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Abstract

Matchirg Pursuitis agreed algorithm thatdeconposesary signalinto alinearexpansionof waveformstakenfrom aredurdant
dictionay. Compuing the prgection of the signalon every elementof the basishasa high compuationalcost. To redice this
compuationalcost,optimized computationalerrorminimizationmethod have to befound. GeneticAlgorithms have shavn to be
agod tool to this appoach.
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I. INTRODUCTION

Eventhough quitealot of reseach have beenperfomedin the useof non-orthogond basks for imagecoding, mostof
the teciques usedat the momentrely on orthogonalbasis Thisis mainly becase,asorthogonalbasishave a single
solution to a given problam, the compugtion of the codng is easie anda greatamourn of compugtiontime is saved.

Orthogonal bass arenormally formedby thetensa produwct of two monodimensonal signak optimized for mono-
dimensonal spae representaion. But this way of creding a bidimersiond orthogonalbass (which is goodin terms
of codeoptimization andcompuation acceleation) is not optimalwhendealng images becaisethis baseis unable to
detect the contaur continuity (seeFig. 1(a)). Thisincambility is what cause thes bass to be inappropriatefor very
low bit-rateimagecoding.

Non-othogmal bask aremoreadejuatedto detectthe contaur continuity andtake adwantageof that (seeFig. 1(b))
thantensa productbass. But asthey presat aninfinite numberof solutionsto the sameproblem, corventional linear
method camot be used and somespecfic algorithms have to be creged. Among thesealgorithms thereis Matching
Pursut. Matching Pursut [1] is a grealy algorithm that preterds to give a solution to a non-orthogond prodem by
choasingat eachiteration thebass comporentthattakesmoreenegy to the signalto code

Matching Pursut with anisotropc refinemen atomshasbeenshavn to be quite goodin termsof imageandvideo
decampositon[2], [3], [4]. But MP hasabig inconvenient: anextremely high computtional time. In fact,whenhaving
arelaively large dictionary, it turns to be almostimpossible to perform the full seach andcodetheimagein afinite
time... Thatis thereasm why somefaser approaimation techriqgueshave to be found

Amongfastappraimationtechnquesthere is GeneticAlgorithms. Theseallow to find a sub-gtimal solution to the
probem, andmake compuationtime decreaseconsicerably.

[1. MATCHING PURSUIT

Tensorprodict bass have beenshownnot to be adaged to bidimersiond signd coding dueto thefactthatthey are
not ableto detect contaur confinuity. Working with non-orthogonal basismay give somebette approcimation rate,
becaisethey allow to detectconinuitiesof conoursandspecific imagechaacterstics suchasscaing androtaions,
which arenormally not easilyrepresentedby orthogona functions (seeFig. 1). In additon, its redurdang gives,when
deaing with very low bit-rates,a higher approximation ratethanarny orthogonalbasis.But non-orthagonalbasishave
somedisadrantages. Thefirst,andmaostimportant, is thatthey offer infinite soluionsto the sameproblemso standard
linear matheméical tools arenot usefu whendealing with them. In the lastyears, somealgarithmsto give non-linear
soluionsto a problemhave appeaed (suchasfractalcodng [5]), andamongthemMatching Pursuit.

The Matching Pursut techmiquewasfirst introducel by Mallat andZhang[1], for mono-dmensiaal time-frequercy
signals. This methodproducessuloptimal function exparsionsby iteratvely chocsing the waveforms from a gereral
dictionary (typically arich collection of potertial atomsin a Hilbert spa@) that bes matchthe function’s strudures.
Thechoice of thefunctionsis perfformedthrougha progressve refinemenm of the signal approaiimationwith aniteraive
procedure[6]. The Matching Pursuitmethodhasalrealy found appications in medidne [7] andin image[2], [8]
andvideo coding [4] (though in video coding it is usLally usedto codethe motion estimaton error [9]). Most of the
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Fig. 1. Tensorprodictinadapthility to contair contiruity is represetedin figure (a). In (b) the adapability of nondinear basis
with anisotrojic scalingandrotationsis shavn.

appications of Matching PursuituseGaborfunctions or symmetricdictionaries SomeusealsoorthogoralizedMP [6]
to beableto have a zeroestmationerror, thoughthis is not very usedbeauseit increasesoo muchthe compuationd
cost

Matching Pursuit[10], [1] is agreedyalgorithm [6] thatdecompasesary sigral into alinearexparsionof waveforms
that are seleced from a redundant dictionary D. Thesewaveforms areiteratively chosento bestmatchthe signd
structures proaducing a sub-optimal exparsion. Vectorsare seleced one by onefrom the dictionary, while optimizing
the signal appraximation (in termsof energy)at eachstep. Eventhough the exparsionis linear, it givesa nonlinear
signal decampositon, becasethe setof functionsselecteddependson the sigral to be coded.

Let D = {g,} er be adictionary of P > N x M vectoss, having unit nom. This dictionary includes N x M
linearly indepenant vectas that definea basisof the spae C"*M of signals of size N x M. A matchingpursuit
begins by projeding f onavectorg,, € D andcompuing theresidwe Rf [10], [1]:

f={f9v%)9v + Ef, (1)

whereRf is theresdualvecta afterapproimating f in thedirection of g, . SinceRf is orthogona to g,,, themoduke
of f will be:

1£112 = [{f, gr0) | + | BFI|Z. )

As thetermthatmustbeminimizedis || Bf [|* = [|f[|* — [(f, 9,)|%, theg,, € Dtochocseistheonethatmaximizes
I(f,9v)|- In somecase it is not compuatiorally efficient to find the optimal soluton, and a sutoptimal soluton is
compuedinstead:

[(f,97)| = asap[{f, g,), @)
yel

where a € (0, 1] is anoptimality factorwhichis 1 whenthe optimal solution hasbeenchosa. In the preentcasethe
subgtimality facta « will be givenby the Geneic Algorithm andwill depend onthe GA parameterssuchasnumbe
of individualsin the popuation or of gererations befare choosng the fittest individual, as well ason the mutatin
probability (seesectbn V).

A Matching Pursut is aniterative algorithm thatsuldecompasestheresidue Rf by projecting it onavector of D that
matche Rf (almost)atbest If we consder R’f = f andwe supmsethatthen!” orde residue R™f (n > 0) hasbeen
compued,thenext iteraton will choseg,,, € D sud that:

[(R"; gy, )| Z asup [(R" f, g,)- (4)
yel



With this choice R" f is projectedon g,, anddecanposedasfollows:
R = (R"f, Gy )9, + B" '], ®)
Rt f andg,, areorthogond, sothe quadatic moduleof the previousequdion is:
IR™fII” = [(R" £, 9,)[* + [IR** £ (6)

From (5), we canseethatthe decompaition of f is givenby:

N—-1
f=Y (R"f.9v.)9y, + R f 7)

n=0

andwith the sameprinciple we canalsodedue from (6) thatthe moduleof the signal f is:
N-1
IF17 =Y KR, gy,) 1 + IRN FI, 8)
n=0

where||R" f|| corvergesexponentially to 0 when N tendsto infinity (seeApperdix VII for a proof).

Thecorvergercerate A givenby (31) in Appendk VII decreasesvhenthe sizeof the signalspacencreases.Onthe
othe hard evenin finite space aninfinite numbe of iteraionsis needel to completely reducethe residue (only with
Orthogonalized Matching Purstit [10], [6] the residue could bereduedto 0 in a finite numberof iterationg. In most
signal processirg applicatiors having a non-zroresidual is not relevart, dueto thefactthatwhentheimagedistortion
is unde thevisible distortion threshold it doesnot matter In addtion, somequalty lossis allowedwhentargetingvery
low bit rateapplicatiors.

Thedecrasingof theerrar in Matching Pursuitis highly dependentonthedictionary. In this cas thedictionaryused
is with Anisotropic RefinementThebasicfunctionis a Gaussia in oneaxisandthe secomnl derivative of the Gaussia
in the other axis|[3]:

gy(z,y) = (2 — da?)e s @+, ©)

The dictionary is formed by the above basisfunction with rotatons, anisotropc scalirg and trandation. These
transformatonsallow the basisfunctionsto deted the objectcontaur cortinuity quite efficiently. Anisotropy introduces
an extra redurdang to the dictionary, and an extra paraneterto code, but it is worth becaise the addition of this
paraneterimplies a greatincreasein efficiency (seeFig. 3). The setof functions formed by expression (9) with
anisotropic scalng, rotaion andtranslation forms anover-completebasis.

As the seart of the optimal function meanscomputng a greatamour of scalarproducts betweenmages,MP has
avery high compuatioral cost To speedthe codng, a multi-resoldion schemehasbeenchosn. In this schemethe
imageis downsamped by two several times. The MP algorithm is first applied to the smallestimageandwhenthe
desrednumberof coeficientsin thelowestresdution layer hasbeenreaded,anup-samplingof therecanposition has
to be perfamed. The subtaction of this upsanpledrecompaition to the next resdution level imageis performed,and
the MP is apdied to thisresdual (seescheman Fig. 2). This canbedonewith ary numberof layers,but acompromis
hasto be found to optimally choo® the numberof coeficients at eachlayer andthe numbe of layers Onescheme
thathasdemorstratedto give quite goodresuts is working with three resdution layers andin every bigger layerdouble
numbe of coeficientsthanin the previousresoluion level.

The useof aredundart basisseemsnteresting to animagerepresentadion point of view, but it repregntsa heary
compuational cod. In fact whendeding with large dictionaries, the fact of compuing a scakr product of every
elemen of thedictionary andthe signal to representandtake the atomwith a larger projection enegy becomeslmost
impossble. In this scope the useof efficient appraximationtools,asGenetc Algorithms,is needel.

GeneticAlgorithms do not give the optimal soluion, but an appraimation. Though this fact doesnot repregenta
probdemwhendealng with MP decompositon. Having a subgtimal solution will, of course,slightly deaeasehefinal
coding qudity, but thanks to redundang this will notrepregnta significant qualty loss.
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. 2. MP multiresolutior scheme.

(a) MP with Gaboratoms. (b) MP with AR atoms.

Fig. 3. Anisotropc refinenent atomsversts Isotrogc Gaboratoms. The fact of addirg anisotroy gives bettercontou reso-
lution. Figure (a) hasbeencodedwith Gaboratomswith isotropc scaling,rotationandtranslation andfigure (b) with the
anisotrgic refinenentatoms.Both have 500coeficients. It canbe seenthataddinganisotroy brings,with afixednumter of
decanpositionterms,a highe contaur definition



I11. PROPERTIES OF MATCHING PURSUIT

Matching Pursuithastwo kinds of properties propeties thatdeper on the dictionary (so the MP decompaition
will only have themif the chose dictionary hasthemaswell) andthe onesthatareindependenton the dictionary (so
ary MP decampositin hasthemno matterwhich setof functions hasbeenusel to perform the decompaition).

Themainpropetiesderiveddirecty from the Matching Pursuitalgoiithm (so,independert from thedictionary) are:
« Enegy consevation: In Matching Pursuit when dealng with an infinite decanpositin series the energyin the
transformeddomainandthe enagy in the spa@ domainis the same ascanbe deduedfrom equaton (8). As

lim RMf =0 (10)

M —00

(beauseof the exponentid decreasingof the codficientsandtheerror), whenM — oo (8) turnsto:

IF17 =" UR™f, 9717, (11)
m=0

which mimics Parseval’s equdity for Fourierseries.
« Invertible: A complee Pursuitrecoversa perfect version of theimage

o0
F =Y AR™f,97)9m- (12)
Thustheimage f may be recorstruced from its MP coeficients, but if the decompaition is finite the recorstrudion
of the coded signal will not be perfed, there will be arecanstrwction errar givenby RM f, where M is the number of
coeficientsusedby the decompaition.
« Non-linearity. Thefactof havinganon-lineardictionarygivesto Matching Pursut thetwo following chamacterstics,
which arevery appreiatedwhenperforming coding:

— Rolustressto quanization: Rolugtnessto quartization comesfrom the fact the decanposition is overcanplete.
Becaug of overcompleteress thetrandormeddomainspacehasdimersion P, higherthanthedimersion N x M of the
original signal. Whenquarnizing the transbrmeddomain the error quantization is spreal allover the P dimensonsof
thetrandormeddomain.But whenappling theinversetransform,someof theinformation in the transformeddoman
(the onethat belorgs to the dimersionsthat do not exist in the original spa®) is lost, and so part of the quantzation
errar perfomedwill notaffectatall to the quality of the decaledsignd.

— Exponetial deceaseof the error:  This implies a greatdeaeasein the first coeficients and so a fastinitial ap-
proximation. After a certan numkber of coeficients, MP errar decreaseis no too fast anda change of dictionary or
of coding methodmay be worth. This exponental deaeasirg of the error will only happe if the signal hasfinite
dimenson,becausen infinite dimengon the condition of the unit sphee beingdensen the working space usedin the
demorstratian in Appendi VIl becomedalse.

MP mayhave othe propeties,depemling onthepropertiesof the setof functionsin thedictionary usedto decanpose
the signd. In mary imageprocessimg apdication, it may be interestingto have certan covarianceto imagetrangdor-
matiors, astrandation, rotaion anddilation (for example, in patten recagnition). MP will have this covarianceif the
dictionary usedto demmposea signal hasalsothem:

« Translaion Invariance: A dictionary D is transhtion invariantif for ary g (7] €D andary p = [ps,p,] €
[0..N —1,0..N — 1] theng, [ — p] € D. If Matching Pursuitis computel in a translation invariant dictionary; thenits
decampositonwill betrandation invariant. Giventhe decompsition of f in D,

M-1

FI@) = (R™ f, 9y Y9 [ + RM [ ], (13)

m=0
it is eay to verify [6] thatthe matching purauit of f5{77] = f[7 — p] selecs atrarslation by p'of the samevectoss g,,,
with thesamedecanpositiin coeficients:

M-1

= (R™f,9y,) 9y 71 — B + R f3ll]. (14)

m=0



« Rotation invariance: By andogy, arotaton invariantMatching Pursut canbe obtainedby usinga rotation invariant
dictionary D. A dictionaly is rotation invariantif for ary ¢ [7] € D andary 6 € [0, 27| theng,[rg - 71| € D, wherer,
is therotation operdor given by the matrix:

cosf siné
o = [ —sinf cos@ ] ) (15)
Giventhedecanpositonof f in D,
M-1
FIA =D AR™ £, 9y ) gy [71) + RM £[1], (16)
m=0

onecanverify thatthe matcting purauit of f[it] = f[ry - 7i] seleds arotation by ¢ of the samevectoss g,, with the
samedecompsition coeficients:

M-1
Fol@l] = D AR™f,93) Gy ro - 7] + R fo[f]. (17)

m=0
This makes Matching Purstit a usefd techniueto rotat images,becaisethe only extra calaulation to be doneis to
modify theindex of therecorstrudion atomswhencomputng the codedimage,instea of applying therotation matrix
to every pixel of theimage.
« Dilation invariance: As in the previoustwo case, Matching Pursuitis dilation invarant if the dictionary of func-
tions usedby the purauit is dilation invariant A dictionaty D is dilation invariantwhenfor ary g (7] € D andary

s € [0, Smaz) thengw[%”] € D. In this casethe matchirg pursuit of f;[ii] = f [g] will selet adilation by s of thesame
vectasg,,, with the samedecanposition coeficients:

M-1 -
— 7 n —
i = Y AR o | 3] + RS (18)
m=0
The Anisotropic RefinementAtoms definedin the scope of this pape areisotropically dilation invariant they are
covariantto dilations only whenthey areappliedto thewhole7. If oneapplesa different scaing for every comporent
of thevecr, the property of dilation invariancewill belost.

Joining rotaton, translation anddilation invariancegivesauseil tool for paternrecagnition, becasethecoeficients
do notdepend on the postion, the orientation or the size of the object. Certaincoeficientsandcertan relations of the
atomparamegrswould meanthe preseceof a conaetepatten in the analysedimage.

V. SKIPPING MULTIRESOLUTION IN THE DECODER

Dilation invariane givesaneasyway of scalirg animage theonly thing thathasto be doreis to modify the scding
paraneter(equdly for x andy axis)whenrecorstrucing theimageandalargeror smalle image(largerif the coeficient
thatmultipliesthe scding facta is greate thanoneandsmalle in the contrary case)will be obtaned. This canbeused
in the Multiresoluion Matching Pursut coderto recanposetheimagewithout theneedof upsamfing andinterpolating
thepreviouslayerin thedecaler. Justtaking the previouslayeratomparanetersandmultiplying the scalefacta by two
(in caze thedownsamplingandupsamplingwasdoneby two) andadayting the trandation paraméersto the newv image
sizeaswell (whichin this caseis multiply them by two aswell) a bigger imagecanberecastricted. This skipsquite
alot of operdionsin the decockr, andmakesa Matching Pursuitdecmmpositon quite good for asymmetricplatforms
(simple decockr, while quite complicaed coded. Resultcomparsonfor multiresoluion decodng with upsamplingand
with atomadaptéion canbe seenin Fig. 4, which showsthatthefact of skipping the multiresolution in thedecoderand
appling thedictionarytrarslation invanancedoes notimply aqudity loss.

To be ableto recorstrud the imagewithout needng a multiresolution decaler, adagation of the paramegrsof the
previouslevel to the following level size mustbe performed. This adaptéion is quite easy Having a decompaition
termdefinedby:

¢, v= (pwapyaswasyaa) (19)



(a) Decodedapplyingthe multiresolution (b) Decodedadaptingthe scalingfactorto
thefinal size

Fig. 4. Compaison of two typesof MP decodimg. (a) thereis a normally decoed image,following exactly the coderinverse
scheme(b) hasbeendecodd withoutthe upsamping schemebut with adaptatiorof the atomparanetersof eachmultirese
lution level to thefinal imagesize.

where(C' is the coeficient and+y is the parameterthatdefinesanatom,the new termfor the doulde-sizedimagewill be:

~

C=2xC, 4=(2Xpsg, 2Xpy, 2X g, 2X S8y, 0) (20)

The coeficient hasto be multiplied by two aswell to keg the enegy in the larger scak. Positilms have to be
multiplied by two to maintan theatom relative position in thelarger scaleanddilation factois to doule theimagesize.

V. GENETIC ALGORITHM
A. Introduction to GeneticAlgorithms

GeneticAlgorithms(GA) is atool for searcing andoptimizing methoalogy (see[11], [12], [13], [14], [15], [16],
[17]) that hasfound mary uselul applicatiors in both the scientific andengneering arena [18]. The GA (bass first
proposedby Holland[19]) work on the Darwinianprinciple of natuil selecton: the “Survival of thefittest’ [20]. This
biologicdly orientedmethodto seart the bestsoluion doesnot give anoptimd result but a subgtimal instead, that
tends to thebeg possble onewhenthe numker of iterationsusedin the seart tendsto infinity. Thefinal objectiveis to
find acompiomisebetweerspea andaccuacgy andtry to maximizethis relation.

B. Biological inspiration

Theliving beings foundin natue have often been souice of inspiration for scientsts andartists: cathedralsthatare
like trees helicoptersthatfly like colibries...In compuersit is alsopossble to learnfrom nature: whena choice must
be done,the mostancien methodknown is natural selecion, an whentherearetoo muchparanetersto choo®, this
methodbemmesvery useful beauseagrea amountof compuationtime canbe saredwith alow quality cost. Genett
algarithms preterd to imitate the natural selection, by constering the paraméersof the itemsto choo® asgenesand
the different items, elemens of a popuation. To undestard this bette someprevious knowledgeof the geresand
the natural seledion areneealed. This informationis basially givenin the next sectians,thaigh numerows information
sources[21] exist.

Reprodiction hastwo main phases: flow of genetc information and gendic informationrecanbination. In some
case mutatians,which arenot meantto happgenbut which arecrucid for evolution andlive conservation, canapperin
thes processe®r during the normalcell life. Throughthes processeghe genedic informationis transmittedfrom one
geneationto thenext.
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Fig. 5. DNA structure As canbe seenin the figure above, Guaninecan only be combired with Thymine and Adenire with
Cytosine.

B.1 Flow of Genett Information

Flow of geneic informationis the prooessof making the geneic information of anindividual pas to the next gen
eraton during the cellular reprodiction. Cellular reprodiction concening theflow of geneic informationis performed
accading to threemainsteps replication transcripion andtranshtion.

Replicaion: Geneticinformaiton is preervedby DNA replication Duringthis processthetwo parent strardsseparate,
andeachsenesasatemplae of the synthesisof a new compkementarystrand Eachoffspring cell inherits onestrard
of theparentalduplex: this patten of DNA replicationis descrbedassemi-caservawe.

Transciption: Thefirst stepin the communcationof geneic informationfrom the nuclets of the cell to the cytoplasm
is the transciption of DNA into mRNA. During this process,the DNA duplex unwindsandone of the strards senes
asatemplatefor the synthesisof acomplementaryRNA strand mRNA. RNA remainssingle strardedandfunctionsas
thevehide for transhting nucleic acidinto proten seqwence.

Translaion: In the proces of transhtion, the geretic messag codedin mRNA is transhtedin the ribosomesinto a
protein with specfic sequenceof aminoacids Many proteinsconsst of multiple polypepide chans. Theformulation
of polypeptide involvestwo differenttypes of RNA, mRNA andtRNA, which play importantrolesin genetranslation.
Codors arecarried by the intermediaryformation of mRNA while tRNA, working asan adager molecue, recaynizes
codmsandinsets aminoacids into their apprgriate sequential posiionsin the polypeptide (a product of joiningamino
acids).

Thethreesteps above imply aflow of geneic informationthatkegpsandreplies the gendic informationof acell, but
it doesnot interactwith ary othe cell. Whenan exchangeof information betweentwo cellsis desred, recombnation
mustbe present.
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Fig. 6. Mitosis. In mitosis,from oneoriginal cell apper two identicalcells, eachonewith the samegeneticinformationthanthe
original

B.2 Recombnation

Recombiration is the processof the excharge of geneic informationbetweentwo strand of DNA, andit is basel
in the ability of the “invading’ strand to pair with its complanent. Recombnationis performedbetwee two nort
reciprocal strand which mix onewith the other The final resut is a new sequace. The recombnation processhas
severd steps
1. DNA with strandbreakis aligned with a secand homologousDNA.

2. Recipracal strand switch producesa Holliday intermediate
3. Thecrosover point movesby brant migration andstrand bre&s arerepared.
4. TheHolliday intermediatecanbe cleawed (or resdved)in two ways,producingtwo possille setsof prodicts.
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Fig. 7. Recombimtionof geneticinformationWe canseein this figurethe effect of reconbinationof geneticinformation: from 2
differentindividuals,we get4 differentindividualsnore of whichis equalto the previoustwo
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With this processwe have two final differentstrands,none of whichis equal to the original one.

B.3 Mutations

Although DNA is a polymerwith relatively high stablity, somesponaneots relations causea charge in the DNA
seglence,a mutatian, that prodwcesan inheritable charge in the pherotype Mutationscanhagpenduring the live of



the individual dueto someextemal facior (for exampleradiaion) or during the reprodiction process. Mutations can
produceberefit to the cell, but they usually producedamag. Whenthe mutatian is bereficial, by natual seledion it is
probableto be pasedto the next gereratin, andthe numberof individualswith the mutation will increase,while the
otheswill decregeand in somecasesdisgppear Whenit cailsesdamag it is probablethatit doesnotevenread the
next geneation, or simply the mutatirg individualswill notsurvive andwill disgopear

C. Geneal structure of a genetc algorithm

GA areinspired by the mechamsm of natual selet¢ion wherestrongerindividualsarelikely to be the winnersin a
compeéing ervironmert, anduseananabgy of suchnatual evolution. With GA we pretendto find an optimal solution
through the geneic evolution method solution which is represengd by the final winner of the geretic game,(in fact,
dueto theranrdomnes®f the algoiithm, thefinal soluion will notbe optimal, but subogimal).

The GA algoithmis first initialized with a setof parameterghatdefinea givennumberof potential solutons. These
potential solutionsareconsideral asindividuals, andthe paraneterghatdefinethes soluionsaretreaedasgenes The
“strength” of eachchromosomaes reflectedby a postive valuenarrowly related with the solution objedive: the fithess
value

With an initial popdation (gererally randanly seleced) the algarithm producesgeretic evolution (via mutations
and crossover) andin every iteration the fittest chromosomesunives, and the foll owing fittest are cros®d and have
desendarts. Also somemutatians of thefittestareplaced in the next generdion. This processis repeagéd,andin eath
iteration the soluion improvesandgetsclose to the bestpossble resut.

VI. MATCHING PURSUIT WITH GENETIC ALGORITHM
A. Concetealgorithm specification

The algarithm usedhereis bas& on an algorithm usedin [13] to optimize air-injected hydrocyclone. The basis
of this algarithm is to choo® randanly aninitial populkation, estimateand malke the fittest passuntowchedin the next
geneation, while the othe individualsfight by pairs andthefittestof eachpair goesto the recombnation pool. Then
eachof this individuals is randanly recombnedwith the othas andthe “sons” passto the next generéion with the
fittest. This processis repeateduntil stabilty is reacted, whenonly the fittestis kept andthe othe atomsrandanly
reinitialized.

Thealgarithm implementedherehassomemodificaionswith resgectto the oneexplainedin [13] to maximaly aday
it for the scope of this apgdication:

« Stability is reachednot by bit to bit comparson, but by makingthe decima differencebetwea the atomsandthe best
currentsolution. Thisis beausein the spedfic definition of dictionary atoms whenindividuds arerealy closeis when
their parametes have close definition values, anda bit to bit compaisonloosethis sen® of proximity.

» Mutations are not bit to bit mutaions, but are alsoimplemeried by randomly adding a dedmal numberthat must
be comprisal into the variarce intervals chosenby the userdepemling on their interests(big variane implies more
mobility, but if the bestsolution is nea the actual one it may not appearin the next geneation, while smallvariance
givesmoreaccuacy whenthe solution is nearbut lessmobility, so lessprobabilities to read the surraundings of the
optimal resul).

« All the parametes arediscreteto be ableto have adisaetedictionary of functionsandaneasestway to codethem.

Thealgarithm foll ows the steps descibed below which try to imitate the geneic evolution systen:
1. RandomlygererateN strings for theinitial population (N is asmallodd numbe).
2. Evaluatethe fitnessof eachstring, selectthe beg soluion basedon fithess place it in postion N and serd it
unchangel into the next geneation.
3. Forcestrings that are adjecentto eachotherin the popuktion to compee directy with eachotherfor the right to
sunvve. Similarly, the fittest string betweerstringsn andn + 1 is placedin the matingpod (wheren goesfrom 1 to
N — 2). Whenall thelocad competibrs areheld, we ha/e% stringsin the mating pool, which are crossedwith a
probability of 1.0 andplacel in the next geneation. The local compditions enhancethe Darwinian “survival-of-the-
fittest” aspectof the GA. They help ensue thatthe bestsolutionsthrive in the population.



4. At this point thereare% + 1 stringsin the next geneation andthe% remainng are geneatedin a rancdom

fashon, by mutating the beststringwith a probability of g thatis relatedwith the variarceinterval introducedby

theuser

5. Returnto step2 until corvergerce is achieed (that is whennoneof the stringsin the population differs from the
population’s current bestsoluion by more thanfour units in every gere) or until the maximumnumkler of iterations
fixed by the useris reacled. If the maximumnumberof iteration is reacted, the algarithm finisheshereandretunsthe
fittestindividual in the actual gereratin. If stahlity hasbeenreacled,the sixth stepis execued.

6. Take the bestsolution andplaceit in a secand “ini tial gereratian”, generge the other N — 1 stringsin this secoml
initial gereratian at randam, andbegin the cycle againuntil the maximumnumberof gererations allowedis reachel.
This is necesaryto have an evolutionary popuation, andso a popuktion thatis able of adaiing to the ervironment.
Whena population hasreahedstablity, it hasno possibility of adapiing to the environment Stability may bereaded
becaisethecurrent soluion is thebestpossilte solutiion (possble, but not probable) or simply becawsein thepopuation
there were only weakindividuas. Reinitializing the popuation makes it more dynamic, and so more adaptive. So
reinitializing the popuation, whenkeepng thestrongerindividual,will give morepossbiliti esto reacha beter solution
by giving moredynamismto the popuation.

A generd block diagram of this algarithm is givenin Fig. 8. Looking at the diagram it is possible to seethatthe
algarithm hastwo bast brandes: onebasedn mutatians of the strorgest,to ched if it canbe mutatel to a strorger
individual, anda secand onebasel onthe crossof thenext strorgerindividuals to ched if ary desendant of them will
have better perfarmancethatary of theactual individuals

mutate

B. Practicd advice

In orderto programa geneic algarithm, oneneed to know a little bit furtherthan the genetc point of view: there
aresomeotherdetals, not related with the gendics, but that arealsoimportantwhenbeginningto progama GA.

Thefirst important point is to fix the bounds within which a genune solution lies. Thetighter thes bourds are,the
fasterthe algarithm will reat a better solution. Theideal caseis whenthes bourds arepreviously known, otherwise
it is necesaryto compue themor estimae them.

Thesecom parametetto fix is theinitial population. If asufiiciently high numbe of gereratinsis chose, theinitial
population will not affect thefinal resut. This condtion is very importart, becasetheinitial condtions areusualy a
probdem. As in thegereticalgorithm theinitial condiion is notrealy importent, thebestchoice is to randamly initialize
the popuation.

The third charateridic is the range of the mutations. Mutations are crudal to have a fasterappoximation of the
soluion. In this casethe mutations areimplemertied by adding a random numbe comprisedin the varianceintervals
chosen:

mutation € [—vaf, vat]. (21)

For large dataintervals,vaf is advisedto bea 10% of thewhole datainterval. If the datainterval is solittle thatthe
10% thenavarianceof atleastoneunit (andbetterif it is two, even) hasto betaken othewise the mutation probalility
would be zerofor thatparamegr.

Anothe chaacterstic thatis necesary to commentis the crossng of chranosomes.This is dore to ched if any
mix of the existert chromosomewill leadthe algarithm to reachthe optimal solution. To do this mix, for eachgenea
rancom numberdeciceswhethe this genewill bekeptor not, andif it will notbekept, from which individualit will be
taken. This makesthe population moredynamic, andasonly the genedrom the strorgerindividuals arekept, it shoutl
make the popuation fitter thanbefare.

In the caseof Matching Pursuitthe geretic algorithm mustbe useal to find, at eachiteration, the atomthat better
representsghe image. As alrealy said, the GA doesnot find an optimal soluion. The sub-optimality depermls on the
numbe of individualswe have in our popuation and on the numbe of gererations allowed befare taking the fittest
individual in the popdation asthe final result As the numberof atomsof the dictionary depems on the size of the
imageandon the paraméer NN (tha divides the exponentof the scalirg facta), the optimality facta will decreaseas
NN or thesizeof theimageincrease.This showvs thatthelarger the dictionary is, the moregeneations will be needel
to reachthe desied optimality facta.



Using the GA descrbed in this secton, by imposng 21 individuals in the popuation and 50 geneations before
choasingthebed individud in thepresntpopuation asthe soluion it givesa o factor of 0.6741 for a32x32image.|f
theimageis 64x 64,the« isthen0.5254 For theapgication of imagecoding thes values have shownto beaccepable.

VIlI. CONCLUSIONS

Non-linearcodng is interestingwhendealirg with very low bit rate applicatiors, but standird mathematal tools
arenot adagedto it. Matching Pursuithasshown to be a uselil tool whenwanting to code signds with redundan
dictionaries. It has thougdh, areally hardcompuationd costwhich makesit inappropriatefor mostapplications. To be
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Fig. 8. Generablockdiagran of thegeneticalgorithm




ableto useMatching Pursuitfor imagecodng a fastcompuational tool hasto be found. GeneticAlgorithmsseemto
be quite adagged to Matching Pursit needs Eventhough they introducea subogimality factor, this doesnotimply a
grea quality lossin the final soluion. So, Matching Pursut with Geneticalgorithms seemsa promisng appioachto
non-linear imagecodng.
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APPENDI X
A. EXPONENTIAL CONVERGENCE TO ZERO OF THE MP RESIDUAL

Thefollowing theoemprovesthatthemodulke of theresidwein aMatching Pursuitalgorithm tends exponentialy to O:

Theoem1: Thereexists A > 0 sud thatfor all m > 0 andVf € C':

IR™ £ < 272 £]]. (22)
As acongquerte
+00
=Y (R™f,91,)9m (23)
m=0
and
+oo
IF17 = D KB™ £, g3 (24)

m=0



whereth corvergenceof 1 is intendedin the strorg sene.

Proof:
Let usverify thatthereexists 8 > 0 suchthatfor ary f €C'

sup [(fm, gy)| > BIIfll (25)
~ver

Suppaethatit is not possble to find sucha . This meanghatwe canconstuct { £, }men With || fn || = 1 and

lim Su¥|<fmag’7>| =0 (26)

m——+00 vE

Sincethe unit sphee of CY is compat, thereexists a sub-seuerce { f,,, }xen thatcorvergesto aunit vecta f € CY.
It foll ows that

sup [(f, g,)| = 0, (27)
yer

so(f,gy) = 0for all g, € D. SinceD cortains a basisof C*, necesarily f = 0 which is not possible becaise
|||l = 1. This provesthatourinitial assumgbn is wrong,andhencethere exists S suchthat (25) holds
Thedeca condtion (22) is derivedfrom the enegy conservation:

IR™ 12 = (R FI2 = [(R™ £, g, ) (28)
TheMatching Pursut chose g,,, thatsatidies

(R™ f, gym)| > csup [(R™ f, )] (29)
vyel’

and(25) impliesthat|(R™ f, g,.)| > aB||R™f]|. SO

IR F]| < IR F[(1 — 0?B?)? (30)
which verifies(22) for:
2= (1-a26%):2 <1 (31)
This alsoprovesthat
lim [[R™f|| =0 (32)

m—+00



