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MatchingPursuitthroughGeneticAlgorithms
Rosa M. Figuerasi Ventura,PierreVandergheynst

Abstract

MatchingPursuitisagreedy algorithm thatdecomposesany signalintoalinearexpansionof waveformstakenfromaredundant
dictionary. Computing the projection of the signalon every elementof the basishasa high computationalcost. To reduce this
computationalcost,optimizedcomputationalerrorminimizationmethods have to befound. GeneticAlgorithms haveshown to be
a good tool to this approach.
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I . INTRODUCTION

Eventhough quitealot of researchhavebeenperformedin theuseof non-orthogonal basis for imagecoding,mostof
the techniques usedat themomentrely on orthogonalbasis. This is mainly because,asorthogonalbasishave a single
solution to a givenproblem, thecomputationof thecoding is easier anda greatamount of computationtime is saved.

Orthogonalbasis arenormally formedby thetensor product of two mono-dimensionalsignals optimizedfor mono-
dimensional space representation. But this way of creating a bidimensional orthogonalbasis (which is goodin terms
of codeoptimization andcomputationacceleration) is not optimalwhendealing images,becausethis baseis unable to
detect the contour continuity (seeFig. 1(a)). This incapability is what causes these basis to be inappropriatefor very
low bit-rateimagecoding.

Non-orthogonal basis aremoreadequatedto detectthecontour continuity andtake advantageof that (seeFig. 1(b))
thantensor productbasis. But asthey present aninfinite numberof solutionsto thesameproblem,conventional linear
methods cannot beused, andsomespecific algorithmshave to becreated. Among thesealgorithms thereis Matching
Pursuit. Matching Pursuit [1] is a greedy algorithm that pretends to give a solution to a non-orthogonal problem by
choosingat eachiteration thebasis componentthattakesmoreenergy to thesignalto code.

Matching Pursuit with anisotropic refinement atomshasbeenshown to be quite goodin termsof imageandvideo
decomposition[2], [3], [4]. But MP hasabig inconvenient: anextremelyhigh computational time. In fact,whenhaving
a relatively large dictionary, it turns to be almostimpossible to perform the full search andcodethe imagein a finite
time...That is thereason why somefaster approximation techniqueshave to befound.

Amongfastapproximationtechniquesthere is GeneticAlgorithms.Theseallow to find a sub-optimal solution to the
problem,andmake computationtime decreaseconsiderably.

I I . MATCHING PURSUIT

Tensorproduct basis have beenshownnot to beadaptedto bidimensional signal coding dueto thefact that they are
not able to detect contour continuity. Working with non-orthogonalbasismay give somebetter approximation rate,
becausethey allow to detectcontinuitiesof contoursandspecific imagecharacteristicssuchasscaling androtations,
which arenormally not easilyrepresentedby orthogonal functions(seeFig. 1). In addition, its redundancy gives,when
dealing with very low bit-rates,a higher approximation ratethanany orthogonalbasis.But non-orthogonalbasishave
somedisadvantages.Thefirst, andmostimportant,is that they offer infinite solutionsto thesameproblemsostandard
linear mathematical tools arenot useful whendealing with them. In the lastyears, somealgorithmsto give non-linear
solutionsto a problemhave appeared(suchasfractalcoding [5]), andamongthemMatching Pursuit.

TheMatching Pursuit techniquewasfirst introduced by Mallat andZhang[1], for mono-dimensional time-frequency
signals. This methodproducessuboptimal function expansionsby iteratively choosing the waveforms from a general
dictionary (typically a rich collection of potential atomsin a Hilbert space) that best matchthe function’s structures.
Thechoiceof thefunctionsis performedthrougha progressive refinement of thesignal approximationwith aniterative
procedure[6]. The Matching Pursuitmethodhasalready found applications in medicine [7] and in image[2], [8]
andvideo coding [4] (though in video coding it is usually usedto codethe motion estimation error [9]). Most of the
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(a) Contour coding with or-
thogonal basis.

(b) Contour coding with non-
linearbasis.

Fig. 1. Tensorproduct inadaptability to contour continuity is represented in figure(a). In (b) theadaptability of non-linearbasis
with anisotropic scalingandrotationsis shown.

applicationsof Matching PursuituseGaborfunctionsor symmetricdictionaries. SomeusealsoorthogonalizedMP [6]
to beableto have a zeroestimationerror, thoughthis is not very usedbecauseit increasestoo muchthecomputational
cost.

MatchingPursuit[10], [1] is agreedyalgorithm [6] thatdecomposesany signal into alinearexpansionof waveforms
that areselected from a redundant dictionary

�
. Thesewaveforms are iteratively chosento bestmatchthe signal

structures, producing a sub-optimal expansion. Vectorsareselectedoneby onefrom thedictionary, while optimizing
the signal approximation (in termsof energy)at eachstep. Even though the expansion is linear, it givesa non-linear
signal decomposition,becausethesetof functionsselecteddependson thesignal to becoded.

Let
���������
	�����

be a dictionary of ��������� vectors, having unit norm. This dictionary includes �����
linearly independent vectors that definea basisof the space �����
� of signals of size ��� � . A matchingpursuit
begins by projecting ! on a vector

�"�$#&%'�
andcomputing theresidue (*) [10], [1]:! ��+ !-, � �$#/. � �0#21 (*)*, (1)

where (*) is theresidualvector afterapproximating ! in thedirection of
�3�$#

. Since (*) is orthogonal to
�4�0#

, themodule
of ! will be: 5 ! 546 �873+ !-, �9�$# . 7 6 1 5 (*) 5�:<; (2)

As thetermthatmustbeminimizedis
5 (*) 5 : � 5 ) 5 :>= 73+ )*,4? �A@ . 7 : , the ? �A@B%C� to chooseis theonethatmaximizes73+ !-, �9�$# . 7 . In somecases it is not computationally efficient to find the optimal solution, anda suboptimal solution is

computedinstead: 73+ !-, �9�$# . 7EDGFIHKJ<L���� 73+ !-, ��� . 7 , (3)

where
FM%>NKO ,AP
Q is anoptimality factorwhich is 1 whentheoptimalsolution hasbeenchosen. In thepresentcasethe

suboptimality factor
F

will begivenby theGenetic Algorithm andwill depend on theGA parameters,suchasnumber
of individuals in the population or of generations before choosing the fittest individual, as well as on the mutation
probability (seesection V).

A Matching Pursuit is aniterativealgorithmthatsubdecomposestheresidue (*) by projecting it onavector of
�

that
matches (R) (almost)at best. If we consider (TS0) � ) andwe supposethatthe UWVYX order residue (�Z[) ( U D]\ ) hasbeen
computed,thenext iteration will chose

� �$^ %_�
such that:73+a`cb , ��� ^
. 7WDGFIHKJ
L���� 73+a`cb !-, ��� . 7 ; (4)
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With this choice (�Z/) is projectedon ? �[d anddecomposedasfollows:`cb ! ��+a`cb !-, ���0^ . �9�$^ 1 `cb�egf !-, (5)( Z e*h ) and ? � d areorthogonal, sothequadratic moduleof thepreviousequation is:5 ` b ! 5 6 �873+a` b !-, �9� ^W. 7 6 1 5 ` b�egf ! 5 6 ; (6)

From(5), we canseethatthedecomposition of ! is givenby:

! �jilk fmb�npo +a` b !-, �9�$^ . ���$^ 1 ` i ! (7)

andwith thesameprinciple we canalsodeduce from (6) thatthemoduleof thesignal ! is:5 ! 546 � ilk fmb�npo 73+a`cb !-, ���$^ . 7 6 1 5 ` i ! 546 , (8)

where
5 ( � ) 5 convergesexponentially to 0 when � tendsto infinity (seeAppendix VII for a proof).

Theconvergencerate q givenby (31) in Appendix VII decreaseswhenthesizeof thesignalspaceincreases.On the
other hand even in finite spaces an infinite number of iterations is needed to completely reducethe residue(only with
OrthogonalizedMatching Pursuit [10], [6] the residuecould bereduced to 0 in a finite numberof iterations). In most
signal processing applications having a non-zeroresidual is not relevant, dueto thefact thatwhentheimagedistortion
is under thevisible distortion threshold it doesnot matter. In addition, somequality lossis allowedwhentargetingvery
low bit rateapplications.

Thedecreasingof theerror in Matching Pursuitis highly dependenton thedictionary. In thiscasethedictionaryused
is with Anisotropic Refinement.Thebasicfunction is a Gaussian in oneaxisandthesecond derivative of theGaussian
in theother axis[3]: �9�rNts ,vu<w ��Nyx ={z s 6 w}|p~W������A� e-� �v� ; (9)

The dictionary is formed by the above basisfunction with rotations, anisotropic scaling and translation. These
transformationsallow thebasisfunctionsto detect theobjectcontour continuity quiteefficiently. Anisotropy introduces
an extra redundancy to the dictionary, and an extra parameter to code,but it is worth becausethe addition of this
parameter implies a great increasein efficiency (seeFig. 3). The set of functions formed by expression (9) with
anisotropic scaling, rotation andtranslation formsanover-completebasis.

As thesearch of theoptimal function meanscomputing a greatamount of scalarproductsbetweenimages,MP has
a very high computational cost. To speedthecoding, a multi-resolution schemehasbeenchosen. In this scheme, the
imageis downsampled by two several times. The MP algorithm is first applied to the smallestimageandwhenthe
desirednumberof coefficientsin thelowestresolution layer hasbeenreached,anup-samplingof therecompositionhas
to beperformed.Thesubtraction of this upsampledrecomposition to thenext resolution level imageis performed,and
theMP is applied to this residual(seeschemein Fig. 2). Thiscanbedonewith any numberof layers,but acompromise
hasto be found to optimally choose the numberof coefficients at eachlayer andthe number of layers. Onescheme
thathasdemonstratedto givequitegoodresults is workingwith threeresolution layersandin everybigger layerdouble
number of coefficientsthanin thepreviousresolution level.

The useof a redundant basisseemsinteresting to an imagerepresentation point of view, but it representsa heavy
computational cost. In fact, when dealing with large dictionaries, the fact of computing a scalar product of every
element of thedictionary andthesignal to representandtake theatomwith a larger projection energy becomesalmost
impossible. In this scope, theuseof efficient approximationtools,asGenetic Algorithms,is needed.

GeneticAlgorithms do not give the optimal solution, but an approximation. Though, this fact doesnot represent a
problemwhendealingwith MP decomposition. Having asuboptimalsolution will, of course,slightly decreasethefinal
coding quality, but thanks to redundancy this will not representa significant quality loss.
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Fig. 2. MP multiresolution scheme.

(a) MP with Gaboratoms. (b) MP with AR atoms.

Fig. 3. Anisotropic refinement atomsversus Isotropic Gaboratoms. The fact of adding anisotropy givesbettercontour reso-
lution. Figure (a) hasbeencodedwith Gaboratomswith isotropic scaling,rotationandtranslation, andfigure (b) with the
anisotropic refinementatoms.Both have500coefficients. It canbeseenthataddinganisotropy brings,with a fixednumber of
decompositionterms,a higher contour definition.
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I I I . PROPERTIES OF MATCHING PURSUIT

Matching Pursuithastwo kinds of properties: properties that depend on the dictionary(so the MP decomposition
will only have themif thechosen dictionaryhasthemaswell) andtheonesthatareindependenton thedictionary (so
any MP decomposition hasthemno matterwhich setof functionshasbeenused to perform thedecomposition).

Themainpropertiesderiveddirectly from theMatching Pursuitalgorithm (so,independent from thedictionary) are:� Energy conservation: In Matching Pursuit, when dealing with an infinite decomposition series, the energyin the
transformeddomainandtheenergy in thespace domainis thesame,ascanbededucedfrom equation (8). As�Y�������� ` � ! �B\ (10)

(becauseof theexponential decreasingof thecoefficientsandtheerror), when ����� (8) turnsto:5 ! 5 6 � �m� npo 73+a` � !-, ���$� . 7 6 , (11)

which mimicsParseval’s equality for Fourierseries.� Invertible: A complete Pursuitrecoversa perfect version of theimage:! � �m� npo +a` � !-, ��� � . �9� � ; (12)

Thusthe image ! may be reconstructed from its MP coefficients, but if the decomposition is finite the reconstruction
of thecodedsignal will not beperfect, there will bea reconstruction error givenby

` � ! , where � is thenumber of
coefficientsusedby thedecomposition.� Non-linearity: Thefactof havinganon-lineardictionarygivesto Matching Pursuit thetwo following characteristics,
which arevery appreciatedwhenperforming coding:
– Robustnessto quantization: Robustnessto quantization comesfrom the fact the decomposition is overcomplete.

Becauseof overcompleteness,thetransformeddomainspacehasdimension � , higher thanthedimension ����� of the
original signal. Whenquantizing thetransformeddomain, theerror quantization is spread allover the � dimensionsof
thetransformeddomain.But whenapplying theinversetransform,someof theinformation in thetransformeddomain
(the onethat belongs to the dimensionsthat do not exist in the original space) is lost, andso part of the quantization
error performedwill not affect at all to thequality of thedecodedsignal.
– Exponential decreaseof the error: This implies a greatdecreasein the first coefficients andso a fast initi al ap-

proximation. After a certain number of coefficients, MP error decreaseis no too fast, anda change of dictionary or
of coding methodmay be worth. This exponential decreasing of the error will only happen if the signal hasfinite
dimension,becausein infinite dimension thecondition of theunit sphere beingdensein theworking spaceusedin the
demonstration in Appendix VII becomesfalse.

MP mayhaveother properties,dependingonthepropertiesof thesetof functionsin thedictionary usedto decompose
the signal. In many imageprocessing application, it may be interestingto have certain covarianceto imagetransfor-
mations, astranslation, rotation anddilation (for example, in pattern recognition). MP will have this covarianceif the
dictionaryusedto decomposea signal hasalsothem:� Translation Invariance: A dictionary

�
is translation invariant if for any

�������UpQ %�� and any
�� � � � � , � � Q %� \ ; ; � =¢¡ , \ ; ; � =]¡ Q then

� � ���U = �� Q %'� . If Matching Pursuitis computed in a translation invariant dictionary, thenits
decomposition will betranslation invariant.Giventhedecomposition of ! in

�
,

! �y�U�Q � � k fm� npo +a` � !-, � � � . � � �c���UpQ 1 ` � ! ���U-Q�, (13)

it is easy to verify [6] that thematching pursuit of ![£¤ ���U-Q � ! ���U = �� Q selects a translation by
�� of thesamevectors

� � �
with thesamedecomposition coefficients:

!p£¤ �y�UpQ � � k fm� npo +a` � !-, �9�$� . ���0�c���U = �� Q 1 ` � !p£¤ �y�UpQ ; (14)
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dictionary

�
. A dictionary is rotation invariant if for any

�������UpQ %'� andany ¥ %]� \ , x§¦ Q then
�[��� ¨A©«ªr�U-Q %'� , where

¨/©
is therotation operator givenby thematrix: ¨A©l��¬®[¯ H ¥ H ��° ¥= H �Y° ¥ [¯ H ¥²± ; (15)

Giventhedecomposition of ! in
�

,

! �y�U�Q � � k fm� npo +a` � !-, �9� � . ��� � ���UpQ 1 ` � ! ���U-Q�, (16)

onecanverify that the matching pursuit of ! ©§�y�UpQ � ! � ¨A©«ª��UpQ selects a rotation by ¥ of the samevectors
�³� �

with the
samedecomposition coefficients:

! ©����U-Q � � k fm� npo +a` � !-, ��� � . �9� � � ¨A©«ªr�U-Q 1 ` � ! ©§���UpQ ; (17)

This makesMatching Pursuit a useful techniqueto rotate images,becausethe only extra calculation to be doneis to
modify theindex of thereconstruction atomswhencomputing thecodedimage,instead of applying therotation matrix
to every pixel of theimage.� Dilation invariance: As in the previous two cases, Matching Pursuitis dilation invariant if the dictionary of func-
tions usedby the pursuit is dilation invariant. A dictionary

�
is dilation invariantwhen for any

� �����UpQ %'� andany´ %µ� \ , ´ �«¶ � Q then
�/��� £b · Q %'� . In this casethematching pursuit of ! · �y�UpQ � !²¸ £b ·º¹ will select a dilation by ´ of thesame

vectors
���0�

with thesamedecomposition coefficients:

! · ���UpQ � � k fm� npo +a` � !-, � � � . � � � ¬ �U ´ ± 1 ` � ! · ���UpQ ; (18)

The Anisotropic RefinementAtoms definedin the scope of this paper are isotropically dilation invariant: they are
covariantto dilationsonly whenthey areappliedto thewhole

�U . If oneappliesa different scaling for every component
of thevector, theproperty of dilation invariancewill belost.

Joining rotation, translation anddilation invariancegivesauseful tool for patternrecognition,becausethecoefficients
do not depend on theposition, theorientation or thesizeof theobject. Certaincoefficientsandcertain relationsof the
atomparameterswould meanthepresenceof a concretepattern in theanalysedimage.

IV. SKIPPING MULTIRESOLUTION IN THE DECODER

Dilation invariancegivesaneasyway of scaling animage: theonly thing thathasto bedone is to modify thescaling
parameter(equally for

s
andu axis)whenreconstructing theimageandalargeror smaller image(largerif thecoefficient

thatmultipliesthescaling factor is greater thanoneandsmaller in thecontrary case)will beobtained.Thiscanbeused
in theMultiresolution Matching Pursuit coderto recomposetheimagewithout theneedof upsampling andinterpolating
thepreviouslayerin thedecoder. Justtaking thepreviouslayeratomparametersandmultiplying thescalefactor by two
(in case thedownsamplingandupsamplingwasdoneby two) andadapting thetranslation parametersto thenew image
sizeaswell (which in this caseis multiply them by two aswell) a bigger imagecanbereconstructed.This skipsquite
a lot of operations in the decoder, andmakesa Matching Pursuitdecomposition quite good for asymmetricplatforms
(simpledecoder, while quitecomplicatedcoder). Resultcomparisonfor multiresolution decoding with upsamplingand
with atomadaptation canbeseenin Fig. 4, whichshowsthatthefactof skipping themultiresolution in thedecoderand
applying thedictionarytranslation invariancedoes not imply a quality loss.

To be ableto reconstruct the imagewithout needing a multiresolution decoder, adaptation of the parametersof the
previouslevel to the following level sizemustbe performed. This adaptation is quite easy. Having a decomposition
termdefinedby: » ,½¼ ��N � � , � � , ´ � , ´ � ,K¥¾w (19)
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(a) Decodedapplyingthemultiresolution (b) Decodedadaptingthescalingfactorto
thefinal size

Fig. 4. Comparison of two typesof MP decoding. (a) thereis a normally decoded image,following exactly the coderinverse
scheme.(b) hasbeendecoded without theupsampling scheme,but with adaptationof theatomparametersof eachmultireso-
lution level to thefinal imagesize.

where
»

is thecoefficient and ¼ is theparameterthatdefinesanatom,thenew termfor thedouble-sizedimagewill be:¿» �Àx � » , ¿¼ ��Nyx � � � , x � � � , x � ´ � , x � ´ � ,*¥Ww (20)

The coefficient hasto be multiplied by two as well to keep the energy in the larger scale. Positions have to be
multiplied by two to maintain theatom relativeposition in thelarger scaleanddilation factors to double theimagesize.

V. GENETIC ALGORITHM

A. Introduction to GeneticAlgorithms

GeneticAlgorithms(GA) is a tool for searching andoptimizing methodology (see[11], [12], [13], [14], [15], [16],
[17]) that hasfound many useful applications in both the scientific andengineering arenas [18]. The GA (basis first
proposedby Holland[19]) work on theDarwinianprinciple of natural selection: the“Survival of thefittest” [20]. This
biologically orientedmethodto search thebestsolution doesnot give anoptimal result, but a suboptimal instead,that
tends to thebest possible onewhenthenumberof iterationsusedin thesearch tendsto infinity. Thefinal objective is to
find a compromisebetweenspeed andaccuracy andtry to maximizethis relation.

B. Biological inspiration

Theliving beings found in nature have oftenbeen sourceof inspiration for scientistsandartists: cathedralsthatare
like trees, helicoptersthatfly like colibries... In computersit is alsopossible to learnfrom nature: whena choice must
be done,the mostancient methodknown is natural selection, an whentherearetoo muchparametersto choose, this
methodbecomesveryuseful, becauseagreat amountof computationtimecanbesavedwith a low quality cost.Genetic
algorithmspretend to imitate thenatural selection, by considering theparametersof the itemsto choose asgenes, and
the different items, elements of a population. To understand this better someprevious knowledgeof the genes and
thenatural selection areneeded.This informationis basically given in thenext sections,thoughnumerous information
sources[21] exist.

Reproduction hastwo main phases: flow of genetic informationandgenetic information recombination. In some
casesmutations,which arenot meantto happenbut which arecrucial for evolution andlive conservation, canappear in
these processesor during thenormalcell life. Throughthese processesthegenetic informationis transmittedfrom one
generationto thenext.
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Fig. 5. DNA structure. As canbe seenin the figure above, Guaninecanonly be combined with Thymine andAdenine with
Cytosine.

B.1 Flow of Genetic Information

Flow of genetic informationis theprocessof making the genetic information of an individualpass to the next gen-
eration during thecellular reproduction. Cellular reproduction concerning theflow of genetic informationis performed
according to threemainsteps: replication, transcription andtranslation.
Replication: Geneticinformation is preservedby DNA replication. During this processthetwo parent strandsseparate,
andeachservesasa template of thesynthesisof a new complementarystrand. Eachoffspring cell inherits onestrand
of theparentalduplex: this pattern of DNA replicationis describedassemi-conservative.
Transcription: Thefirst stepin thecommunicationof genetic informationfrom thenucleusof thecell to thecytoplasm
is the transcription of DNA into mRNA. During this process,the DNA duplex unwindsandoneof the strands serves
asa templatefor thesynthesisof acomplementaryRNA strand, mRNA. RNA remainssinglestrandedandfunctionsas
thevehicle for translatingnucleic acid into protein sequence.
Translation: In the process of translation, the genetic message coded in mRNA is translatedin the ribosomesinto a
protein with specific sequenceof aminoacids. Many proteinsconsist of multiple polypeptide chains. Theformulation
of polypeptide involvestwo different types of RNA, mRNA andtRNA, which play importantrolesin genetranslation.
Codons arecarried by the intermediaryformation of mRNA while tRNA, working asanadapter molecule, recognizes
codonsandinsertsaminoacids into theirappropriatesequentialpositionsin thepolypeptide(aproductof joiningamino
acids).

Thethreestepsabove imply aflow of genetic informationthatkeepsandreplies thegenetic informationof acell, but
it doesnot interactwith any other cell. Whenanexchangeof information betweentwo cells is desired,recombination
mustbepresent.
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Fig. 6. Mitosis. In mitosis,from oneoriginal cell appear two identicalcells,eachonewith thesamegeneticinformationthanthe
original .

B.2 Recombination

Recombination is the processof the exchange of genetic informationbetweentwo strands of DNA, andit is based
in the ability of the “invading” strand to pair with its complement. Recombination is performedbetween two non-
reciprocal strands which mix onewith the other. The final result is a new sequence. The recombination processhas
several steps:
1. DNA with strandbreakis aligned with a second homologousDNA.
2. Reciprocal strand switchproducesa Holliday intermediate.
3. Thecrossover point movesby branch migration andstrand breaks arerepaired.
4. TheHolliday intermediatecanbecleaved(or resolved)in two ways,producingtwo possible setsof products.

Fig. 7. Recombinationof geneticinformation.We canseein this figuretheeffectof recombinationof geneticinformation: from 2
differentindividuals,weget4 differentindividualsnone of which is equalto theprevioustwo.

With this processwe have two final differentstrands,none of which is equal to theoriginal one.

B.3 Mutations

Although DNA is a polymerwith relatively high stability , somespontaneous relationscausea change in the DNA
sequence,a mutation, that producesan inheritablechange in the phenotype. Mutationscanhappenduring the live of
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the individual dueto someexternal factor (for exampleradiation) or during the reproduction process. Mutations can
producebenefit to thecell, but they usually producedamage. Whenthemutation is beneficial,by natural selection it is
probableto bepassedto thenext generation, andthenumberof individualswith themutation will increase,while the
others will decreaseand, in somecases, disappear. Whenit causesdamage it is probablethat it doesnot evenreach the
next generation, or simply themutating individualswill not survive andwill disappear.

C. General structure of a genetic algorithm

GA areinspired by the mechanism of natural selection wherestrongerindividualsarelikely to be the winnersin a
competing environment, anduseananalogy of suchnatural evolution. With GA we pretendto find anoptimal solution
through the genetic evolution method, solution which is represented by the final winner of the genetic game,(in fact,
dueto therandomnessof thealgorithm, thefinal solution will not beoptimal,but suboptimal).

TheGA algorithm is first initialized with a setof parametersthatdefinea givennumberof potential solutions.These
potential solutionsareconsidered asindividuals,andtheparametersthatdefinethesesolutionsaretreatedasgenes. The
“strength” of eachchromosomeis reflectedby a positive valuenarrowly relatedwith thesolution objective: thefitness
value.

With an initial population (generally randomly selected) the algorithm producesgenetic evolution (via mutations
andcrossover) and in every iteration the fittest chromosomesurvives,and the foll owing fittest arecrossed andhave
descendants. Also somemutationsof thefittestareplaced in thenext generation. This processis repeated,andin each
iteration thesolution improvesandgetscloser to thebestpossible result.

VI . MATCHING PURSUIT WITH GENETIC ALGORITHM

A. Concretealgorithm specification

The algorithm usedhereis based on an algorithm usedin [13] to optimize air-injected hydrocyclone. The basics
of this algorithm is to choose randomly an initial population, estimateandmake thefittest passuntouchedin the next
generation, while theother individualsfight by pairs, andthefittestof eachpair goesto therecombination pool. Then
eachof this individuals is randomly recombinedwith the others and the “sons” passto the next generation with the
fittest. This processis repeateduntil stability is reached, whenonly the fittest is kept andthe other atomsrandomly
reinitialized.

Thealgorithm implementedherehassomemodificationswith respectto theoneexplainedin [13] to maximally adapt
it for thescope of this application:� Stability is reachednotby bit to bit comparison,but by makingthedecimal differencebetween theatomsandthebest
currentsolution. This is becausein thespecific definitionof dictionary atoms,whenindividuals arereally closeis when
their parameters haveclose definition values,anda bit to bit comparisonloosethis sense of proximity.� Mutations arenot bit to bit mutations, but arealso implemented by randomly adding a decimal numberthat must
be comprised into the variance intervals chosenby the userdepending on their interests(big variance implies more
mobility, but if the bestsolution is near theactual one, it may not appearin the next generation,while small variance
givesmoreaccuracy whenthe solution is nearbut lessmobility, so lessprobabilities to reach the surroundings of the
optimal result).� All theparameters arediscreteto beableto have a discretedictionaryof functionsandaneasiestway to codethem.

Thealgorithm foll ows thesteps describedbelow, which try to imitatethegenetic evolution system:
1. RandomlygenerateN strings for theinitial population ( � is a smalloddnumber).
2. Evaluatethe fitnessof eachstring, selectthe best solution basedon fitness, place it in position � and send it
unchanged into thenext generation.
3. Forcestrings that areadjacent to eachother in the population to compete directly with eachother for the right to
survive. Similarly, thefitteststring betweenstrings U and U 1 ¡ is placedin thematingpool (where U goesfrom 1 to� = x ). Whenall the local competitors areheld, we have iÁk f6 strings in the matingpool, which arecrossedwith a
probability of 1.0 andplaced in the next generation. The local competitions enhancethe Darwinian“survival-of-the-
fittest” aspectof theGA. They help ensure thatthebestsolutionsthrive in thepopulation.
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4. At this point thereare ilk f6 1 ¡
strings in the next generation andthe iÁk f6 remaining aregeneratedin a random

fashion, by mutating thebeststringwith aprobability of �4Â �ÄÃ V ¶ VYÅ thatis relatedwith thevarianceinterval introducedby
theuser.
5. Returnto step2 until convergence is achieved (that is whennoneof the strings in the population differs from the
population’s current bestsolution by morethanfour units in every gene) or until the maximumnumber of iterations
fixedby theuseris reached. If themaximumnumberof iteration is reached,thealgorithm finisheshereandreturnsthe
fittest individual in theactual generation. If stability hasbeenreached,thesixth stepis executed.
6. Take the bestsolution andplaceit in a second “ini tial generation”, generate the other � =B¡ stringsin this second
initi al generation at random, andbegin the cycle againuntil the maximumnumberof generationsallowedis reached.
This is necessaryto have an evolutionary population, andso a population that is ableof adapting to the environment.
Whena population hasreachedstability, it hasno possibility of adapting to theenvironment. Stability maybereached
becausethecurrent solution is thebestpossible solution (possible, but notprobable)or simplybecausein thepopulation
there wereonly weak individuals. Reinitializing the population makes it more dynamic, and so more adaptive. So
reinitializing thepopulation, whenkeeping thestrongerindividual,will givemorepossibiliti esto reachabettersolution
by giving moredynamismto thepopulation.

A general block diagram of this algorithm is given in Fig. 8. Looking at the diagram it is possible to seethat the
algorithm hastwo basic branches:onebasedin mutationsof the strongest,to check if it canbemutated to a stronger
individual, andasecondonebased on thecrossof thenext strongerindividuals, to check if any descendant of them will
havebetter performancethatany of theactual individuals.

B. Practical advice

In orderto programa genetic algorithm, oneneeds to know a little bit further than the genetic point of view: there
aresomeotherdetails, not related with thegenetics,but that arealsoimportantwhenbeginningto programa GA.

Thefirst important point is to fix thebounds within which a genuine solution lies. Thetighter these boundsare,the
faster thealgorithm will reach a better solution. Theideal caseis whenthese boundsarepreviously known, otherwise
it is necessaryto compute themor estimate them.

Thesecond parameterto fix is theinitial population. If asufficiently high number of generationsis chosen, theinitial
population will not affect thefinal result. This condition is very important, becausethe initial conditions areusually a
problem. As in thegeneticalgorithm theinitial condition is notreally important, thebestchoiceis to randomly initialize
thepopulation.

The third characteristic is the range of the mutations. Mutations arecrucial to have a fasterapproximation of the
solution. In this casethe mutations areimplemented by adding a random number comprisedin the varianceintervals
chosen:

=/=r=
=<=
= �Æ'Ç�ÈÊÉ¾È"Ë"Ì U %Í� = = �Î¾É ¨ , = �ÎWÉ ¨ Q ; (21)

For large dataintervals,

= �Î¾É ¨ is advisedto bea
¡ \ÐÏ

of thewholedatainterval. If thedatainterval is solittle that the¡ \ÐÏ
thena varianceof at leastoneunit (andbetterif it is two, even)hasto betaken otherwisethemutation probalilit y

would bezerofor thatparameter.
Another characteristic that is necessary to commentis the crossing of chromosomes.This is done to check if any

mix of theexistent chromosomeswill leadthealgorithm to reachtheoptimalsolution. To do this mix, for eachgenea
randomnumberdecideswhether this genewill bekeptor not, andif it will not bekept, from which individualit will be
taken. This makesthepopulation moredynamic, andasonly thegenesfrom thestrongerindividualsarekept,it should
make thepopulation fitter thanbefore.

In the caseof Matching Pursuitthe genetic algorithm mustbe used to find, at eachiteration, the atomthat better
representsthe image. As already said,the GA doesnot find an optimal solution. The sub-optimality depends on the
number of individualswe have in our population andon the number of generations allowed before taking the fittest
individual in the population asthe final result. As the numberof atomsof the dictionary depends on the sizeof the
imageandon theparameter ��� (that divides theexponentof thescaling factor), theoptimality factor will decreaseas�Ñ� or thesizeof theimageincrease.This shows that thelarger thedictionary is, themoregenerations will beneeded
to reachthedesiredoptimality factor.
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Using the GA described in this section, by imposing 21 individuals in the population and 50 generations before
choosingthebest individual in thepresentpopulation asthesolution it givesa

F
factor of 0.6741 for a32 � 32 image.If

theimageis 64 � 64,the
F

is then0.5254. For theapplicationof imagecodingthesevalueshaveshownto beacceptable.

VII . CONCLUSIONS

Non-linearcoding is interestingwhendealing with very low bit rateapplications, but standard mathematical tools
arenot adapted to it. Matching Pursuithasshown to be a useful tool whenwanting to code signals with redundant
dictionaries.It has, though, a really hardcomputational costwhich makesit inappropriatefor mostapplications. To be

Random generation 

of N strings

Choose the fittest

individual 

Place fittest string

in next generation

mutationsN-1Create 

Place best string 

in the last position

Place the (N-1)/2

Cross vectors in the

 

Nex generation

reached stability?

mating pool. Pass de-
cendants to next gen.

of the fittest and place
them in next gen.

Choose fittest string

between adjacent pairs

winners in the
matting pool

Randomly generate

strings and N-1

place them in the 
next generation

together with the

fittest.

YESNO

Fig. 8. Generalblockdiagram of thegeneticalgorithm.
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ableto useMatching Pursuitfor imagecoding a fastcomputational tool hasto be found. GeneticAlgorithmsseemto
be quite adapted to Matching Pursuit needs. Even though they introducea suboptimality factor, this doesnot imply a
great quality lossin the final solution. So,Matching Pursuit with Geneticalgorithmsseemsa promising approachto
non-linear imagecoding.
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APPENDIX

A. EXPONENTIAL CONVERGENCE TO ZERO OF THE MP RESIDUAL

Thefollowing theoremprovesthatthemoduleof theresiduein aMatching Pursuitalgorithm tendsexponentially to 0:

Theorem1: Thereexists q_� \ such thatfor all Æ D]\ and Ò³! % �¾Ó :5 ` � ! 5ÕÔ x krÖ � 5 ! 5/; (22)

As a consequence ! � e �m� npo +a` � !-, �9� � . ��� � (23)

and 5 ! 5 6 � e �m� npo 73+a` � !-, �9�$� . 7 6 (24)
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whereth convergenceof 1 is intendedin thestrong sense.

Proof:
Let usverify thatthereexists ×µ� O suchthatfor any ) % ��ÓHKJ
L���9 73+ ! � , ��� . 7EØ × 5 ! 5 (25)

Supposethat it is not possible to find sucha × . This meansthatwe canconstruct
� ! � 	 � � Ó with

5 ! � 5 � ¡ and�Y���� � e � HKJ
L���9 73+ ! � , �9� . 7º�j\ (26)

Sincetheunit sphere of ��Ó is compact, thereexistsa sub-sequence
� ! �TÙ 	AÚ � Ó thatconvergesto a unit vector ! % �EÓ .

It foll ows that HKJ
L���� 73+ !-, �9� . 7º�B\ , (27)

so
+ !-, � �W. �Û\ for all

� � %Ü�
. Since

�
contains a basisof �ÞÝ , necessarily ! ��\ which is not possible because5 ! 5 � ¡ . This provesthatour initial assumption is wrong,andhencethere exists × suchthat (25) holds.

Thedecay condition (22) is derivedfrom theenergy conservation:5 ` � egf ! 5 6 � 5 ` � ! 5 6 = 73+a` � !-, � ¤ � . 7 6 (28)

TheMatching Pursuit choses
�4� �

thatsatisfies73+a` � !-, ���$� . 7EØGFMHKJ
L���� 73+a` � !-, ��� . 7 (29)

and(25) implies that
73+a` � !-, � � � . 7
ØGF × 5 ` � ! 5 . So5 ` � egf ! 5ÕÔ�5 ` � ! 5 N ¡l= F 6 × 6 w �� (30)

which verifies(22) for: x krÖ ��N ¡l= F 6 × 6 w ��àß ¡ (31)

This alsoprovesthat ���Y�� � e � 5 ` � ! 5 �B\ (32)


