
FAST k-NN CLASSIFICATION WITH AN OPTIMAL

k-DISTANCE TRANSFORMATION ALGORITHM

Olivier Cuisenaire 1;2 and Benô�t Macq 2

1 Signal Processing Laboratory, EPFL, Swiss Federal Institute of Technology,

CH-1015 Lausanne, Switzerland. Olivier.Cuisenaire@epfl.ch
2 Communications and Remote Sensing Laboratory, Universit�e catholique de Louvain,

Place du Levant 2, B-1348 Louvain-la-Neuve, Belgium. Macq@tele.ucl.ac.be

ABSTRACT

The k-NN classi�cation rule uses information from the

k nearest prototypes in order to classify a pattern.

In this paper, we improve War�eld's lookup table ap-

proach, where the classi�cation problem is reformulated

in terms of distance transformations. We propose a new

k-distance transformation algorithm using ordered prop-

agation. We show that - using this algorithm - the k-NN

classi�cation of F possible patterns in a D-dimensional

space has a O(k:D:F ) complexity.

1 INTRODUCTION

The k-Nearest Neighbors (k-NN) rule is a non-

parametric supervised pattern classi�cation technique.

Given the knowledge of N prototype patterns (vectors

of dimension D) and their correct classi�cation into

several classes, it assigns an unclassi�ed pattern to the

class that is most heavily represented among the k

closest prototypes in the pattern space.

The �rst formulation of this rule was made by Fix

and Hodges [4]. They established the consistency of

the rule for sequences such that k ! 1 and k=N ! 0.

The probability of error R of the k-NN rule is of

course at least as large as the Bayes probability of

error R�, resulting from the overlap of the probabilistic

distribution of the classes in the pattern space. Cover

[2] shows that R is bounded by (1 + 1=k)R�. Thus,

when k !1, R! R�, which is remarkable considering

that no assumptions are made on the probabilistic

distributions involved.

Implementing the k-NN rule with a brute-force

method in order to classify F patterns using N

prototypes requires F:N distance computations and

o(F:N: log(N)) comparisons. For large data sets, this

is often unpractical, which has triggered the search of

eÆcient algorithms.

For instance, several authors such as Jiang and

Zhang [6] propose a branch and bound approach where

the prototypes are hierarchically decomposed into

disjoint subsets. A powerful tree-search algorithm,

the branch and bound method, is then applied to the

resulting groups. Alternatively, Friedman [5] orders

the training data along the axis with the maximal

sparsity for each pattern. He can then restrict the

computations to a band around the projection of the

test data onto this axis. The expected number of

distance computations is reduced to O(F:k1=D:N1�1=D)

with D dimensional patterns. A more exhaustive dis-

cussion of these and other techniques can be found in [3].

Finally, War�eld [10] considers a particular type of

applications where the number of possible patterns is

much smaller than the number of patterns to classify.

One such application is the classi�cation of MRI data,

where patterns consists of 2-3 channels (D) of data

quanti�ed over a small (0-255) range of values, for a 3D

volume including typically 1 � 6 � 106 voxels. Then,

it becomes eÆcient to precompute a lookup table for

every possible pattern, then to classify the voxels by

accessing the location of their values in the lookup table.

In image processing, distance transformations [1, 9,

7, 8, 3] are algorithms that compute, for every pixel of

an image, the distance to the nearest pixel of a given

object. If one considers the pattern space as an image

and the prototype patterns as object pixels, the com-

putation of the above lookup table and distance trans-

formations are obviously similar concepts. War�eld's

k-distance transformation (k-DT) algorithm is based on

Borgefors' chamfer DT [1] in 2D and on Ragnelmam's

quasi-Euclidean corner EDT [8] in higher dimensions.

The di�erence with those methods is that the k nearest

patterns (object pixels) are considered, instead of 1. It

goes as follow:

Algorithm 1 War�eld's k-distance transformation

Insert training data patterns identi�ers into the map.

for all distance transform mask scans do

for all pixels p in the map do

Propagate the k-NN identi�ers from each mask

edge pixel to the center pixel p,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Compute distance from p to each of the training

patterns,

Sort in order of increasing distance,

Select the identi�ers of the k nearest patterns

The method requires O(2DF (D+ 1)k) distance com-

putations and O(F (D+1)k log((D+1)k)) comparisons.

War�eld shows that - for this type of applications - it

is an order of magnitude faster than the above k-NN

methods.

Finally, let us notice that War�eld's method and Rag-

nelmam's Euclidean DT by raster scanning (on which it

is based) are both prone to a small amount of errors

due to the discontinuity of the discrete Voronoi poly-

gons around patterns in the pattern space. The follow-

ing method is also prone to such errors, but they do not

appear to be of consequence for practical applications.

An in-depth analysis of those errors can be found in [3].

2 THE k-DISTANCE TRANSFORMATION.

2.1 Notations

In terms of k-NN classi�cation, the k-DT problem

can be formulated as follows: given a set of N

prototype patterns q(l) with labels l (1 � l � N),

determine - for every possible pattern p in the pat-

tern space I - kNN(p) = fNNi(p) ; 1 � i � kg

where NNi(p) is the label of the ith nearest prototype

pattern to p. For instance, NN0(p) = l such that

dist(p; q(l)) � dist(p; q(k))81 � k � N . Ties are broken

arbitrarily. The metric dist(; ) is application depen-

dent. It will often be the square of the Euclidean metric.

Similarly, the k-DT problem can be described in

familiar image processing terms: given a set of N object

pixels q(l) 2 O, determine the k nearest object pixels

kNN(p) for every pixel p in the image I .

Although both formulations sound similar, there is

a minor di�erence in the fact that the \image" formu-

lation supposes that prototypes are unique, i.e. that

q(l1) = q(l2) ) l1 = l2. The \pattern space" formu-

lation does not make this assumption. There can be

several identical patterns among the prototypes.

2.2 Our approach

In algorithm 1, computational power is wasted in two

ways. First, as pointed out by Ragnelmam in [7], the

raster scanning procedure propagates the informa-

tion further than needed. This is especially true for

high-dimensional pattern spaces, where 2D scans are

performed. Secondly, a large part of the computational

power is used by the sorting procedure, especially for

large values of k.

We propose to generate the k-DT using ordered

propagation to scan the pattern space, starting from

the prototype patterns, then to their neighbors, their

neighbors' neighbors, ... by order of increasing distance.

The ordered propagation is achieved by bucket sorting

the patterns in the propagation front, as �rst suggested

by Verwer [9] for simple metrics. The bene�ts of the

method are twofold. First the propagation of every

label is restricted to the zone of inuence of the pattern

it represents. Secondly, it is possible, by delaying

the updates of the propagated patterns, to avoid any

sorting beside the bucket sorting.

For every pixel p in the propagation front, we store

both its coordinates and the propagating label l. The

propagation front is implemented as an array of buckets

bucket(i). A propagating label l at pixel p is stored

in bucket(dist(p; q(l))) 1. Buckets are emptied by

increasing values of i.

In addition to the k label maps NNi(p) that are

computed, we store three additional temporary infor-

mation for each pixel. First, icur(p) indicates how many

labels have reached p at any step of the algorithm.

Secondly, dcur(p) is the value of the distance from p

to the prototype of the last label to have reached p,

i.e dcur = dist(p; q(NNicur(p))). Thirdly, if more than

one label in kNN(p) corresponds to a prototype at

distance dcur, then idcur(p) stores the smallest i for

which dist(p; q(NNi(p))) = dcur(p).

Let us now consider that distance d has been reached,

i.e all buckets(d0), d0 < d are emptied and that (p; l)

in bucket(d) is being processed. The processing in-

cludes two steps. First we check if l should be added

to kNN(p). If so, label l is then propagated to p's

neighbors.

In the �rst step, l should be added to kNN(p) if two

conditions are ful�lled. First, there should be less than

k labels in kNN(p) already, i.e. icur(p) < k. Secondly,

label l should not belong to kNN(p) yet. If dcur(p) < d,

it obviously does not. Otherwise, i.e when dcur(p) = d,

all labels NNi(p) with idcur(p) � i � icur(p) should be

checked.

In the second step, label l is propagated to p's di-

rect neighbors, i.e. pixels p0 = p + n with n 2 N =

f(0; 1); (0;�1); (1; 0); (�1; 0)g. Practically, only those

neighbors to lead to a larger distance dist(p0; q(l)) need

to be considered. That is those in the same direction as

vector p� q(l).

1This requires that the metric dist(; ) only takes integer values



2.3 The algorithm

Algorithm 2 k-DT algorithm by bucket-sorting propa-

gation.

Input: N prototypes q(l) with labels l; 1 � l � N

Output: the sets kNN(p) = fNNi(p); 1 � i �

kg; 8p 2 I

for all p 2 I do fInitializationg

icur(p) 0

dcur(p) 0

for l = 1 to N do

put (q(l); l) in bucket(0)

d 0

repeat fMain loopg

while bucket(d) is not empty do

get (p; l) from bucket(d)

if icur(p) < k then

if dcur(p) < d then

process(p; l)

else if NNj(p) 6= l 8j; idcur(p) � j � icur(p)

then

process(p; l)

d d+ 1

until all buckets are empty

procedure process(p; l)

icur(p) icur(p) + 1

NNicur(p)(p) l

if dcur(p) 6= d then

idcur(p) icur(p)

dcur(p) d

for all n 2 N do fPropagationg

if dist(p+ n; q(l)) > d then

put (p+ n; l) in bucket(dist(p+ n; q(l)))

Let us note that the implementation of this algorithm

requires a special attention. In particular, the dynamic

data structure used to implement the buckets should al-

locate memory in chunks and not element by element.

On the other hand, the k NNi(p) label maps and the ad-

ditional temporary information can be stored statically.

3 COMPUTATIONAL COMPLEXITY

3.1 Theoretical analysis

In [10], it is shown that using a k-DT to compute a

lookup table is the most eÆcient method to perform the

k-NN classi�cation of a large data set where the number

of possible di�erent patterns is comparable with or

lower than the size of the data set. In this paper, we

show that algorithm 2 has an optimal computational

complexity for a k-DT. To make comparisons easier, we

use War�eld's notations, i.e. we consider the problem

of classifying F patterns in a D dimensional space,

using the k-NN rule.

The output of the algorithm is made of k maps

covering the F patterns. The complexity of any k-DT

algorithm is then of course at least that of its output,

i.e. O(F:k). More realistically, a k-DT algorithm

should at least consider the direct-neighbors of a

pixel to compute its value, which means a O(F:D:k)

complexity in D dimensions.

In our algorithm, procedure process(p; l) is called

exactly F:k times, since it increments NNicur(p)(p) and

since the propagation stops at soon as NNi(p) = k 8p.

In that procedure, the neighbors of p are entered in

the buckets structure. Using 2D-direct neighborhoods,

restricted to those in the same direction as p � q(l),

there are between D and 2D neighbors propagated for

each of the F:k pixels that enter process(p; l). Thus, the

total amount of elements passing through the buckets

is O(F:D:k).

The distance dist(p; q(l) is only computed inside

the process(p; l) procedure, in order to determine

in which bucket (p; l) should go. Thus, the total

amount of distance computations is exactly the same as

the number of times process(p; l) is called, i.e O(F:D:k).

Finally, the number of comparisons performed inside

the main loop for an element (p; l) taken from bucket(d)

is �xed, unless dcur(p) = d. In this case, it is compared

icur(p)� idcur(p) times. This number is in average very

low when prototypes are unique. The total number of

comparisons is then also O(F:D:k). In the worst case,

with k identical prototypes at every prototype location,

the average number of comparisons is close to k. It

raises the number of comparisons to O(F:D:k2). This

could be avoided by replacing prototypes (represented

by a label l) by prototype locations (represented by a

label l and a number m of occurrences in that location).

Nevertheless, for practical applications, this does not

appear to be needed.

In table 1, extended from the original in [10], the

complexity of our algorithm is compared to the brute

force algorithm and those of Friedman [5] and War�eld

[10].

3.2 Experiments

In order to con�rm the theoretical analysis, we ran

3 experiments on synthetical 2D data, varying the

number k of nearest neighbors, the size (n � n) of the

pattern space and the number N of prototypes. In

experiment 1, k varies from 1 to 10, 3 values of n are

considered and N is �xed to 1000. In experiment 2, n

varies from 128 to 1024, 3 values of k are considered and

N = 1000. In experiment 3, N varies from 100 to 1000,

n is �xed to 512 and 3 values of k are considered. In



Distance computations Comparison operations

Brute force F:N O(F:N: log(N))

Friedman O(F:k1=D:N1�1=D) D:N: log(N)+O(F:k1=D:N1�1=D)

War�eld O(2D:F:(D + 1):k) O(2D:F:(D + 1):k: log((D + 1):k)

Our algorithm O(F:D:k) O(F:D:k) to O(F:D:k2)

Table 1: Complexity of k-NN classi�cation algorithms, with F the number of patterns to classify, N the number of

training prototypes, k the number of nearest neighbors and D the dimension of the pattern space.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−6

k − number of neighbors

C
P

U
 ti

m
e 

pe
r 

k.
n2

n=256 
n=512 
n=1024

Figure 1: k-DT algorithmic complexity: dependence

from the number of neighbors k for several image sizes

all experiments, the prototypes are randomly generated.

Theoretically, the computational complexity is

O(F:D:k) = o(n2:2:k), so that the ratio of the CPU

time by k:n2 should be a constant. The 3 experiments

were performed on a Pentium II computer running at

233 MHz. The CPU time per k:n2 for experiment 1 is

illustrated at �gure 1. Figures related to experiments 2

and 3 can be found in [3].

In experiment 1 (Figure 1), the CPU time per k:pixel

is constant for k > 3. For k � 3, the �xed cost of han-

dling the additional information in icur,dcur and idcur
is a non-negligible factor, so that the CPU time per

k:pixel is slightly higher. In experiments 2 and 3, the

image size and number of prototypes have no inuence

at all on the CPU time per k:pixel. In both cases, the

times with k = 1 are signi�cantly higher than the other

two, which is explained by the results of experiment 1.

4 CONCLUSION

We show that it is possible to implement the k-distance

transformation with an optimal complexity, i.e. in a

time proportional to the size of the output. For ap-

plications where a lookup table approach is sensible -

i.e. when the number of possible di�erent patterns is

smaller than or comparable with the amount of data to

classify, this is the fastest implementation of the multi-

dimensional classi�cation using the k-NN rule.

References

[1] G. Borgefors. Distance transformation in arbitrary

dimensions. Computer Vision, Graphics, and Im-

age Processing, 27:321{145, 1984.

[2] T.M. Cover. Estimation by the nearest neighbor

rule. IEEE Transactions on Information Theory,

14:50{55, 1968.

[3] O. Cuisenaire. Distance transformations: fast algo-

rithms and applications to medical image process-

ing. PhD thesis, Universit�e catholique de Louvain,

October 1999.

[4] E. Fix and J.L. Hodges. Discriminatory analy-

sis, non-parametric discrimination. Technical re-

port, USAF School of Aviation Medicine, Randolf

Field, Tex. Project 21-49-004, Rept. 4, Contract

AF41(128)-31, February 1951.

[5] J.H. Friedman, F. Baskett, and L.J. Shustek. An al-

gorithm for �nding nearest neighbors. IEEE Trans-

actions on Computers, 24:1000{1006, 1975.

[6] Q. Jiang and W. Zhang. An improved method for

�nding nearest neighbors. Pattern Recognition Let-

ters, 14:531{535, 1993.

[7] I. Ragnelmam. Neighborhoods for distance trans-

formations using ordered propagation. CVGIP, Im-

age Understanding, 56(3):399{409, 1992.

[8] I. Ragnelmam. The euclidean distance transforma-

tion in arbitrary dimensions. Pattern Recognition

Letters, 14:883{888, 1993.

[9] B.H. Verwer, P.W. Verbeek, and S.T. Dekker. An

eÆcient uniform cost algorithm applied to distance

transforms. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 11(4):425{429, 1989.

[10] S. War�eld. Fast k-NN classi�cation for multi-

channel image data. Pattern Recognition Letters,

17:713{721, 1996.


