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ABSTRACT 
 
We propose a method for the automatic segmentation, recognition and measurement of neuronal fibers in microscopic 
images of nerves. This permits a quantitative analysis of the distribution of the areas of the fibers, while nowadays such 
morphometrical methods are limited by the practical impossibility to process large amounts of fibers in histological routine. 
First, the image is thresholded to provide a coarse classification between myelin (black) and non-myelin (white) pixels. The 
resulting binary image is simplified using connected morphological operators. These operators simplify the zonal graph, 
whose vertices are the connected areas of the binary image. An appropriate set of semantic rules allow us to identify a 
number of white areas as axon candidates, some of which are isolated, some of which are connected. To separate connected 
fibers – candidates sharing the same neighboring black area - we evaluate the thickness of the myelin ring around each 
candidate area through Euclidean distance transformation by propagation with a stopping criterion on the pixels in the 
propagation front. Finally, properties of each detected fibers are computed and false alarms are suppressed. The 
computational cost of the method is evaluated and the robustness of the method is assessed by comparison to the manual 
procedure. We conclude that the method is fast and accurate for our purpose. 
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1. INTRODUCTION 
 
The central nervous system of humans or animals consists of billions of nerve cells called neurons. These neurons are 
connected to each other through axons. Information between neurons is transmitted in the form of action potentials 
propagating along the axons. Neurons within the central system may be connected to sensory organs or to muscle fibers. In 
that case, axons are generally surrounded by a myelin sheet, and are then called neuronal fibers. Bundles of neuronal fibers 
are generally arranged in between parts of the central nervous system and sensory or motor organs. They form the peripheral 
nerves. 
 
Since more than a century ago, morphometrical analysis is a well-know technique, widely and routinely used in studies of 
the peripheral nerves [1]. The fiber size distribution is used to diagnose nerve degeneration in both research [5] and clinical 
[3] applications.     
 
Because there are thousands of fibers in a nerve, manual procedures to count and measure fibers are always highly time 
consuming, and often impractical. Besides, manual procedures always rely on sampling, i.e. on the choice of a reduced set 
of images among those available in a cut of the nerve. As pointed out in [7], there is no simple adequate sampling scheme 
for estimating the myelinated fiber size distribution in peripheral nerves, because of the heterogeneous nature of this 
distribution. Therefore, manual procedures will not only be impractical, but also unreliable.     
 
Cell counting algorithms are usually divided in two parts. First, the image is analyzed with a local operator, which provides 
a classification of the pixels into classes defined by the various tissues one expects to find in the image. For this stage, most 
algorithms rely on thresholding, sometimes preceded by filtering [4,6,12]. Secondly, the image is analyzed at the structural 
level using a variety of tools such as region growing segmentation [4], grouping of edge elements [6], or mathematical 
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morphology [12]. Unfortunately, none of these method can handle multi-part objects such as axons surrounded by a myelin 
sheet.  
 
Lately, many authors have relied on active contour models, or snakes [8,11,13], to handle both local and structural analysis 
in one step. After detecting candidates through a global tool such as the Hough transform, each cell is processed 
individually with an explicit active contour model evolving towards the real contours of the cell. Unfortunately, such 
method may be too computationally complex for the large data sets required by a full histological study.  
 
Furthermore, it is unclear how any of the above models could handle the large size variability encountered in the fibers 
found in peripheral nerves. 
 
In this paper, we propose a new automatic method for the recognition of neuronal fibers, based on the connected 
morphological operators to identify candidate areas, and on the Euclidean distance transformation to separate aggregate 
fibers. In section 2, we describe the data, i.e. how the images were acquired and how axons can be recognized in these 
images. Section 3 presents the algorithm in four steps, binarization, filtering with connected morphological operators, 
separation of adjacent fibers and false alarm detection. In section 4, we present experimental results on a large set of images. 
Those results are discussed in section 5.   
 

2. MATERIAL TO BE PROCESSED 
 
2.1. Image acquisition 
 
A cat sciatic nerve was fixed with a Paraformaldehyde 4%, Dextran 3,5% and PBS solution. A 0.5 cm fragment of the nerve 
was conserved in Karnosky’s fixative for 24 hours, then postfixed in 1% Osmium tetroxyde. 1 µm thick sections were cut 
on a Reichter ultracut microtone (Reichter, Wien, Austria) and stained with toluidine blue. Afterwards, transparences were 
obtained from a Zeiss microscope at high magnification and digitized at a 1850 x 1234 pixels size, with a acquisition system 
Nykon 25-1000. A microscale (0.01 mm, Wild, Switzerland) was also digitized with the same system for scaling. The pixel 
size was found to be 0.1135 µm. Typical images are shown at Figure 1. 
 

     
Figure 1: typical 1850x1234 pixels images under study. Left and center image are from the same nerve and were acquired under similar 

conditions. Right image comes from another nerve. 

 



2.2. Morphological features of axons  
 
After this process, myelin appears darker in the images. This provides us with a way to recognize neuronal fibers as objects 
that share the following features: 
• A clear region surrounded by a dark myelin sheet with a constant width. 
• A rather circular shape. 
• A ration d/D close to 0.6, with d the diameter of the axon, and D the diameter of the whole fiber [2]. 
 
Unfortunately, axons also present a number of highly variable features that may hinder the efficiency of detection 
algorithms. For instance,  
• For mixed nerves containing both sensitive and fiber axons – such as the sciatic nerve - the diameter of fibers can vary 

between 2 and 20µm.  
• Axons can be isolated or densely packed together. 
• Fixation and coloration problems can lead to brighter spots in the myelin rings, multiple rings, etc.   
 
Those problems are illustrated at Figure 2. 
 
  

      
Figure 2 : Zooms on the central image of Figure 1 illustrate irregularities  in fibers to be detected. Left: size can vary from 2 to 20 µm 

(diameters). Center: densely packed axons are connected. Right: bad fixation and coloration leaves bright rings in the myelin.    

 
3. ALGORITHM 

 
The processing is divided in four parts. First, pixels are classified as myelin (black) or non-myelin (white) pixels according 
to their luminance level. Secondly, the resulting binary image is simplified using connected morphological operators 
according to rules derived from the description of axons made in the previous section. At this stage, axon candidates are 
identified as leaves of the zonal graph. Thirdly, adjacent axons are separated using a distance criterion. Finally, strict criteria 
are checked for each axon candidate to avoid false detection.  
 
3.1. Pixel classification 
 
First, pixels of the image are classified as belonging to the myelin sheets or not. After the fixation and coloring process (see 
section 2.1), myelin appears darker than the endoneurium and the inside of the axons. Therefore, classification can be 
obtained by a simple threshold.  
 
The choice of the threshold level can be made from a simple heuristic analysis of the histogram of the gray levels in the 
image. The typical luminance of myelin pixels is evaluated as the luminance for which 15% of pixels are darker. We chose 
the level of the threshold at a fixed constant above that luminance, typically 20 for values coded between 0 and 255. 
 
As pointed out in [10], locally adaptive thresholds are more robust than global ones. In our case, this is particularly needed 
since the image acquisition often leads to inhomogeneous illumination. Therefore, the histogram analysis is performed 



locally on areas including a few axons, typically squares of 25 x 25 µm. In order to keep the computational cost low, this 
analysis is only performed on a few locations and the threshold levels are bi-linearly interpolated in between.  
 
Typical results are shown at Figure 3. These results are quite insensitive to the choice of the two parameters above within 
reasonable bounds. In practice, parameters are manually chosen by the operator on one image per nerve, and applied to the 
set of all images from the same nerve (there are typically 100 images per nerve).   
 

     
Figure 3: from left to right: original image, local threshold levels (with an increased contrast), resulting binary image. 

 
3.2. Connected operators filtering 
 
The resulting binary image has a number of artifacts (see section 2.2) which can best be expressed in terms of regions and 
their properties. Heijmans [14] proposes a formalism, connected morphological operators, which allows us to process the 
image in the same terms.  
 

 
Figure 4 : Zonal graph (top) associated with the binary image (bottom) 

 
As illustrated at Figure 4, the binary image is considered as a partition P(X) of the set X of pixels into black and white 
regions. The zonal graph of the image is the graph that takes the regions of P(X) as vertices and whose edges are represent 



the adjacency of the regions corresponding to the two linked vertices. Furthermore, the representation specifies for each 
vertex whether it belongs to the foreground or the background. A morphological operator ψ  is called connected if the 
resulting partition P(ψ(X)) is coarser than P(X), for any set X, which means no new edges are introduced and connected 
zones are left untouched or changed altogether. In the common case where the connectivity is based on adjacency, 
connected operators can more easily be described and implemented in terms of recoloring and merging of the corresponding 
zonal graph (Figure 5).  
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Figure 5 : the area operator flips zones with an area of less than 10 (see numbers printed on the left figure). It can be seen as a recoloring 

and merging of vertices in the zonal graph.  

 
The best know connected morphological operator is the opening by reconstruction, where objects too small to contain the 
structural element of the original erosion are deleted and objects large enough are left unchanged. More complex criteria can 
of course be defined, either considering each zone separately – it is then called a grain operator – or considering the 
relationships between zones and their neighbors. In what follows, we will use both.     
 
In our case, we use the 8-adjancency for foreground pixels and 4-adjacency for background pixels. This defines a topology 
that is similar to the continuous case, and in particular the zonal graph is then a tree, i.e. a graph without cycles. A number 
of connected operators are then applied successively in order to remove the artifacts described at section 2.2 and to identify 
axon candidates. 
• Noise in the original image may lead to small mislabeled areas in the binary image. Those are removed by applying the 

area operator (Figure 5), that is the operator that switches the color of all zones whose area are smaller than a given 
value. As such, the area operator is not stable. Instead, we chose to restrict its action to the leaves of the zonal tree, i.e. 
the regions with only one neighbor. We apply this “leave area operator” until we reach idempotence. The value for 
which areas are recolored is chosen smaller than the smallest axons, for instance 0.5 µm² or 40 pixels. 

• Axons always have a bright center surrounded by a black ring. Therefore black leaves in the zonal tree cannot represent 
a useful feature and can be removed. We apply the “black leave operator” once.  

• Fixation problems can separate the myelin sheet in two parts, as illustrated at Figure 2c. In the binary image, this 
appears as a white ring surrounded by two black rings. These rings can easily be detected by compu.ting the gravity 
center of all white areas. The centers of rings are not included inside the area itself. Two cases can appear: either the 
ring is open and the ring is a leaf of the zonal graph. It is then merged with its only neighbor. Or the ring is closed and 
has 2 neighbors in the zonal graph. The three vertices of the graph are then merged together as a black area, i.e. the ring 
is recolored in black.  

 
Finally, axon candidates are identified as white leaves in the zonal tree satisfying both a size criterion (1 µm < d < 12 µm) 
and a shape criterion ensuring the compactness and approximate circularity of the center of the axon, typically the ratio 
between square of the perimeter of the zone and its area is kept below a certain level.    
 



3.3. Separation of connected fibers 
 
Unless the axons are very sparse in the image considered, some of them will be connected in the resulting image. In the 
zonal tree, it means that several white leaves that are axon candidates share the same black vertex neighbor. This section 
deals with the division of the corresponding black zone into sub-regions that are either myelin sheets surrounding axon 
candidates or artifacts to be merged with the background. Let us consider the example of the black area in Figure 6 and the 
corresponding zonal graph of Figure 7. Among the 9 leaves of the graph, leaves “x” and “y” have been discarded at the 
previous stage, because they lack circularity to be proper axon candidates. Among the 7 remaining candidates, areas 1 to 6 
are true axons while area 7 is an artifact. In the black area itself, some pixels are indeed myelin while others are artifacts.   
 
Let us first consider a single white area. We evaluate the thickness of the myelin sheet around it as follows: we define Xd the 
set of pixels at distance d of a set X of pixels as   
 

c
ddd SXSXX )()( 1 ⊕∩⊕= +  

 
with Sd a circular structural element of size d and ⊕ the Minkowski addition. Then, we define the typical thickness of the 
myelin sheet around a white area X as the smallest distance d for which there are more white than black pixels in Xd.  
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Figure 6: Axon separation by distance transform. From left to right: original image; result of the connected operators filtering (the black 

area is one connected area that needs to be split into several axons); distance map; axons found overlaid on the image. 
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Figure 7: zonal graphs of the region of interest before and after axon separation. 

 
This can be very efficiently implemented using the approximate Euclidean distance transformation (EDT) by propagation 
defined in [9] or the exact EDT defined in [15]. These algorithms compute distance maps, i.e. images where the value of 
each pixel is the Euclidean distance from this pixel to a set of pixels X, that is the shortest distance from that pixel to a pixel 
of the set X. Initially, the map is set to 0 for pixels of X and to the maximum integer for all others, and the pixels of X are 
stored in a dynamic queue. Then, for each pixel of the queue, we consider that the nearest pixel of X is the also the nearest 
pixel of X for its neighbors. If this leads to a smaller distance value than currently in the map, this value is updated and the 
neighbor is inserted in the queue. In order to reduce computational cost, the pixels in the queue must be treated in the order 
of increasing distance value rather than in a simple FIFO order. This is done by replacing the single queue by a number of 
buckets corresponding to each possible distance value, or rather to the square of each possible value, so that only integers 
are considered. Buckets are then emptied in order of increasing distance values.  
 



With this algorithm, the set Xd of pixels at distance d of X is the set of all pixels present in the buckets after bucket d has 
been processed. The amount of black and white pixels in Xd is dynamically computed for every distance d and the 
propagation process stopped as soon as the termination condition is reached. The pixels that were reached by the 
propagation process – and only those - will be considered as belonging to the myelin sheet around our axon candidate.  
 
Let us now consider all the “axon candidates” areas that are leaves of the same black area in the zonal graph. We apply the 
above procedure to each candidate, in decreasing order of size. In our example of Figure 6, this efficiently separates fibers 
numbered 1 to 5. For area number 6, the propagation process reaches pixels that were previously considered as belonging to 
the myelin sheet around area number 2. These pixels are relabeled if needed. The resulting edge between the two fibers 
corresponds either to the thickness of the smallest fiber, or to the iso-distance between the two white areas. 
 
For area number 7, we realize that it is included inside the previously computed myelin sheet around area 1. This additional 
test, done before each distance propagation,  shows if an area is not a true fiber, but rather an artifact to be discarded.  
 
3.4. False alarm detection 
 
Obviously, the automated detection of axons can lead to two types of errors: misdetection when a true fiber is not found and 
false alarm when an image feature is wrongly considered to be a fiber. False detection is considered a worse problem since 
it is most likely to introduce a bias in the fiber distribution statistics, as most false alarms lead to objects of small size, which 
would bias the computed fiber size distribution. Misdetection is only detrimental if the misdetection rate is size dependant, 
which does not appear to be the case. 
 
In order to minimize the number false alarms, we rely both on a intrinsic confidence measure for each detected fiber and on 
a conflict measure that uses information from the surrounding features. The confidence measure relies mostly on the d/D 
ratio between the diameter d of the inner white region and the diameter D of the complete fiber. This ratio should be 
reasonably close to 0.6.   
 
For densely packed fibers, we observe that false alarms often occur in the space between 3 neighboring axons. These can 
easily be detected by looking at the pixels on their edges. Most of those pixels belong to other axons, while it belongs to the 
the background of the image for true axons. Also, for images including the edge of the nerve, such as Figure 1a, some 
external features can be mistaken for fibers. Those too can easily be detected since they are isolated from the rest of the 
detected fibers. The combination of the edge and isolation criteria give the conflict measure.    
 

4. EXPERIMENTAL RESULTS 
 
In order to assess the accuracy of our method, we have measured the false alarm and misdetection rates on a set of 30 
images including a total of more than 5000 fibers, i.e. on half the images for one fascicle of a nerve. The detected fibers are 
superimposed on the original image as illustrated at Figure 8. For each image, false alarms and missed fibers are counted by 
an expert in the field. The number of detected entities is computed by the program itself, and the true number of fibers is 
computed from those three values.  
 
The results of this test are shown at Table 1. The average false alarm rate is 2.5 % and the misdetection rate is 11%. This is 
perfectly reasonable given the later use of this data, which is to compute and compare the histograms of fiber size 
distribution in various nerves. In any case, it is better than what can be expected from a manual procedure which would rely 
on the sampling of the set of available images.  



   
Figure 8 : Detected fibers overlaid upon the original images of Figure 1. 

 
Image ID # of fibers # found # of fibers 

missed 
# of false 
alarms 

 Image ID # of fibers # found # of fibers 
missed 

# of false 
alarms 

1 75 59 16 0  16 197 172 31 6 
2 143 127 18 2  17 195 175 25 5 
3 223 181 43 1  18 214 196 23 5 
4 128 122 9 3  19 249 232 26 9 
5 171 166 8 3  20 247 224 25 2 
6 185 173 18 6  21 98 95 7 4 
7 186 162 26 2  22 229 202 36 9 
8 194 186 15 7  23 233 202 36 5 
9 135 126 12 3  24 229 206 27 4 
10 Fig. 8a 178 154 30 6  25 200 183 21 4 
11 Fig. 8b 230 210 25 5  26 204 189 23 8 
12 212 181 36 5  27 178 165 17 4 
13 188 162 28 2  28 203 178 29 4 
14 189 172 23 6  29 190 179 17 6 
15 83 69 16 2  30 210 187 25 2 
      TOTAL 5596 5035 691 130 

Table 1: Detection results for the set of 30 test images. 

 
5. DISCUSSION 

 
The method we have developed is fully automatic when the various parameters have been set to appropriate values. These 
values are constant for a given fixation, coloration and acquisition procedure. In practice, the operator selects the 
appropriate parameters for one image and applies them to all images from the same nerve.  
 
The easiest way to improve the results is to introduce some further level of interactivity in the process, especially as a post-
processing of the results. Obviously, the false alarm rate can be brought down to zero with an operator pointing at those 
errors in the overlaid images of Figure 8. The misdetection ratio could also be lowered by pointing to the misdetected fibers 
and forcing the corresponding leaves in the zonal graph to be axon candidates and to be considered first in the fiber 



separation process. Because it only concerns a few fibers per image – typically 2.5% of all fibers - this level of interactivity 
does not represent too much of a burden for the operator.  
 
As pointed out earlier, the computational cost is a critical parameter, especially if one wants to introduce interactivity in the 
process. Besides, in order to be statistically relevant, an histological study requires the processing of hundreds of images 
such as those of Figure 1, which represents several hundreds of Megabytes of data for each nerve in the study, and 
thousands of fibers to be detected. In our method, most of the processing is done on the zonal graph instead of the image. 
Because the zonal graph is orders of magnitude smaller than the image, the corresponding processing time is negligible. The 
most costly stages of the process are then the thresholding, the creation of the zonal graph and the separation of the axons by 
distance transformation. The creation of the graph requires the labeling of the image and the linking of neighboring areas, 
for which a couple of raster scans are needed. The computation of dilations by Euclidean distance transformation as in 
[15,9] requires one or two passes over each pixel in the propagation area. In total, the whole processing has a complexity 
linearly proportional to the number of pixels in the image. On a SUN sparc ultra 1 workstation, the processing time for each 
image is approximately one minute, and the processing time for a complete nerve varies between one and two hours. 
 

6. CONCLUSION 
 
We have elaborated a method to detect neuronal fibers in microscopic images. Because those fibers are defined from two 
objects – a white center surrounded by a black ring – the zonal graph and connected morphological operators defined upon 
it are appropriate tools to isolate good axon candidates. The evaluation of the myelin sheet thickness and the separation of 
aggregate fibers is performed using distance propagation until a criterion on the propagation front is met. The experimental 
results show a good accuracy of the method, at a reasonable computational cost.  
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