
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Figure 6.2: Artificial translation.

blurred, the visual quality is bad due to the blocks appearing. At low bit-
rate, these artifacts can persist even after the spacial encoding of the error.
The Human Visual System is very sensitive to these regular patterns.

Block-based compensation Region-based compensation

Figure 6.3: Block-based and region-based compensated frame.

The improvement in term of compression is achieved by reducing the size
needed to pass the information about motion. This is done by describing
motions with parameters and regions instead of using vectors for each block
of the image. The main cost is the encoding of the regions.

The next results are obtained for more complex motions. The region-
based approach enables to describe them. It is not possible to describe these
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motions precisely with the block-based motion estimator.
Rotation can not be precisely expressed using block matching without

using blocks that have the same size as a pixel. In our case, the blocks
have a size 8x8 pixels. As for the translational case, using the region-based
motion estimator leads to an improvement in term of compression.
This rotation is made of a static image that rotates. Thus, the real

rotation parameters are known and can be compared to the obtained ones.
The motion created is uniform on the whole frame. The motion estimator
detected a unique motion covering most parts of the image. It also detected
the entering and outgoing parts and did not include them in the region.
The rotation is made of three parameters: the center (cx, cy) and the

angle δ. The parameter that needs to be very precise is the angle. Figure 6.4
show us the real angle and the found one. An encouraging fact is that at the
first frame, the angle is correctly found. The mean is very near from the real
angle. The most important fact is that the variance is low! Thus, we can
say that the parameters found by the estimation algorithm correct. Figure
6.5 shows the distribution of the center on the image. The real center is in
the middle of the frame (180, 144). The found results are good. Three blobs
appear on this figure. This is due to the fact that the genetic algorithm has
the property to search for the minimum near from its initial state.
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Figure 6.4: Real and found angle of a rotation.

Figure 6.6 shows the rate/distorsion and the rate/PSNR curve. For a
given rate, the MSE obtained while using the region-based motion estimation
is always smaller. Thus, the PSNR is also better for this approach. The



57

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

Position of the center on the image

Figure 6.5: Distribution on the image of the center of a rotation.

gain is relatively uniform and is about 2dB. The rotation used is a slow one.
This is the reason that block-matching approximates it not too badly.

For the lowest quality, the block-based approach has a bit-rate of 515
bits/sec. For the same quality, the other methods lead to a bit-rate of 414
bit/sec and a gain of about 0.65dB for the PSNR. Thus, the developed
method if a good alternative to block-matching at low bit-rate.

The last graphic show the function that is minimized by the rate control
function of the codec. As one can see, the L value is always smaller if the
region-based motion estimation is enabled (illustrated by figure 6.7). Thus,
also for this sequence, the region-based motion estimation leads to better
results.

In the implementation, we made the following assumption about the
zoom. Its origin is due to the camera. This hypothesis leads to the fact that
its center is in the middle of the image. Thus, the zoom consists in only
one parameter, the zoom factor. In this artificial sequence, the camera does
nothing at the beginning then zooms in the image an then zooms out again.
The zoom is not linear. Figure 6.8 shows us the results we obtain. For the
zoom, the gain we have is high. It is about 5dB at low bit-rate and about
2dB at high bit-rate. If we take only the zoom in, the gain is

For the biggest quantization step, the bit-rate obtained with the block-
based approach is 291 bits/sec. Under the same constraints, the other meth-
ods lead to a bit-rate of 141 bit/sec. There is also a gain of about 0.4dB if
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Figure 6.6: Artificial rotation.

the region-based motion estimator is used. At a bit-rate of 291 bits/sec, the
developed algorithm lead to a gain of about 5dB.

Let us now look at a motion that is a combination of zoom and trans-
lation. This motion is described in detail by an example in chapter 3. A
natural sequence was used. Figure 6.10 shows the results we have. The gain
is lower than the ones we have on artificial sequences. It is constant and
about 2dB for the different bit-rates. The internally minimized Lagrange
multiplier is lower for the proposed solution. This shows that this method
also works well with natural sequences.

Figure 6.12 shows a frame of the considered sequence. We can see two
found regions the big one (red) has a zoom factor bigger that 1 which means
that the camera is zooming out and the smaller region has a zoom near from
1 and translation factor of (−6.0,−3.3). The first zone also has a translation
factor. The camera does not only zoom out. It has also a translational
motion of (5.4,−4.9).

For sequences that contains no or very few motions corresponding to a
region-based motion, the results are near from the results of the block-based
coder. This is mainly due to the fact that in this case, we will encode no
regions or very small ones. Thus, the rest of the estimation is done by the
block-matching.

The main improvement of the proposed algorithm is for low bit-rate
sequences. This is mainly due to the fact that it uses only few bits to
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Figure 6.7: Artificial rotation.

encode the motions and the regions. As show in figure 6.3, the proposed
solution creates less visible artifacts. Thus, at low bit-rate, the visual quality
is improved.

All the results we have are based on the mean square error between the
encoded frame and the input. The block-matching tries to minimize this
value without taking in account the real motion on a frame. The error pro-
duced by the block-matching creates a blocky effect on the image, meaning
that the error is geometrically located. The human visual system is very
sensitive to regular patterns. The region-based approach compensates big-
ger parts of the image with the same parameters and does not lead to the
appearance of geometric artifact. Even if its error is higher, its distribution
on the image is not geometric. Thus, the visual quality is better. It has
been shown that the MSE is not the best way to measure the quality of a
codec.

Nowadays, the networks have a high bandwidth and in the future, it
will even be higher. Trying to minimize measure like the mean square error
leads to a better compression. Perhaps, in the future bandwidth will no
longer be a constraint. Thus, I think more efforts should be put in the
visual quality improvement at fixed bit-rate. The mean square error does
not take in account the visible impact of the error on a human. In order to
quantify the visual improvements, we should make use of psycho-visual tests
on an important number of persons with different knowledge in the domain
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Figure 6.8: Artificial zoom.

of video compression.
The first tested sequences have a unique global motion. The developed

algorithm has the ability to deal with this case. It is not limited by the shape
a zone could have. This kind of property is a non-negligible one, it shows
somehow that the estimator matches very well most of the region-based
motions that can exist in a real video sequence.
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Figure 6.9: Artificial zoom.
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Figure 6.10: Translation and zoom. Natural sequence.
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Figure 6.11: Translation and zoom. Natural sequence.

Figure 6.12: Translation and zoom. Example of region and motion found.



Chapter 7

Conclusion

During this work, I realized the importance of spending time on the creation
of a structure. The constructed framework for motion enables to add new
motions and new zones easily. The structure also simplifies the block-based
motion estimation and compensation.
The compression results are good. It has been shown that a more global

approach to the problem of motion estimation lead to better visual quality
at same quantization step for the spacial encoding.
Results on compression are rather encouraging. The region-based motion

estimator whose goal is not only to minimize the mean square error also leads
to a gain in compression. One has to remember that this was not our main
goal. We wanted to achieve a better visual quality at low bit-rate.
Many perspectives are still open. A lot of improvement are possible.

An interesting notion to introduce into this project would be a confidence
value for the regions. One could imagine that if we are enough confident in
an estimation, we do not encode any error for this part of the image. This
kind of feature is not imaginable for block-matching which does not try to
achieve spacial consistency.
In this implementation, the algorithm works with elementary parts of

the image of size 2x2 pixels. An interesting point for the future would be to
extend this algorithm to work with chunks of different sizes regarding the
task it does. One could imagine to have a kind of a multi scale approach
of the region refinement. To do a preliminary border check phase with big
chunks then to od it again with smaller chunks. I think, this would increase
the speed of the algorithm and the precision of the regions.
This diploma project gave me the possibility to get more familiar with

the different aspects of video coding and motion estimation. It was also a
precious professional experience.
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Appendix A

About VisioWave

Founded in 1996 around real-time digital video compression and high speed
networks, VisioWave designs, produces and markets hardware and software
products for digital video networking applied to the :

- security market (Surveillance and CCTV)

-media and entertainmentmarket (Multimedia intranets, Interactive
TV, Corporate TV, Video learning, Video medicine, Video forums).

VisioWave is offering hardware and software solutions for compression,
processing and real-time transmission of high quality video over any network
(IP, ATM, ADSL, cable, wireless, etc.)

VisioWave is now developing new generation 3D wavelets compression
technologies in collaboration with the Laboratory of Signal Processing of
the Federal Institute of Technology of Lausanne.

Since July 2000, TF1 group, number one European TV Broadcaster, is
the reference shareholder of VisioWave. TF1 provides VisioWave with the
necessary vision and market requirements for its development in the area of
new interactive TV services over broadband networks and all related possible
activities.

The company is incorporated in Switzerland with subsidiaries in France
and Canada, and counts about 60 employees.

Digital Video Networking consists in encoding and compressing video
streams from a variety of sources (cameras, DVD, VCR, satellite TV, cable
TV, etc.) and transmitting them over any kind of digital networks.

This transmission generally takes place alongside voice applications (tele-
phony) and conventional data applications (e-mail, file transfers, database
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access, ...). These digital video streams are viewed on workstations or
TV sets, using specific applications or standardized interfaces such as web
browsers.

Both digital video processing and network technologies are applied to
Media and Security Solutions :

VisioWave Security Solutions :

• CCTV and video surveillance

• Video Supervision

• Traffic and flow management

VisioWave Media Solutions :

• Multimedia intranets, corporate TV

• Interactive video forum

• Video learning Video medicine



Appendix B

Structure objects models

GM_Zone_Generic_V6

int m_iZoneType;
char* m_strZoneType;
double* m_pZoneParams;
int m_iNbParams;
int m_iNbParamsAlloc;
Plane* m_pOriginalPlane;
Plane* m_pReconstructedPlane;
int m_iMinMode;
int m_iVideoWidth;
int m_iVideoHeight;

void estimateParams ();
Plane* getBlockMask(int blockSize);
Plane* getMask();
int getMinMode ();
char* getStrType ();
int getIType ();
int store (byte* stream);
int retrieve(byte* stream);
void setMinMode (int mode);
void setPlane (Plane* newRefPlane);
int storeParams (byte* stream);
int retrieveParams(byte* stream);
double* getParams();
void setParam(double value, int pos);
double getParam(int pos);
void operator = (const GM_Zone_Generic_V6& zone);

Figure B.1: Interface of a generic zone.
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GM_MotionType_Generic_V6

int m_iMotionType;
char[]  m_pMotionType;
double* m_pMotionParams;
int m_iNbParams;
int m_iVideoWidth;
int m_iVideoHeight;
short m_sState;

void compensate(Bitmap &In, GM_Zone_Generic_V6* zone,
Bitmap &Out);

int store (byte* stream);
int retrieve(byte* stream);
void setParams (double* newValues);
double* getParams();
void setParam(double value, int pos);
double getParam(int pos);
int storeParams (byte* stream);
int retrieveParams(byte* stream);
void generateRandomParameters ();
int getIType ();
char* getStrType ();
void operator = (const GM_MotionType_Generic_V6& motion);
void getMotionVectorAt(int iPosx,int iPosy,

double &mvx,double &mvy);
double distance2Model(GM_MotionType_Generic_V6* pModel);
double distance2Block(int iPosx, int iPosy, int iSizex, int iSizey, 

Bitmap* first, Bitmap* second);
void estimateModel(int* iPosx, int* iPosy, double* iDx, 

double* iDy, int iNbPoints, 
Bitmap* first, Bitmap* second);

void refineModel(int* iPosx, int* iPosy, double* iDx, 
double* iDy, int iNbPoints, double* weights,
Bitmap* first, Bitmap* second);

bool nullMotionTest();

Figure B.2: Interface of a generic motion.
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GM_Description_V6

GM_Zone_Generic_V6* m_pGMZone;
GM_MotionType_Generic_V6*  m_pGMMotion;

void compensate(Bitmap& In, Bitmap& Out);
int store (byte* stream);
int retrieve(byte* stream);
void setZone (GM_Zone_Generic_V6* zone);
GM_Zone_Generic_V6* getZone ();
void setMotion(GM_MotionType_Generic_V6* motion);
GM_MotionType_Generic_V6* getMotion();
void operator = (const GM_Description_V6& descr);

Figure B.3: Interface of the motion description.

GM_Container_V6

GM_Description_V6** m_lstpGMDescription;
int m_iNbGMDescriptions;
int m_iVideoWidth;
int m_iVideoHeight;

void compensate(Bitmap& In, Bitmap& Out);
int store (byte* stream);
int retrieve(byte* stream);
void add(GM_Description_V6* descr);
GM_Description_V6* get(int position);
void operator = (const GM_Container_V6& container);

Figure B.4: Interface of the container.
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LocalMotionFieldNode_V6

int m_iPosx;
int m_iPosy;
int m_iBWidth;
int m_iBHeight;
int m_iNbMFDivisions;
int m_iNbMV;
int m_iNbMVallocated;
bool m_bIsLeafNode;
static const int predMaxLevelUp;
LocalMotionFieldNode_V6** m_lstpMF;
MotionVector** m_lstpMV;
LocalMotionFieldNode_V6* m_pParent;

void setParent(LocalMotionFieldNode_V6 *pParent);
void setChild(LocalMotionFieldNode_V6 *child, int position);
LocalMotionFieldNode_V6* getChild(int position);
void setMotionVector(MotionVector *vect, int position);
MotionVector* getMotionVector(int position);
void setNbMFDivisions (int divisions);
int getNbMFDivisions ();
void setNbMV(int nbVects);
int getNbMV();
void setLeafValue (bool value);
bool getLeafValue ();
int getPosx();
int getPosy();
int getBWidth();
int getBHeight();
void getEncodedRoundingMV(int x, int y, int iBWidth, 

int iBHeight, int &nbMVs, 
MotionVector**p, int nbLevelsLeft);

void getNeighbourMV(int x,int y,int iBWidth,int iBHeight, 
int &nbMVs, MotionVector**p);

MotionVector* getPredicate (int &nbVectsUsed);
bool getFlatField(int blockSize, MotionField*pFlatField);
MotionVector* atPixel(int x, int y);
MotionVector* atPixel(int x, int y, unsigned uBlockSize, unsigned uMVindex);
MotionVector**atPixel(int x, int y, int &nbMV);
LocalMotionFieldNode_V6* nodeAtPixel(int x, int y, unsigned uBlockSize); 
bool compactNode (int iMaxBlockSize);
void reset();
bool isMyPixel(int x,int y);
void operator = (const LocalMotionFieldNode_V6& mf);

Figure B.5: Interface of the local motion field node.
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LocalMotionField_V6

int iPelDivider;
int iLevelStartBlockSize;
int iLevelStopBlockSize;
LocalMotionFieldNode_V6* m_pRootMFNode;
Arithmetic* m_pArithm;
bool m_bOwnerOfArithm;
int m_iEstExplore[MAX_MF_LEVEL];
int m_iEstLevel;
bool m_bEstIsFinished;
LocalMotionFieldNode_V6 * m_pEstCurrentNode;
int m_iWalkLeafExplore[MAX_MF_LEVEL];
int m_iWalkLeafLevel;
bool m_bWalkLeafIsFinished;
LocalMotionFieldNode_V6 * m_pWalkLeafCurrentNode;

MotionVector* atPixel(int x, int y);
MotionVector* at(int x, int y);
MotionVector* at(int x, int y, unsigned uBlockSize, unsigned uMVindex);
MotionVector** at(int x, int y, int &nbMV);
MotionVector** atPixel(int x, int y, int &nbMV);
MotionVector* atPixel(int x, int y, unsigned uBlockSize, unsigned uMVindex);
LocalMotionFieldNode_V6* nodeAtPixel(int x, int y, unsigned uBlockSize);
unsigned getBlockLevel(int iBlockSize);
unsigned getNbNodesAtLevel(int iLevel);
void codeAmplitude (int val, int cx);
int decodeAmplitude (int cx);
int retrieve(byte* pStream);
int store (byte* pStream);
void compact();
void setArithmeticCoder(Arithmetic* pArithmGiven);
int getLevelStartBlockSize ();
int getLevelStopBlockSize ();
int getPelDivider();
void setPelDivider(int iPelDividerValue);
void setLevelStartBlockSize (int iMaxBSize);
void setLevelStopBlockSize(int iMinBSize);
void  operator = (const LocalMotionField_V6& mf);
void estBegin(int iWidth, int iHeight);
bool estGetSquare (int &x, int &y, int &size);
void estSquareIsOk(); 
int estGetParentNbMV();
bool estDivide ();
MotionVector* estGetParentMV(int pos);
void estSetNbMV(int nbMV);
void estSetMV(MotionVector* mv, int pos);
LocalMotionFieldNode_V6* walkLeafInit();
LocalMotionFieldNode_V6* walkLeafGetNextNode ();
void storeLocalMF(char* szFileName, int iBlockSize);
void reset();

Figure B.6: Interface of the local motion field node.





Appendix C

The local motion field

interface

This appendix shows some of the functions and variables of the LocalMotionField V6

object described by figure B.6.

Two simple examples included in this chapter illustrate the implementa-
tion of the Local Motion Field interface. The first example is a multi-scale
motion estimator. The second one is about accessing the data contained in
the nodes through this object.

The purpose of the functions containing Estin their name is to simplify
the task of motion estimation. The simple motion estimator we will look
at is described by algorithm 20. The estimator does not need to have the
knowledge of the structure. The local motion field is responsible to deliver
him estimable blocks. We also see that the estimator accesses in a very
simple way to data to get an initial motion vector for example.

The algorithm laying behind the Est functions walks through the tree,
stops on each node and waits for the user to tell him what it has to do.
They share the following global variables:

m pEstCurrentNode pointer to the current node. It is the one currently
proposed to the estimator.

m iEstLevel the depth in the tree where the current node is located.

m iEstExplore array of integer containing the amount of remaining sub-
trees to propose for each node on the path from the root to the current
node.

m bEstIsFinished a boolean value set to true when the estimation is fin-
ished.

The behavior of each Est function.
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Algorithm 20 Simple motion estimator

create a empty data structure. (estBegin())
while go to the next estimable block (estGetSquare()) do
if parent has a motion vector (estGetParentNbMV() != 0) then
initialMotionV ector =motion vector of parent (estGetParentMV())

else

initialMotionV ector = NULL
end if

estimate motion vector for current block (also return the MSE).
current block will have one motion bector (estSetNbMV()).
set the current motion vector for this block (estSetMV()).
if MSE is small or size of block equals smallest estimable then
do not further divide this block (estSquareIsOk()).

else

divide this block (estDivide()).
end if

end while

estBegin(int iWidth, int iHeight) constructs the tree in an analog man-
ner than algorithm 7 and sets the variables of each node to an initial
state. It just does the second part if the tree is already created. Once
we have the tree, we go down in it to the first estimable block and
update the pointer to the current node, the level and the array con-
taining the number of unexplored child at each node on our path in
the tree. m pEstCurrentNode is set to the first estimable block.

estGetSquare(int &x, int &y, int &size) just puts the corresponding
attribute of the current node to the values passed to the function.
Returns m bEstIsFinished.

estGetParentNbMV() returns the number of motion vectors stored in the
father of the current node.

estGetParentMV(int pos) returns the motion vector at position pos of the
father of the current node.

estSetNbMV(int nbMV) tells the current node how many motion vector it
has to store.

estSetMV(MotionVector *mv, int pos) passes a motion vector to the cur-
rent node. It is stored at the position passed in parameter.

estSquareIsOk() tell to the motion field that the estimator is fine with the
current estimation for this node and do not want to further divide. It
sets the leaf value boolean to true for the current node. The pointer
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to the current node is set to the next block to estimate. This means
it will go up in the tree to the next node whose children have not all
be estimated and go down to the next block that has not yet been
estimated and which is estimable. If we explored the whole tree (the
estimation is finished) it will put the corresponding boolean to true.

estDivide() tell to the motion field that we are not fine with the current
estimation and thus, want to go more in depth for this region. The leaf
node boolean is set to false. The pointer to the current node is set the
first child. The level and the array of unexplored nodes is updated.

The second example of this appendix, is related to data retrieval from the
tree. It is based on the atPixel() function of the local motion field. This
function returns the motion vector of the leaf node responsible for a given
pixel. The call on the local motion field is relayed to the root node. When
a node receives this call, it asks the right child for the result. Algorithm 21
shows the principles of the function atPixel() for the nodes.

Algorithm 21 Finding the motion vector of a pixel.

if my leaf attribute is true then

return my motion vector at position 0
else

Knowing how many child I have and my shape, I deduce which child is
responsible for the wanted pixel.
return atP ixel(found child)

end if


