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ABSTRACT 

Wavelet image compression adopted in the JPEG-2000 
and MPEG-4 standards offers several advantages over 
existing methods based on DCT. This paper presents some 
wavelet codec scheduling strategies obtained by the joint 
optimization of both the algorithmic part and the 
architectural features, according to the target system 
implementation. Results are presented allowing 
optimization of system performance either for dedicated 
ASIC design or for embedded software implementations 
based on software/hardware system resources partitioning. 
The optimization can target different features such as 
execution speed, external and internal cache memory 
performance, power dissipation, number of parallel wavelet 
filters. 

1 INTRODUCTION 

Texture coding based on wavelet transform is playing a 
leading role for its better performances in terms of signal 
analysis, multi-resolution features and improved 
compression compared to existing methods such as the 
DCT based compression schemes adopted in the old JPEG 
standard. This success is testified by the fact that the 
wavelet transform has now been adopted by MPEG-4 for 
still texture coding [10] and will be the base of JPEG-2000. 
Indeed superior performance at low bit-rates and 
transmission of data according to client display parameters 
are particularly interesting for mobile applications. The 
wavelet transform shows better results because, thanks to its 
time-scale representation, it’s intrinsically well suited to 
non-stationary signal analysis, such as images. Although it 
is a rather simple transform, its implementation may lead to 
critical requirements in terms of memory size and 
bandwidth yielding to costly implementations. Thus 
different solutions must be investigated to find specifically 
optimized implementations being able to derive the best 
solution fitting a given system scenario. 

Because of the sub-band decomposition of wavelet 
transforms, the coding/decoding process of images has to be 
performed on several layers as shown in Figure 1 and 
Figure 2 respectively for 1D e 2D case. Practical system 
limits encountered by the designer include memory size and 
bandwidth for the storage of the temporary data, with 
efficient use of both on-chip and off-chip storage [1, 2, 3, 4, 

5, 6, 7, 8, 9]. 
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Figure 1: 1D DWT with Mallat tree decomposition. The 
number of samples of the encoded signal is equal to the one 
of the input signal. 
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Figure 2: 2D DWT with Mallat tree decomposition. The 
size of intermediate layers decreases twice faster than in 
1D case and the amount of data to be filtered tends 
asymptotically to 4/3 of the size of the input signal. Since 
data must be filtered both horizontally and vertically, the 
total amount of filtered samples tends to 8/3 of the size of 
input signal. 

Redesigning the data processing scheduling and the 
memory storage scheme allows a joint optimization of the 
algorithmic and architectural features according to specific 
system requirements. The optimum choice of these factors 
can be achieved by analyzing different strategies. Each of 
these strategies corresponds to an implementation 
characterized in parametric form in terms of generic 
architectural features such as on-chip memory size, on-chip 
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data-path bandwidths, overall filter complexity, external 
memory size, external data-path bandwidths. 

2 DIFFERENT STRATEGIES FOR WAVELET 
CODING 

2.1 Classical 

The classical approach to 2D wavelet coding (see Figure 
2) processes each layer in the tree decomposition separately 
and on each layer the vertical and horizontal processing are 
performed successively one by one. It’s a very simple 
implementation but it requires high external memory 
bandwidth and size because a great amount of temporary 
data must be stored both between two successive layers and 
between vertical and horizontal processing. 

2.2 Sliding-Windows 

The main idea behind Sliding-Windows approach is to 
exploit data dependencies among different layers and 
among vertical and horizontal processing in order to try to 
use temporary samples as soon they are available. If, by 
minimizing the lifetime of temporary samples, we can 
reduce the size of the required temporary memory and, if 
such memory results small enough to be implemented 
conveniently on chip, we have also reduced the bandwidth 
of the (slow) external memory. 

In Figure 3 we observe that we can immediately use the 
samples produced by the low-pass filter processing a layer 
to feed the filters on the following layer. No time gap occurs 
between creation and consumption of temporary samples. 
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Figure 3: 1D Sliding Windows. Temporary data of 
intermediate layers (L1, L2, …) have not to be stored and 
read if they are used as a soon as they are available. 

The scheme of Figure 4 shows how to manage 
temporary samples between horizontal and vertical filtering 
to reduce their lifetime. Let’s suppose that we first filter 
horizontally. Horizontal filters produce samples along rows, 
while vertical filters needs input samples along columns. To 
produce these columns of samples with horizontal filters, 
we could use a set of horizontal filters, with a couple of 
filters for each line. In this way, scheduling the horizontal 
filters line by line, we are able to produce columns of 
temporary data capable of feeding vertical filters. We 
actually do not need to implement a couple of filters for 
each line because they never work in parallel, only one line 
is active at a time. We just need to store 2 columns of 
samples needed as input by all the virtual horizontal filters 

and read them line by line to load them in parallel in a true 
real pair of horizontal p-q filters. These two columns 
behave like two windows sliding over the input image, 
because they cache successive columns of input samples. If 
we put the sliding-windows memory on chip, only input and 
output samples are exchanged with the external memory, 
while all the temporary samples are managed by on-chip 
memory. 
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Figure 4: 2D Sliding Windows on a layer. Temporary data 
between horizontal and vertical filtering are managed with 
two “columns” of horizontal filters whose output is used to 
feed vertical filters. 

If we extend the scheme of Figure 3 to 2D signals, 
substituting each 1D layer and its corresponding filters with 
the scheme of Figure 4, we obtain the Sliding Windows on 
All Layers (SW All L) implementation. No external 
memory is required because all temporary samples are 
processed on chip and the external bandwidth is thus limited 
to the minimum required to read the input signal and store 
the output signal. Furthermore, for each layer we need the 
on-chip memory for sliding windows temporary samples 
corresponding to the two columns of horizontal filters of 
Figure 4. It’s a relatively costly implementation because of 
both the quite large amount of required on-chip memory 
and the complex scheduling needed to synchronize all the 
filters working in parallel on all layers. 

If we exploit only the scheme of Figure 4 to process a 
layer at a time, we deal with a simpler solution, referred to 
as “Sliding-Windows Layer-by-Layer on 1 Stripe” (SW 
LbL 1S). This solution avoids the storage of temporary 
samples between horizontal and vertical filtering but needs 
to store inter-layer temporary samples in an extra temporary 
memory. Since we process one layer at a time, both inter-
layer temporary memory and on-chip memory can be reused 
layer after layer and their sizes depend on the size of the 
largest layer to process. On-chip memory bandwidth is the 
same as in the SW All L case because we are still 
processing all the same samples (in SW All L approach, 
inter-layer temporary samples are used as soon as available, 
thus they need no temporary memory and do not influence 
the internal memory bandwidth). 

With respect to SW ALL L, this solution has the 
advantage of being much simpler. It requires only three 
filters and almost half internal memory and needs no 



complex inter layer scheduling. The increase of external 
bandwidth is relatively small but the amount of required 
external memory is quite large. 

We can also develop intermediate solutions between SW 
All L and SW LbL 1S, referred to as “Sliding Windows on 
N Layers” (SW N L), using the same approach of SW All L 
but applied only to N layers out of L, as shown in Figure 5 
for 1D signals. 
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Figure 5: 1D Sliding-Windows on 2 Layers. We apply the 
scheme of SW LbL 1S only on 2 layers: we skip the signal 
L1 because we reuse output samples of first p filter as soon 
as they are available, but we need to store (and read) 
signal L2 in external temporary memory. 

With respect to SW LbL 1S, we reduce the amount of 
required external memory and its bandwidth, because the 
first LL sub-signal that we need to store on off-chip memory 
is obviously smaller than the first LL layer, but we need 
more on-chip memory, enough to process the first larger N 
layers and more filters to process N layers at a time. For the 
same reasons discussed for the SW LbL 1S case, the 
internal memory bandwidth results equal to both previous 
cases. The required external memory is equal to the size of 
the first externally stored LL sub-signal. 

We can reduce the amount of internal memory required 
by the SW LbL 1S approach, by using the same scheme but 
applying it only to stripes of the input signal , obtaining the 
“Sliding-Windows Layer-by-Layer on N Stripes” 
implementation (SW LbL NS). 
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Figure 6: 2D Sliding-Windows Layer-by-Layer on 2 
Stripes. We reduce the amount of internal memory 
processing only a stripe of input signal at a time. 

If, for instance, we process two horizontal stripes 

separately, we need just half internal memory because we 
need to implement the Sliding-Windows only on half 
height, as shown in Figure 6. To manage temporary data 
between successive stripes, we need an extra off-chip 
temporary memory yielding a corresponding small increase 
of external memory bandwidth. 

The internal memory bandwidth does not change 
because samples are never filtered horizontally twice, while 
its size decreases with the number of stripes. Finally, the 
number or required couples of filters is three like in SW 
LbL 1S because we process one stripe at a time thus, once 
again, a layer at a time. 

2.3 Block-by-Block. 

This approach still exploits inter-layer data 
dependencies like Sliding-Windows approach but using the 
Classical scheme to code blocks of image. 
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Figure 7: 1D Block by Block. The input signal is divided in 
segments that are separately coded as in the Classical 
approach. Some extra memory is required to hold inter-
block temporary data. 
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Figure 8: 2D Block by Block. The input signal is divided in 
blocks. It’s the straight extension of the 1D coder. 

A temporary memory, referred to as tree memory, is 
required and an extra temporary memory is also required to 
manage inter-block data and avoid any blocking effect. 

Two different solutions have been studied, either with 
off-chip or on-chip tree memory and referred to as “Block-
by-Block with External Tree Memory” (BbB ETM) and 
“Block-by-Block with Internal Tree Memory” (BbB ITM). 
For a detailed discussion about this approach, refer to the 
Block Based approach discussed in [2] 

3 RESULTS 

Figure 9 reports the results of the different approaches 
described in the previous sections for a 1600x1200 
grayscale image, coded with JPEG-2000 13x7 wavelet 



kernel implemented with lifting-scheme, with a six-layers 
Mallat tree decomposition. These results example can easily 
be extended to color images and other wavelet transform 
kernels, as part of a variety of image capture, transmission 
and display applications. 
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Figure 9: Results for 1600x1200 grayscale image, 
JPEG2000’s 13x7 wavelet kernel implemented with lifting-
scheme, 6 layers Mallat tree decomposition. 

4 CONCLUSIONS 

This paper reports new scheduling strategies and new 
results of wavelet codec implementations. Such results 
allow a joint optimization of algorithmic and architectural 
aspects yielding system optimization in a variety of 
hardware and software configurations, differing for their 
requirements of on-chip and off-chip memory, both in terms 
of size and bandwidth, and for their computational 
complexity and for their performance. Depending on the 
available system resources, the designer can select, for the 

implementation, the wavelet scheduling strategy that better 
matches the desired system cost-performance trade-off. 
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