
An Expert Assistant for Hardware Systems Specification

Laurent Chaouat, Charles Munk, Alain Vachoux, Daniel Mlynek

Swiss Federal Institute of Technology (EPFL)
EE Dpt., Integrated Systems Center (C3i)

CH-1015 Lausanne, Switzerland
E-MAIL: laurent.chaouat@leg.de.epfl.ch

Abstract: This paper presents the Module Manager as a novel approach to assist the
designer in the specification of hardware systems. This flexible expert system proposes, at a
high level of abstraction, behavioral solutions that match the designer's requirements.
Models are selected from a repository composed of designs previously specified within the
MODES environment. Thereby, the Module Manager allows their reusability and, hence
their genericity. This paper focuses on the architecture and the mechanisms of the Module
Manager.

1 Introduction

The market competitiveness requires from the designer an efficient methodology [1] and a
good technical background to master the increasing number and diversities of designs.
Futhermore, due to the ever growing complexity of hardware systems, the designer is often
confronted with a dilemma of efficiency, rapidity, quality and cost. The solution to a
particular problem is far from being easy and exclusive. In order to reduce some of these
difficulties, sophisticated CAD tools have significantly contributed to produce solutions
according to the customer's needs. Meanwhile, generating correct solutions of good quality
remains difficult. Actually, designers need a flexible tool able to propose a panorama of
solutions for different domains such as microprocessors and DSP architectures,
microsystems, communication protocols, multimedia, and many other systems.

The Module Manager is an expert system used as a prototyping approach to ease the design
process of a hardware system. The main objective of such a tool is to reduce the time and the
modeling expertise needed to generate behavioral models. It aims to assist the designer with
a knowledge base to generate a set of behavioral models corresponding to the requirements
definition. The selected solutions are represented graphically using existing tools (e.g:
speedCHART™ [18], Visual HDL™ from SEE Technologies) or in a more textual manner
(VHDL). This objective is achieved by guiding the designer and allowing him to describe
devices incrementally in a very abstract way, somewhat close to a high level datasheet
description. The expert system can also be used to train the user in hardware modeling by
explaining its reasoning process.

The Module Manager is involved during the specification phase of a hardware system.
According to the requirements, it is able to search in a repository of previously specified

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

models a set of possible solutions that could be suitable for the hardware system the designer
is working on. However, the suggested models may not be directly appropriate in a first
stage. The models should then be adapted manually through graphical or textual editors.

This is a practical approach that gives a quick overview and a better idea of the different
parts of a system to design. It also avoids to reivent the wheel by creating new behavioral
models from scratch. The Module Manager is part of the MODES (MODeling Expert
System) project [4] [5].

Related works

Up to now, most related works have focused on providing either efficient knowledge-based
systems for a specific application domain at a low level of abstraction, or design
management assistance for a particular VLSI task. For example, SISC [15] is a frame-based
system customized to represent knowledge about integrated circuits. Kinden [14] is an
experimental knowledge-based intelligent environment for the VLSI design process. Micon1
[12] is a synthesis tool that aim to automate the design of computer systems.

Our research differs from these efforts by proposing an intelligent and flexible architecture
able to manage the reusability of behavioral models for the specification of new designs at a
high level of abstraction.

About this paper

In the present paper, we first introduce the MODES environment and its implication with the
Module Manager. We also give a general overview of the CSIF format, a textual
representation where the specification structure of different formalisms is preserved. Since
the CSIF format is an important aspect of the Module Manager, we present in section 3 the
mechanisms of the Module Manager that interact with CSIF. In section 4, we discuss the
global concept of the Module Manager. Section 5 focuses on the knowledge representation
of the Module Manager, an important issue to provide a global control over a design.
Finally, we give our conclusion.

2 The Module Manager and the MODES environment.

MODES is an environment for specifying electronic devices using high level behavioral
formalisms. This section presents the utility working with such an environment and the
implication of the Module Manager in MODES through the CSIF format. A short overview
of the CSIF format is given with a simple example.

2.1 The MODES concept.

Due to the complexity of electronic devices such as integrated circuits, application specific
integrated circuits (ASIC) or printed board, the designer is forced to follow a top-down
approach to achieve correctly his (or her) design. An efficient design should take into
account as early as possible the constraints implied by the environment into which the
system will work.

MODES is mainly involved with the system level design [3] where a lot of work is
performed for the entire system at a high level of abstraction. It implies the following tasks:
i) specification, ii) modeling, iii) partitioning and iv) integration of environment constraints.
The elaboration of behavioral models of hardware systems is at the heart of the system level
design. Hardware description Language (HDL) have been developped to describe different
views of a system, usually the behavioral and structural views, among different levels of
abstraction, from the switch level to the algorithmic level [2]. However, modeling hardware
systems with an HDL requires from the designer a good understanding of hardware systems
and a good software programming background, especially to represent the requirements into
an HDL code. Consequently, there is a need to provide a software tool which should perform
the different tasks implied in the system level design.

MODES aims to provide the designer with several editors that capture specifications related
to a hardware system in order to automatically generate behavioral HDL models for
simulation or synthesis (Fig. 1). It also includes mechanisms that give a better interaction
between the designer and the specification environment. MODES is organised around three
sets of functionalities: i) the graphical capture tools for high-level specification formalisms,
ii) the merge of all the specifications into a the Common Specification Intermediate Format
(CSIF) [6] by the model builder and iii) the generation of HDL models for simulation and
synthesis. MODES uses a specific knowledge base which constitutes the repository of all the
informations (i.e: modeling guidelines, verification rules and previously instantiated
designs). The Module Manager is the component that handles this knowledge base. All the
models of the database are stored within the CSIF representation.

Knowledge
Base

Knowledge
Engineer

The Module Manager

Knowledge Base
specification

Specification tools
. State Diagram editor
. Waveforms editor
. Spreadsheet table
. Schematic editor
. Logic Set editor
. Code editor
...

Hardware
Designer

Model
Builder

CSIF format

HDL Generator
Simulation

HDL Generator
Synthesis DocumentationTestbench Output

Fig. 1: The MODES Block Diagram

2.2 A practical solution to merge hardware system specifications: the CSIF format.

Proposing an environment with various formalisms gives the designer the ability to select
the most convenient representation to specify the whole or part of a design. However, the
validation process inside each specific editor is not sufficient to check the consistency of the
global model. It is also not easy to allow future extensions such as adding new editors or
applications that may directly use the specifications to extract global properties, or to
evaluate functional performances or consistency.

The CSIF format aims to go beyond these constraints. In particular, it respects the way the
designer has entered the specifications (i.e: hierarchy, concurrence, partiti onning, formalism
...). In this way, the Module Manager can re-create the CSIF specifications in their initial
formalism through the appropriate capture tool; something we cannot do with VHDL. Since
CSIF is designed according to an object oriented approach, it offers the capability to easily
modify some specific aspects of a model such as bus width or data size and hence, allows the
genericity of a model. CSIF also offers various mechanisms to enhance its manageability.

Let's illustrate with a simple example the utility using such a format. This example taken
from [6] shows how to represent in CSIF the various formalisms that we may use to specify a
system. We specify the programmable interrupt controller INTEL 8259A [19] which is
currently functionning with the 80xx family. This component handles up to eight interrupts
in a single mode and up to 64 interrupts in the cascade mode. The 8259A is organised around
two main functionalities. The bus interface controller (CPUcontrol) managing the
configuration of the device and the communication protocol unit handling exchanges of
information with the serving processor (INTcontrol). Fig. 2 shows how to easily represent
the 8259A into a schematic form.

The communication between both modules, CPUcontrol and INTcontrol connected at the
same level, is possible through the internal signals s1 and s2. Port declarations are used to
connect the corresponding component ports to the upper component interface.

Interrupt
mask logic

db[7:0]

ir[7:0]

int

inta

cs

a0

wr

rd

cas[2:0]

sp_en

8259A Design

INTcontrolCPUcontrol

S1

S2

CPUdb[7:0]

CPUrd

CPUwr

CPUa0

CPUcs

CPUcas[2:0]

CPUsp_en

CPUs1

CPUs2 INTs2

INTs1

INTinta

INTint

INTir[7:0]

read/
write
logic

cascade
buffer/
comparator

control
logic

NetList PIC_8259A EDITOR : SCE
{
--Interface description
 logic rd in;
 logic wr in;
 logic a0 in;
 logic cs in;
 logic cas[3] in;
 logic db[8] inout;
 logic sp_en in;
 logic ir[8] in;
 logic int out;
 logic inta in;

 Signal logic S2;
 Signal logic S1[8];

 CPUcontrol : MODULE EDITOR:STD
 {
 CPUdb => db;
 CPUrd => rd;
 CPUwr => wr;
 CPUcs => cs;
 CPUcas => cas;
 CPUa0 => a0;
 CPUsp_en => sp_en;
 CPUs1 => S1;
 CPUs2 => S2;
 }
 INTcontrol : MODULE EDITOR:WFE
 {
 INTinta => inta;
 INTint => int;
 INTirc => ir;
 INTs1 => S1;
 INTs2 => S2;
 }
}

Fig. 2: The INTEL 8259A netlist description

We present in detail the description of both modules (Fig. 3, Fig. 4). The specification of the
INTcontrol part refers to the BEMCharts formalism [10] following an extended state
machine model. This module is composed of three hierarchies: INTcontrol as the top level
and two lower level hierarchies IntAck and IntEval under control of two states. Each of
these hierarchies is gathered in a Diagram. In the CSIF representation, each state machine is
represented by a Switch statement. CSIF provides a control variable to re-create the control
aspect of an FSM (Finite State Machine). The StateIf type is used to define variables that
control the evolution of an FSM. The StateIf variable ControlST involved in the Switch
statement of the INTcontrol module represents the control aspect of its corresponding state
machine. A state of an FSM (Case statement) may contain four kinds of action: Entry, State
action, exit and one or more transitions. A state action is executed as long as the state is
active. Therefore, when the ControlST variable is evaluated to the "IntAck" value, the
corresponding state is activated and at the same time enables all the lower hierarchy states
(Std_InterruptDetect and Std_InterruptAck which are concurrent elements). Similarly,
changing the state to "IntEval" will disable the diagram Std_DiaIntEval.

IntEvalIntAck

entry

waits

 State Action
 integer i = 0;
if(ir'changing)
{
 while(i<8)
 {
 if(ir[i]'rising)
 irr[i] = '1';
 }
}

 C : new_interrupt

C : pass_int
 int = '1'

INTcontrol

C : ack_cycle == false
 and irr == "00000000")

C : ack_cycle == false
 and irr != "00000000")

Transition bloc

State action bloc

a1) Top level

Sense

entry exit

C: ir'changing == false
 integer i = 0;
 while(i<8)
 {
 if(ir[i]'rising)
 irr[i] = '1';
 }

Std_InterrruptDetect

C: ack_cycle == false

Waits

entry

Cycle 1

Cycle 2

Cycle 3

C: inta'falling and
 Cycle_1 == false

C: inta'falling and
 Cycle_2 == false

exit

C: Cycle_3 == false

Std_InterruptAck.

Exit action
 ack_cycle = true;

Entry action
 ack_cycle = false;

C: inta'falling

Std_DiaIntAck.

a2) Diagram DiaIntAck

MODULE INTcontrol
{
-- Module Interface description
 logic INTinta in;
 logic INTs2 out;
 logic INTs1[8] inout;
 logic INTir[8] in;
 logic int out;
-- Module Global Variables
 boolean pass_in, ack_cycle;
 { -- Module unit
 INTcontrol:(-- Top-Diagram description
 {
 -- Declarations of the INTcontrol FSM
 stateIF ControlST = "Entry";
 integer i_waits;
 boolean new_interrupt;

 SWITCH(ControlST)
 {
 case "Entry" DROPTHROUGH :
 Trans :
 { ControlST = "waits" ;-- Next state}
 case "waits" :
 StateAction : { -- state actions bloc}
 Trans : { -- Next state evaluation }
 case "IntEval" :
 StateAction :
 { -- Access to Std_DiaIntEval diagram
 DIAGRAM :Std_DiaIntEval ;
 }
 Trans : { -- Next state evaluation }
 case "IntAck" :
 EntryAction :
 {
 ack_cycle == true;
 }
 StateAction :
 {
 Std_DiaIntAck:(-- diagram Std_DiaIntAck.
 {
 Std_InterruptAck:(
 -- Std_InterruptAck descr.
)
 }, -- Concurrent diagrams
 {
 Std_InterruptDetect:(
 -- Std_InterruptDetect descr.
)
 }
) -- end diagram Std_DiaIntAck.
 }
 Trans : { -- Next state evaluation }
 }
 }
)
 }
 DIAGRAM Std_DiaIntEval
 {
 -- Std_DiaIntEval external diagram description
 }
}

Fig. 3: Representation of the INTcontrol module.

The description of the CPUcontrol module follows the same construction using two state
machines, but comes from a waveform specification. At the top level, the ReadLevel and
the WriteLevel are two diagrams giving access to a lower level of hierarchy constituted by
the Std_ReadCycle and Std_WriteCycle sub-diagrams. These two diagrams are under
control of the StateIf variables St_Read1 and St_Write1.

db[7:0] ZZZZ ZZZZS1

Std_Readlevel

ZZZZ ZZZZdbS1 [7:0]

Std_Writelevel

cs

rd

wr

Std_ReadCycle Std_WriteCycle

Module : CPUcontrol

Read level Write level

a1) Top level

a2) ReadLevel diagram

a3) WriteLevel diagram

MODULE CPUcontrol
{
-- Module interface description
 logic CPUdb[8] inout;
 logic CPUrd in;
 logic CPUwr in;
 logic CPUcs in;
 logic CPUcas in;
 logic CPUsp_en in;
 logic CPUs1[8] inout;
 logic CPUs2 in;
 { -- Module unit
 CPUcontrol: (-- top-diagram description
 {
 -- Declarations of St_Read1 St_Write1 control variables
 stateFI St_Read1 = "Entry";
 stateIF St_Write1 = "Entry";
 (--State Diagram Std_ReadCycle
 {
 SWITCH(St_Read1)
 {
 case "Entry" DROPTHROUGH :
 Trans :
 {
 IF(CPUrd'falling AND CPUcs == '0'
 AND CPUwr == '1')
 { St_Read1 = "ReadLevel"; }
 }
 case "ReadLevel" :
 StateAction : { DIAGRAM : Std_ReadLevel; }
 Trans : { St_Read1= "Entry"; }
 }
 }, -- Concurency diagram indication

 { --State Diagram Std_WriteCycle
 SWITCH(St_Write1)
 {
 case "Entry" DROPTHROUGH :
 Trans :
 {
 IF(CPUrd'falling AND CPUcs == '0'
 AND CPUwr == '1')
 { St_Write1 = "WriteLevel"; }
 }
 case "WriteLevel" :
 StateAction : { DIAGRAM : Std_WriteLevel ; }
 Trans : { St_Write1= "Entry"; }
 }
)
 }
 }
) -- End top diagram
 DIAGRAM Std_ReadLevel
 { CPUdb = CPUs1; }
 DIAGRAM Std_WriteLevel
 { CPUs1= CPUdb; }
 }
}

Fig. 4: Representation of the CPUcontrol module.

3 The Module Manager and the CSIF format.

The Module Manager interacts in an intelligent way with CSIF by identifying and extracting
the specific pieces of behavior to be reused. The storage of a design follows a predefined
schema which specifies the different types of models and functions with their relations. This
classification includes a hierarchy decomposition, properties of the behaviors, modeling and
verification rules (Fig. 5). A knowledge engineer is responsible for the configuration,
maintenance and upgrade of the expert system.

Each node of the classification contains multiple kinds of information: the relations with
other nodes, different properties characterizing a node, and the available CSIF instance
modules. Properties give some hints to the designer on the different characteristics of the
models saved upon each node of the classification.

repository of previously
instantiated CSIF modules

instantiated values
caracterizing the behaviors

properties attached
to each node

nodes of the classification

Modeling rules,
Verification rules

Fig. 5: General structure of the knowledge base.

Fig. 6 gives a partial example of a kind of classification for processor architectures. The
CSIF specifications are partitioned such that each part refers to a node of the classification.
The reusability of a specific module consists of restoring its graphical form such as
waveforms, state diagrams, spreadsheet table, in the appropriate editor to be easily adapted
for the specification of new systems. This reusability is related to several types of
representation: the whole design, modules, diagrams, netlists and subprograms.

Graphical Ctrls

Calcul Units

Interrupt Ctrls

Serial transmit

Parallel ports

DMA

Functions
Model

Peripherals

ROM

Dynamic RAM

Static RAM

Memories

Controllers

Processors

MicroCtrl

CISC

RISC

DSP

Read cycle

Fig. 6: An Example of classification (partial).

When all the specifications are merged into the CSIF form, a first step is to identify the
behaviors that will be saved in the database. Our solution is to name with a label each of the
important parts of behavior. These labels entered by the designer with the capture tools,
convey the name of the behavior as well as the node of the classification tree where it has to
be connected. In Fig. 7, a simple example to illustrate this mechanism is presented.

The control logic unit of a basic memory (a) has been specified with the waveform editor.
Its CSIF representation is given in (b). This representation differs from the one we presented
in Fig.4. It is essentially based on the predefined function Check_backward(), automatically
generated by the Extended Timing Diagram editor (ETD). In this module, we are interested
to reuse the diagram Read (c). In order to identify and extract this behavior, we use the
specific label Read@Read_cycle where Read_cycle is the name of the node where the
diagram Read has to be classified. The storage process of the corresponding structure in the
database is achieved as soon as the properties of the node Read_cycle are instantiated.

The fact that CSIF is not combined with any graphical structure enhances its flexibility.
However, when reusing a piece of design, the Module Manager should re-create its graphical
aspect. With each reusable behavior, we associate the corresponding graphical
representation which is also saved in the database (Fig. 8).

We also need to restore all the context in which the behavior is involved. To do so, a specific
mechanism will dynamically search in the whole CSIF structure all the definitions of
variables, signals, types, subprograms and diagrams implied in the behavior.

Module Control_logic EDITOR:WFE
{
-- Global declarations (external port and variables)
{

Top: (
-- Definition of Top
DIAGRAM: Control --Explicit diagram call

)
}
--Explicit Diagram Control
DIAGRAM Control
{

-- Read and Write are concurrent elements
(

{
-- Implicit diagram Read to be reused
-- Use of the specific label
Read@Read_cycle: (

if (RD=='1' AND WR=='1')
{

D<="ZZZZZZZZ" after 10ns;
S<="ZZZZZZZZ" after 10ns;

}
else if (RD=='0' AND WR=='1' AND OE=='0')

{
Check_backward(A'changing,RD'falling,50ns,

Time'High,Warning,"Backward check RD->A");
Check_backward(A'changing,RD'rising,50ns,

Time'High,Warning,"forward check RD->A");
Check_backward(RD'falling,RD'rising,50ns,

Time'High,Warning,"forward check RD->RD");
D<=S after 10ns;

}
) -- End of Read_cycle description

},
{

-- Implicit diagram Write
Write: (

-- Definition of the write cycle
)

}
)

}
}

(b)

Y decoder

X decoder

Cell
matrix

Control
logic

WR
_

D0-D7
A0-A9

S0-S7

RD
_

_
OECS

_

(a)

• •
• •••

•
••

••

WR

RD

10 ns

[50ns,•]

[50ns,•]

D XXXXXXXX Data valid = S

10ns

[50ns,•]

A

OE

Read

(c)

Fig. 7: a) A basic RAM architecture,
b) CSIF representation of the Control logic module,

c) Specification of the Read cycle using the waveform editor.

4 The Module Manager architecture.

The Module Manager is a mixed software architecture based on a Database Management
System (DBMS) written in C++ and on an expert module (knowledge base and inference
engine) able to propose different possible scenarios of solutions for a system design. This
second part is implemented within the Nexpert Object™ environment [17]. The Module
Manager is more than a model storage/retrieve system since it is composed of a repository of
all informations required to facilitate the design process of a system. In this context, it also
manages the different versions of a model. Modeling mechanisms offer the necessary
informations to create new behavioral models by reusing previously instantiated designs.

On one hand, the Module Manager provides a simple/save restore capability allowing the
designer to complete his design in multiple sessions. On the other hand, it gives access to the
whole or parts of previously completed designs to allow their extensive reuse.

An appropriate script language called MAGMA (Modeling Aided Guide for MODES
Applications) based on frames is used for the description of the schema of the knowledge
base and the kinds of properties describing each node of the classification.

Graphical
representation

CSIF
Models

Properties

++

Facts

Rules

Strategy Frames

Knowledge base

Inference engine

Pattern matching

Control module

Database browser

Frame based dialog boxes

User interface

Model browser

Model analyzer

SQL-like interface

Designer

Knowledge
Engineer

...

Configuration of
the Module Manager

Tables

DBMS

Application
 1

Application
 2

Application
 n

Fig. 8: The Module Manager architecture.

The Module Manager (Fig. 8) provides mechanisms to handle:

- the definition of the Knowledge Base schema,

- the reusability and generecity of behaviors,

- the extraction of information from the CSIF format following the classification structure,

- the reconstitution of informations relative to the chosen module in the CSIF format,

- the research of solutions.

The control module is the heart of the tool. It communicates with the designer through a
friendly user-interface, the databases and the knowledge base. The knowledge base is
constituted of a repository of all the informations (facts, rules, frames and strategy for rules
evaluation) required to ease the design process of a hardware system. Since the Module
Manager is used as a hardware specification assistant, the inference engine (IE) has to

handle the services useful to help the designer during his modeling task. The reasoning
process is based on classical backward chaining (hypothesis to verify) and forward chaining
(goal to achieve) inference methods. This feature will be moved on in the next section. The
inference engine interprets the designer's inquiries in order to suggest different possible
architectures and to propose a display of behavioral solutions that correspond to the required
features.

All transactions and requests between the end-user and the Module Manager are performed
using dialog boxes to enter the properties or a query language such as SQL. We have also
implemented a graphical browser to navigate through the structure of a model. This browser
aims to give an overview of a model. When a behavior part is selected, the inference engine
automatically invokes the corresponding editor and highlights its corresponding graphical
representation. The model analyzer is used to verify the conformity of the model structure
with the schema proposed by the knowledge base.

Furthermore, we give the possibility to configure the Module Manager (definition of the
classification and implementation of the rules and facts) according to customer's needs. The
customer can be a designer, a lab or even a company. The knowledge engineer and the
customer will work in close collaboration in order to define a knowledge acquisition
strategy. The knowledge engineer will then extract, formalize and encode the knowledge,
using MAGMA for the definition of the classification and Nexpert Object™ for the
definition of interconnected rules. Fig. 9 presents an overview of knowledge engineering.
We have also provided the Module Manager with the ability to manage several independant
databases. Each database is dedicated to the description of a family of models. In this way,
the Module Manager can be used for the specification of many architectures from various
domains.

Knowledge
Engineer

Customers:
- Designer
- Team
- Laboratory
- Company

Formalizing and
encoding the classification

Questions and
Problems

Knowledge and
explanations

using MAGMA and
Nexpert rules

The Module Manager
knowledge base

Fig. 9: Knowledge acquisition.

The Module Manager handles relational flat-file databases where the informations are stored
in a table. The table consists of a set of records with each record having several fields. A
record represents a logical unit of information corresponding to an instantiated model. While
a field represents a property or an attribute of a model.

5 The Knowledge Representation of the Module Manager.

The knowledge representation is based on two description models: a frame structure and a
semantic model. Frames represent nodes of the classification and provide some verification
techniques to check the consistency of the properties and some monitoring control
mechanisms to supervise the storage and retrieve of models. While the semantic model
infers modeling rules and decision processes.

5.1 A Frame-based system as a classification schema.

Frames were originally proposed as a basis for understanding complex behaviors such as
visual perception or natural language. Recently, they have been shown to be a useful mean
for representing VLSI design [13]. The main reason to use the frame concept is to group
together common knowledge about object [9]. A frame is a data structure in which
properties relating to a single object, a concept, or a typical situation are grouped. The body
of a frame is composed of a number of slots used to describe the properties. These properties
are the features of the behaviors belonging to a classification node. Each property is defined
by an identifier, a domain of possible values and an optional default value. In predicate logic
[16], we specify a frame as an entity-class Ec in the form:

Ec(x, P1, ...,Pn) ≡ def ∃x [P1(x) = Val1, P2(x) = Val2, ..., Pn(x)= Valn]

The properties P1 ... Pn are respectivally instantiated by the values Val1 ... Valn. In this way,
we build a list of objects x corresponding to the various behaviors that are available for a
same class.

Assigned to each slot in the Module Manager are various methods dealing with
initialization, inheritance strategy, inference strategy and consistency. In order to monitor
the storage and retrieval of informations in the Module Manager frame-based system, we
associate with each property two optional attached predicates or deamons: If-needed ("Order
of Sources" Nexpert method) and If-added ("If Change" Nexpert method).

What should be done when the value of a slot or facet is required to complete an action but
is not specified? Domain experts can usually list a number of potential sources from which
the value can be obtained or derived. The If-needed predicate is used to enhance the
flexibility of retrieval. For instance, when the value of a property is not directly available,
we might be able to calculate its value on the basis of other kinds of information that we
know about the frame. Before the value of a slot can be read and obtained, the If-needed
predicate must be successfully proven.

The If-added predicate is triggered before the value of a slot is assigned a value or changed.
It is used to screen erroneous values before they are added to slots.

With these two mechanisms, the Module Manager is able to check if the properties relating
to different frames entered by the designer to specify or to characterize his design are
consistent. These verification rules are activated whenever a behavior is stored in the
database or retrieved.

The inheritance and inference methods control the strategy and the triggering of inheritance
and inference. Inheritance methods control the transfer of values declared in an object or a
class to other related objects or classes. The relationship can be parent, child or objects and
classes belonging to a same knowledge island. Every property of an object or class can be
assign an inference method; otherwise, it is inherited from the parent class. On the other
hand, inference methods control the inference behavior of the system, in other words, the
order in which information is processed.

A frame is considered to be complete when all the slots are filled. However, when a model
saved in the database is partially complete and should be achieved in multiple stages, the
verification process is not broadcasted to avoid propagation of errors through the frame
system.

5.2 A semantic net as modeling guidelines.

In order to help the designer with modeling guidelines rules, it turns out to be effective to
use a semantic model [7] [8]. A semantic network or net is a structure for representing
knowledge as a pattern of interconnected nodes and arcs. Nodes will represent classes of
behaviors whereas arcs define relationships between the entities. Also, we have specified
four types of association (Is-a, Can-be, May-have, Has-a) useful to represent all the possible
configurations for modeling a family of designs. Fig. 10 gives a partial example of taxonomy
for modeling microprocessor architectures.

Static

Write cycle

ROM

Memory

Read cycle

Dynamic

RAM

Refresh cycle

ALU

Instructions

Calcul unit

InitializationInterrupt

Processor

Fetch

Integer ALU

Mixed

Float ALU

Read

Cycle

Write

Bus Arbiter

Timing logic

UART

Interrupt Ctrl

DMA

Is-a

Can-be

Has-a

May-have

Is-aIs-a

Is-a
Is-a

Is-aIs-a

May-have

May-have

May-have

May-have
Has-aHas-a

Has-a Has-a Has-a Has-a

Has-a

Can-be

Can-be

Can-be
Can-be

May-have
May-have

Has-a

Has-a

Has-a

Fig. 10: An example of semantic network (partial).

One of the problems in providing a model-theoretic account of semantic network
representations is the fact that there is no uniform notation. We therefore merely illustrate

the way in which one might translate the semantic network we have implemented into a
proposition of first-order predicate calculus [16].

Generalization: This association provides the concept of inheritance, a way to express
constraints that define some class as a more general class of other ones. Features common to
a class of objects can be grouped into a generic frame. These properties are automatically
inherited by frames placed further down the classification hierarchy. We use the Is-a
attribute to show this hierarchy:

Is − a(Ec(x),Eci(yi) i =1,..,n) ≡ def ∀x, yi i =1,..,n ⇒ ∃Ec(x) ∧
i = 1

n
∃Eci(yi)

where Eci(yi) i = 1,..,n⊆ Ec(x)

For example, Is-A (RAM(x), Memory(y)) indicates that entities from class RAM are subset of
class Memory and inherit all the properties and the concept of Memory. To simplify the
notation, we will use: Is-A(RAM, Memory).

Aggregation: Grouping classes into higher level classes is called aggregation. We define the
Has-a statement by the following expression:

Has− a(Ec(x),Eci(yi) i = 1,..,n) ≡ def ∀x Ec(x) ⇒ ∧
i =1

n
∃yi Eci (yi)

For example, the fact that ALU, cycles and instructions are components of the entity-class
microprocessor is represented as: Has-a(Microprocessor, ALU, cycles, set_of_instructions).

Restriction: The restriction is a way to infer a specific choice. It also provides the concept
of inheritance. The Can-be predicate is defined (using the XOR operator ⊕) as follow:

Can− be(Ec(x),Eci(yi) i = 1,.., n) ≡ def ∀x Ec(x) ⇒ ⊕
i = 1

n
∃! yi Eci(yi)

where Ec(x) ⊆ Eci(yi) i = 1,..,n

Thus, we can say that a memory may have several architectures:

Can-be (Memory, static, dynamic, read_only).

The static, dynamic and read_only memory classes then inherit, the concept of the entity-
class memory.

Possibility: The May-have predicate gives the possibility to select a set of entities among
several classes:

May− have(Ec(x),Eci(yi) i =1,..,n) ≡ def ∀x Ec(x) ⇒ ∨
i =1

n
∃yi Eci(yi) ⊕ ∅

For example, the fact that a microcontroller may contain various optional functionalities is
represented by: May-have (Processor, IntCtrl, Serial link, timer, bus arbiter, DMA , UART).

5.3 Reasoning process.

Modeling a device with the Module Manager is carried out in an incremental fashion. The
designer establishes a dialog with the Module Manager in order to get the informations about
the functionalities and components he would like to integrate. In a first stage, the designer
selects the kind of model to be specified. From this starting point, the Inference Engine (IE)
will make its way through the knowledge base by interpreting the meaning of the above four
types of association. From the designer point of view, the Is-a association is transparent. The
IE takes into account all the semantic structure placed under this link. When a Has-a
association is encountered, the designer must characterize each type of behavior belonging
to the nodes connected to this link, while the Can-be association forces the designer to select
only one class of behavior among several. The May-have association offers the possibility to
include optional functionalities. Rules associated with links are used to automatically infer a
decision process in order to select the right way in the semantic tree. The rules are triggered
according to the values of properties belonging to the frame the Module Manager is
processing. The If-Needed deamon is used to deduce the values of some properties. Also, in
order to proceed in the evaluation of rules, the inference engine must have the appropriate
information on which to base its conclusion. If the values of slots incorporated in rule
conditions is unknown, the system must first fetch the values to complete the evaluation by
using the inheritance strategies. However, when the inference engine is not able to calculate
some property values, the Module Manager will open a question window to obtain the
required informations from the designer. When this specification phase is completed, the IE
may proceed upon request to a global consistency verification of the properties. It is also in
charge of searching a set of CSIF behaviors related to the different parts of the required
model.

select = "Processor" R1 instantiate_Processor is confirmed
+=> Assign TRUE Processor_Has_a_ALU
+=> Assign TRUE Processor_Has_a_Interrupt
+=> Execute Evaluate_If_DMA
+=> Execute Instantiate_a_Processor

select = "ALU"

Yes Processor_Has_a_ALU

R2

R3

instantiate_ALU is confirmed
+=> Execute Evaluate_kind_of_ALU

select = "Interrupt"

Yes Processor_Has_a_Interrupt

R4

R5

instantiate_Interrupt is confirmed
+=> Assign TRUE Interrupt_Is_a_Cycle
+=> Execute Instantiate_an_Interrupt_cycle

select = "Cycle"

Yes Interrupt_Is_a_Cycle

R6

R7

instantiate_a_cycle is confirmed
+=> Execute Instantiate_a_cycle

ALU

CycleProcessor

Interrupt

Has-a

Has-a

Is-a

Integer
ALU

Float
ALU

DMA

Can-be
Can-beMay-have

select = "DMA" R8

Yes Processor_May_have_DMA
instantiate_a_DMA is confirmed
+=> Execute Instantiate_a_DMAR9

select = "Float ALU"

Yes ALU_Can_be_Float_ALU
instantiate_a_Float_ALU is confirmed
+=> Execute Instantiate_a_Float_ALU

R10

R11

select = "Integer ALU"

Yes ALU_Can_be_Integer_ALU

instantiate_a_Integer_ALU is confirmed
+=> Execute Instantiate_an_Integer_ALU

R12

R13

Fig. 11: Network of rules (partial).

In Fig. 11, we simply illustrate the way to translate a semantic net describing the relations
between parts of a system into a network of interconnected rules. The select value conveys
the name of the node selected by the designer and represents the starting point of the
network. The Assign statements indicate the inference engine the order of rules execution.
The Execute statements activate procedures to instantiate a model or to determine which
node is next to process. We have implemented two types of evaluate strategies. The
Evaluate_if procedure is applied for a May-have link, while the Evaluate_kind_of
procedure acts as an XOR operator in a Can-be fork. In a first step, both procedures try to
automatically evaluate the next rule to execute, otherwise the inference engine will refer to
the designer.

6 Conclusion.

We have described the Module Manager as an expert system able to efficiently assist the
designer during a design specification phase. It is as well a new approach for managing

designs reusability at the system level. The Module Manager is a flexible tool that can be
used for the specification of various hardware architectures. The advantages using a
common format are partitioning the specifications for their later reuse and providing an open
CAD system to add new editors and other applications. Also, all manipulation mechanisms
revolve around a single representation. However, we still need to provide the Module
Manager with an SQL-like interface. A future step will extend the Module Manager to a
client-server architecture to distribute the database around a network of homogeneous
workstations. A first example of use consists of managing a knowledge base for the
specification of microprocessor architectures.

Aknowledgements

This work is supported by the Microswiss commission of scientific research encouragement
under grant number Nr TR-EL-004.2.

References

[1] J.P. Calvez, Spécification et Conception des Systèmes: une Méthodologie, Editions
MASSON, collection MIM 1990, 630p.

[2] Ron Waxman, "Hardware Design languages for Computer Design and Test", IEEE
Computer, pp. 90 - 97, April 1986.

[3] Franz J. Rammig, "System Level Design", in Fundamentals and Standarts in Hardware
Description Languages, J. Mermet ed., pp. 109 - 151, Kluwer Academic Publishers, 1993.

[4] H.P. Amann, et al., "MODES: An Expert System for the Automatic Generation of
Behavioural Hardware Models", Euro VHDL'91 Proc. pp. 192 - 195, Sept.91.

[5] H.P. Amann, et al., "High-Level Specification of Behavioural Hardware Models with
MODES", ISCAS'94, London, May 94.

[6] Ch. Munk, A Methodology for Designing and Using a Hardware System Specification
Environment, Ph.D. thesis Nr 1309, EPFL, Lausanne, Switzerland 1994.

[7] William A. Woods, "What's in a link: Foundations for Semantic Networks", Readings in
Knowledge Representation pp. 217 - 241, 1985.

[8] R. Yasdi, "Learning Classification Rules from Database in the Context of Knowledge
Acquisition and Representation", IEEE Transactions on Knowledge and data engineering,
Vol. 3, N0 3, pp. 293 - 306, Sept. 91.

[9] Minsky M., "A Framework for Representing Knowledge" in The Psychology of
Computer Vision, Mc Graw Hill N.Y. 1978.

[10] Van den Heuvel, et al., "High-level behavioural modelling using BEmCharts: A
formalism and its application to behavioral specification of digital hardware", ECCTD'93
Proc. pp. 211 - 216.

[11] Anurag P. Gupta, et al.,"Automating the Design of Computer Systems", IEEE
Transactions on CAD of integrated circuits and systems, Vol. 12, N0 4, pp. 473 - 487, April
93.

[12] K.D. Mueller-Glaser, et al.," An Approach to Computer-Aided specification", IEEE
journal of Solid State circuits, vol.25, n0 2, pp. 335 - 345, April 90.

[13] W. Stephen Adolph, et al., "A Frame Based System for representing Knowledge About
VLSI Design: A Proposal". Proc 23rd DAC'86, pp. 671 - 677.

[14] A. Hekmatpour, et al. "Hierarchical Modeling of the VLSI Design Process", IEEE
Expert, pp. 56 - 70, April 91.

[15] N. Giambiasi, et al., "An Adaptative Evolutive Tool for Describing General
Hierarchical Models, Based on Frames and Demons", Proc 22nd DAC'85, Los Alamitos, pp.
460 - 467.

[16] Bergmann, Moor, Nelson, The Logic Book, New York, McGraw-Hill, 1990.

[17] Nexpert Object Reference Manual, Vol. Knowledge Design, Neuron Data, Palo Alto,
California, 1994.

[18] Speed Electronic, "speedCHART User's Manual", Neuchâtel Switzerland, 1994.

[19] Intel® - Peripheral Components, 1993.

