
SCHEDULING STRATEGIES FOR 2D WAVELET CODING
IMPLEMENTATIONS

M. Ravasi, M. Mattavelli, D. J. Mlynek

Swiss Federal Institute of Technology, Integrated Systems Laboratory LSI,
CH-1015 Lausanne, Switzerland

Tel: +41 21 6936978; Fax: +41 21 6934663
e-mail: massimo.ravasi@epfl.ch

ABSTRACT

Wavelet image compression adopted in the JPEG-2000
and MPEG-4 standards offers several advantages over
existing methods based on DCT. This paper presents some
wavelet codec scheduling strategies obtained by the joint
optimization of both the algorithmic part and the
architectural features, according to the target system
implementation. Results are presented allowing
optimization of system performance either for dedicated
ASIC design or for embedded software implementations
based on software/hardware system resources partitioning.
The optimization can target different features such as
execution speed, external and internal cache memory
performance, power dissipation, number of parallel wavelet
filters.

1 INTRODUCTION

Texture coding based on wavelet transform is playing a
leading role for its better performances in terms of signal
analysis, multi-resolution features and improved
compression compared to existing methods such as the
DCT based compression schemes adopted in the old JPEG
standard. This success is testified by the fact that the
wavelet transform has now been adopted by MPEG-4 for
still texture coding [10] and will be the base of JPEG-2000.
Indeed superior performance at low bit-rates and
transmission of data according to client display parameters
are particularly interesting for mobile applications. The
wavelet transform shows better results because, thanks to its
time-scale representation, it’s intrinsically well suited to
non-stationary signal analysis, such as images. Although it
is a rather simple transform, its implementation may lead to
critical requirements in terms of memory size and
bandwidth yielding to costly implementations. Thus
different solutions must be investigated to find specifically
optimized implementations being able to derive the best
solution fitting a given system scenario.

Because of the sub-band decomposition of wavelet
transforms, the coding/decoding process of images has to be
performed on several layers as shown in Figure 1 and
Figure 2 respectively for 1D e 2D case. Practical system
limits encountered by the designer include memory size and
bandwidth for the storage of the temporary data, with
efficient use of both on-chip and off-chip storage [1, 2, 3, 4,

5, 6, 7, 8, 9].

Layer 0

Layer 1

Layer 2 L2 H2 H1

H1L1

Input signal

p q

p q

DWT decomposition

L2 H2 H1

H1L1

Output signal

p0 q0

p0 q0

DWT reconstruction

p

q

LP filters
p0

q0

HP filters

Filtered data

Figure 1: 1D DWT with Mallat tree decomposition. The
number of samples of the encoded signal is equal to the one
of the input signal.

H

V

H

V

H

Input signal

L1 H1

LL1 HL1

LH1 HH1

HL1

HH1LH1

L2 H2

HL1

HH1LH1
LH2

LL2
HH2

HL2

Horizontally filtered data

Vertically filtered data

Layer 0

Layer 1

Layer 2

DWT decomposition

Figure 2: 2D DWT with Mallat tree decomposition. The
size of intermediate layers decreases twice faster than in
1D case and the amount of data to be filtered tends
asymptotically to 4/3 of the size of the input signal. Since
data must be filtered both horizontally and vertically, the
total amount of filtered samples tends to 8/3 of the size of
input signal.

Redesigning the data processing scheduling and the
memory storage scheme allows a joint optimization of the
algorithmic and architectural features according to specific
system requirements. The optimum choice of these factors
can be achieved by analyzing different strategies. Each of
these strategies corresponds to an implementation
characterized in parametric form in terms of generic
architectural features such as on-chip memory size, on-chip

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data-path bandwidths, overall filter complexity, external
memory size, external data-path bandwidths.

2 DIFFERENT STRATEGIES FOR WAVELET
CODING

2.1 Classical

The classical approach to 2D wavelet coding (see Figure
2) processes each layer in the tree decomposition separately
and on each layer the vertical and horizontal processing are
performed successively one by one. It’s a very simple
implementation but it requires high external memory
bandwidth and size because a great amount of temporary
data must be stored both between two successive layers and
between vertical and horizontal processing.

2.2 Sliding-Windows

The main idea behind Sliding-Windows approach is to
exploit data dependencies among different layers and
among vertical and horizontal processing in order to try to
use temporary samples as soon they are available. If, by
minimizing the lifetime of temporary samples, we can
reduce the size of the required temporary memory and, if
such memory results small enough to be implemented
conveniently on chip, we have also reduced the bandwidth
of the (slow) external memory.

In Figure 3 we observe that we can immediately use the
samples produced by the low-pass filter processing a layer
to feed the filters on the following layer. No time gap occurs
between creation and consumption of temporary samples.

Layer 0

Layer 1

Layer 2

p q

p q

Input signal

H1L1

L2 H2 H1

p

q

Low-pass filters

High-pass filters

Filtered data

Temporary-data path:

Sliding Windows
Classic

Figure 3: 1D Sliding Windows. Temporary data of
intermediate layers (L1, L2, …) have not to be stored and
read if they are used as a soon as they are available.

The scheme of Figure 4 shows how to manage
temporary samples between horizontal and vertical filtering
to reduce their lifetime. Let’s suppose that we first filter
horizontally. Horizontal filters produce samples along rows,
while vertical filters needs input samples along columns. To
produce these columns of samples with horizontal filters,
we could use a set of horizontal filters, with a couple of
filters for each line. In this way, scheduling the horizontal
filters line by line, we are able to produce columns of
temporary data capable of feeding vertical filters. We
actually do not need to implement a couple of filters for
each line because they never work in parallel, only one line
is active at a time. We just need to store 2 columns of
samples needed as input by all the virtual horizontal filters

and read them line by line to load them in parallel in a true
real pair of horizontal p-q filters. These two columns
behave like two windows sliding over the input image,
because they cache successive columns of input samples. If
we put the sliding-windows memory on chip, only input and
output samples are exchanged with the external memory,
while all the temporary samples are managed by on-chip
memory.

Horiz. filters

Vert. filters

hp

hq

vlp

vlq

vhq

vhp

Filter “motion”

Data paths

Output data

LL

from higher resolution layer

HL

LH HH

to lower resolution layer

hp
vlp

vlq
hq

vhp
vhq

Figure 4: 2D Sliding Windows on a layer. Temporary data
between horizontal and vertical filtering are managed with
two “columns” of horizontal filters whose output is used to
feed vertical filters.

If we extend the scheme of Figure 3 to 2D signals,
substituting each 1D layer and its corresponding filters with
the scheme of Figure 4, we obtain the Sliding Windows on
All Layers (SW All L) implementation. No external
memory is required because all temporary samples are
processed on chip and the external bandwidth is thus limited
to the minimum required to read the input signal and store
the output signal. Furthermore, for each layer we need the
on-chip memory for sliding windows temporary samples
corresponding to the two columns of horizontal filters of
Figure 4. It’s a relatively costly implementation because of
both the quite large amount of required on-chip memory
and the complex scheduling needed to synchronize all the
filters working in parallel on all layers.

If we exploit only the scheme of Figure 4 to process a
layer at a time, we deal with a simpler solution, referred to
as “Sliding-Windows Layer-by-Layer on 1 Stripe” (SW
LbL 1S). This solution avoids the storage of temporary
samples between horizontal and vertical filtering but needs
to store inter-layer temporary samples in an extra temporary
memory. Since we process one layer at a time, both inter-
layer temporary memory and on-chip memory can be reused
layer after layer and their sizes depend on the size of the
largest layer to process. On-chip memory bandwidth is the
same as in the SW All L case because we are still
processing all the same samples (in SW All L approach,
inter-layer temporary samples are used as soon as available,
thus they need no temporary memory and do not influence
the internal memory bandwidth).

With respect to SW ALL L, this solution has the
advantage of being much simpler. It requires only three
filters and almost half internal memory and needs no

complex inter layer scheduling. The increase of external
bandwidth is relatively small but the amount of required
external memory is quite large.

We can also develop intermediate solutions between SW
All L and SW LbL 1S, referred to as “Sliding Windows on
N Layers” (SW N L), using the same approach of SW All L
but applied only to N layers out of L, as shown in Figure 5
for 1D signals.

Layer 0

Layer 1

Layer 2

p q

p q

Input signal

H1L1

L2 H2 H1

p

q

Low-pass filters

High-pass filters

Externally
exchanged signals

Skipped signals

Figure 5: 1D Sliding-Windows on 2 Layers. We apply the
scheme of SW LbL 1S only on 2 layers: we skip the signal
L1 because we reuse output samples of first p filter as soon
as they are available, but we need to store (and read)
signal L2 in external temporary memory.

With respect to SW LbL 1S, we reduce the amount of
required external memory and its bandwidth, because the
first LL sub-signal that we need to store on off-chip memory
is obviously smaller than the first LL layer, but we need
more on-chip memory, enough to process the first larger N
layers and more filters to process N layers at a time. For the
same reasons discussed for the SW LbL 1S case, the
internal memory bandwidth results equal to both previous
cases. The required external memory is equal to the size of
the first externally stored LL sub-signal.

We can reduce the amount of internal memory required
by the SW LbL 1S approach, by using the same scheme but
applying it only to stripes of the input signal , obtaining the
“Sliding-Windows Layer-by-Layer on N Stripes”
implementation (SW LbL NS).

Horiz. filters

Vert. filters

hp

hq

hp

hq

vlp

vlq

vhq

vhp

vlp

vlq

vhq

vhp

Data paths

LL0

from higher resolution layer

HL0

LH0 HH0

to lower resolution layer

hp

vlp
vlq

hq

vhp
vhq

LL1

LH1

HL1

HH1

Figure 6: 2D Sliding-Windows Layer-by-Layer on 2
Stripes. We reduce the amount of internal memory
processing only a stripe of input signal at a time.

If, for instance, we process two horizontal stripes

separately, we need just half internal memory because we
need to implement the Sliding-Windows only on half
height, as shown in Figure 6. To manage temporary data
between successive stripes, we need an extra off-chip
temporary memory yielding a corresponding small increase
of external memory bandwidth.

The internal memory bandwidth does not change
because samples are never filtered horizontally twice, while
its size decreases with the number of stripes. Finally, the
number or required couples of filters is three like in SW
LbL 1S because we process one stripe at a time thus, once
again, a layer at a time.

2.3 Block-by-Block.

This approach still exploits inter-layer data
dependencies like Sliding-Windows approach but using the
Classical scheme to code blocks of image.

Layer 0

Layer 1

Layer 2

Input signal

H1L1

H1H2L2

Filtering operations

Inter-block temp. mem.

Filtered data

Figure 7: 1D Block by Block. The input signal is divided in
segments that are separately coded as in the Classical
approach. Some extra memory is required to hold inter-
block temporary data.

LLn-1,22LLn-1,21

LLn-1,12

from layer n-1

LLn,11

to layer n

HHn,11LHn,11

HLn,11

LLn-1,11Ln,11 Hn,11

Filtering operations

Inter-block temp. mem.

Horiz. filtered data

Vert. filtered data

Figure 8: 2D Block by Block. The input signal is divided in
blocks. It’s the straight extension of the 1D coder.

A temporary memory, referred to as tree memory, is
required and an extra temporary memory is also required to
manage inter-block data and avoid any blocking effect.

Two different solutions have been studied, either with
off-chip or on-chip tree memory and referred to as “Block-
by-Block with External Tree Memory” (BbB ETM) and
“Block-by-Block with Internal Tree Memory” (BbB ITM).
For a detailed discussion about this approach, refer to the
Block Based approach discussed in [2]

3 RESULTS

Figure 9 reports the results of the different approaches
described in the previous sections for a 1600x1200
grayscale image, coded with JPEG-2000 13x7 wavelet

kernel implemented with lifting-scheme, with a six-layers
Mallat tree decomposition. These results example can easily
be extended to color images and other wavelet transform
kernels, as part of a variety of image capture, transmission
and display applications.

On-chip memory size

0
20’000
40’000
60’000
80’000

Clas
sic

al

SW
 L

bL
 8

S

SW
 L

bL
 4

S

SW
 L

bL
 2

S

SW
 L

bL
 1

S

SW
 2

L

SW
 4

L

SW
 A

ll L

BbB
 E

TM

BbB
 IT

M

S
am

p
le

s

External memory size

0
500’000

1’000’000
1’500’000
2’000’000

Clas
sic

al

SW
 L

bL
 8

S

SW
 L

bL
 4

S

SW
 L

bL
 2

S

SW
 L

bL
 1

S

SW
 2

L

SW
 4

L

SW
 A

ll L

BbB
 E

TM

BbB
 IT

M

S
am

p
le

s

#r/w accesses per pixel

0.0
2.0
4.0
6.0
8.0

10.0

Clas
sic

al

SW
 L

bL
 8

S

SW
 L

bL
 4

S

SW
 L

bL
 2

S

SW
 L

bL
 1

S

SW
 2

L

SW
 4

L

SW
 A

ll L

BbB
 E

TM

BbB
 IT

M

S
am

p
le

s
/ P

ix
el

On-chip mem Ext. mem

Filter implementation

0
5

10
15
20

Clas
sic

al

SW
 L

bL
 8

S

SW
 L

bL
 4

S

SW
 L

bL
 2

S

SW
 L

bL
 1

S

SW
 2

L

SW
 4

L

SW
 A

ll L

BbB
 E

TM

BbB
 IT

M

#

Figure 9: Results for 1600x1200 grayscale image,
JPEG2000’s 13x7 wavelet kernel implemented with lifting-
scheme, 6 layers Mallat tree decomposition.

4 CONCLUSIONS

This paper reports new scheduling strategies and new
results of wavelet codec implementations. Such results
allow a joint optimization of algorithmic and architectural
aspects yielding system optimization in a variety of
hardware and software configurations, differing for their
requirements of on-chip and off-chip memory, both in terms
of size and bandwidth, and for their computational
complexity and for their performance. Depending on the
available system resources, the designer can select, for the

implementation, the wavelet scheduling strategy that better
matches the desired system cost-performance trade-off.

Acknowledgements

This research activity has been developed as part of a
joint project in collaboration with Motorola SPS, Geneva,
Switzerland.

References

[1] M. Ravasi, M. Mattavelli, D. J. Mlynek, A. Buttar, S.
Soudagar, “Wavelet image compression for
mobile/portable applications”, IEEE Trans. on
Consumer Electronics, Vol. 45, No. 3, August 1999,
pag. 794-803.

[2] G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels, I.
Bolsens, “Optimal memory organization for scalable
texture codecs in MPEG-4”, to appear in IEEE
Transaction on Circuits and Systems for Video
Technology, special issue on SNHC coding 1999.

[3] C. Chakrabarti, M. Vishwanath, R. Owens,
“Architectures for Wavelet Transforms”, VLSI Signal
Processing VI, IEEE special publications, NY, pp.
507-515, 1993.

[4] M. Vishwanath, “The Recursive Pyramid Algorithm
for the Discrete Wavelet Transform”, IEEE
Transactions on Signal Processing, Vol. 42, No. 3, pp.
673-676, March 1994.

[5] T.C. Denk, K.K. Parhi, “Calculation of minimum
number of registers in 2-D discrete wavelet transforms
using lapped block processing”, IEEE Int. Symposium
on Circuit and Systems, Vol. 3, pp. 77-80, London,
England, May 1994.

[6] G. Lafruit, J. Bormans, “Graceful degradation
parameters for a scalable wavelet codec”, ISO/IEC
JTC1/SC29/WG11/MPEG97/M2655, Fribourg,
October 1997.

[7] Y. Sheng, Wavelet Transform, Chapter 10 in “The
Transforms and Applications Handbook”, A.D.
Poularikas, CRC Press, 1996.

[8] I. Daubechies, W. Sweldens, “Factoring Wavelet
Transforms into Lifting Steps”, J. Fourier Anal. Appl.,
Vol. 4, Nr. 3, pp. 247-269, 1998.

[9] W. Sweldens, P. Schröder, “Building your own
wavelets at home”, in “Wavelets in Computer
Graphics”, ACM SIGGRAPH Course Notes, pp. 15-
87, 1996

[10] ISO/IEC, “Information technology – Generic coding
of audio-visual objects – Part 2: Visual”, 14496-2
FPDAM 1, JTC 1/SC 29/WG 11 N2802, Vancouver,
July 1999.

