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Abstract. Brain-computer interfaces (BCIs) aim to provide a new channel of communication
by enabling the subject to control an external systems by using purely mental commands. One
method of doing this without invasive surgical procedures is by measuring the electrical activity
of the brain on the scalp through electroencephalography (EEG). A major obstacle to developing
complex EEG-based BCI systems that provide a number of intuitive mental commands is the
high variability of EEG signals. EEG signals from the same subject vary considerably within
a single session and between sessions on the same or different days. To deal with this we are
investigating methods of adapting the classifier while it is being used by the subject. By keeping
the classifier constantly tuned to the EEG signals of the current session we hope to improve the
performance of the classifier and allow the subject to learn to use the BCI more effectively. This
paper discusses preliminary offline and online experiments towards this goal, focusing on the initial
training period when the task that the subject is trying to achieve is known and thus supervised
adaptation methods can be used. In these experiments the subjects were asked to perform three
mental commands (imagination of left and right hand movements, and a language task) and the
EEG signals were classified with a Gaussian classifier.
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1 Introduction

The goal of a Brain-computer interface (BCI) is to provide a channel of communication that does not
rely on the subject’s peripheral muscles and nerves. This would obviously be very useful for paralysed
people or anyone else who cannot use normal methods to communicate with other people and interact
with his or her environment.

The concept of a brain-computer interface (BCI) was first developed by Vidal in the 1970s [13].
However, advances in BCI research were limited until developments in our neurological understanding
of the structure and behaviour of the brain combined with modern advances in signal acquisition
and processing techniques to make the current approach to BCIs possible. There are a number of
different approaches to develop a BCI, which are often difficult to compare as they are trying to achieve
different tasks in different ways. Invasive approaches involve surgically implanting electrodes into the
cortex of animals or humans, and directly measuring the activity of the neurons. This approach
has achieved some good results, but it does carry ethical and practical concerns. Alternatively, non-
invasive BCIs measure brain activity by techniques such as electroencephalogram (EEG) recordings,
which use electrodes on the scalp to detect the electrical activity of the brain. Despite the drawbacks
of EEG, which include noisy signals and poor spatial resolution, this approach has shown promising
results. For a thorough overview of the BCI field see reviews by Millán [4] and Wolpaw et al. [14].

In an EEG-based BCI, the EEG signals are recorded by electrodes on the scalp, with the number
of electrodes varying from one or two electrodes positioned by hand to 128 or more electrodes built
into an electrode cap. Features are then extracted from these EEG signals and sent to the classifier,
which translates these features into the control signals. These control signals can then be used to drive
different applications, such as controlling a robot in a model indoor environment [7]. Communication
applications such as operating a virtual keyboard have also been developed [1, 6, 9, 15].

One major challenge of creating a BCI is the variability in the EEG signals. Their distribution
change both between BCI sessions and within individual sessions, due to a number of factors including
changes in background brain activity, fatigue and concentration levels, and intentional change of
mental strategy by the subject. This means that a classifier trained on past data from subject will
probably not be optimal for following sessions. Even for a subject who has developed a high degree
of control of the EEG there are variations in the EEG signals over a session. In a subject who is first
starting to learn to use the BCI these variations are going to be more pronounced, as the subject has
not yet learned to generate stable EEG signals.

Because of this inherent non-stationarity of EEG signals, we are investigating ways in which we
can improve performance of the classifier by adapting the classifier as it is being used. This means
that we train a classifier offline on previous data, then as we receive EEG signals in the new session
we adapt the classifier with this new data. Through this online classifier adaptation we aim to keep
the classifier constantly tuned to the EEG signals it is receiving in the current session. In performing
online adaptation we are limited in both time and computing resources. The BCI system is classifying
the incoming signals in real time, and we do not want to reduce the rate at which we can sample
data and make decisions by using an adaptation strategy that takes too much time. For computing
resources, since the classifier adaptation is only a part of the online operation of the BCI, which will
probably also include at least signal acquisition and a graphical user interface, we would like to keep
the adaptation algorithm as lightweight as possible. So in most cases with online learning we will use
each data sample only once and in chronological order, since we adapt the classifier based on each
new sample as it is presented, then discard the sample. This is in contrast to stochastic gradient
descent, which also takes samples individually, but is not limited to taking samples in order and can
reuse samples as many times as necessary for convergence. A range of different techniques have been
developed to address the problem of online learning [8].

The need for adaptation in BCIs has been recognised for some time [5, 14], however little research
has been published concerning this area. Online adaptation has been proposed to address two issues:
compensation for the inherent non-stationarity of EEG signals, and allowing mutual adaptation be-
tween the subject and the BCI. In this way there are two different situations where we would like to use
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online learning to adapt the classifier — in initial training, to facilitate mutual adaptation between the
subject and the BCI, and during ongoing use, where we would like to be able to make relatively small
adjustments to the classifier to correct for drifts in the signal. The amount of adaptation necessary,
and the amount of available information on classifier performance, will determine what approach to
take to classifier adaptation.

1.1 Supervised adaptation for subject training

To help the subject learn to use the BCI we would like to be able to give them fast and accurate
feedback on how well the different tasks can be differentiated from each other. If we are limited to
training the classifier offline, we are effectively giving them feedback on how well his or her EEG signals
match the pattern of the previously collected data. This approach has the advantage of encouraging
the subject to learn to produce stable EEG signals that match those already collected. However, it
makes it harder for the subject to refine his or her mental task generation strategies — they need keep
the same strategy for the entirety of a session and remember exactly what they were doing to test it
in the next session. In the best case this is slow training, since the true feedback is always lagged by
a session — in effect we’re giving them feedback on how similar his or her signals are to the previous
sessions, not how easily we can differentiate the signals. In the worst case this training is misleading
— EEG signals always change between sessions, but we are giving them feedback on how well his
or her signals match the signals from the previous session, when reproducing these signals may be
impossible. This is particularly an issue in early training where there is less data on which to build a
model, and that data is likely to be less stable.

During initial training we know what class the subject is trying to generate at all times, so we can
use supervised methods to adapt the classifier at this stage. The same techniques could be applied
during ongoing use as a periodic recalibration step. In either case, the goal is to adapt the classifier
to compensate for the changes in the signal between sessions, and then track the signals as they vary
throughout the session. This variation through the session will probably be more pronounced in the
early sessions, as in the beginning the subject will be trying different mental strategies and generally
becoming accustomed to using the BCI.

1.2 Adaptation in ongoing use

Once the subject has reached a reasonably stable level of performance in the initial training they will
start to use the BCI in a real situation. Even with a well trained subject, however, there is still drift
in the signal between sessions and during usage — particularly in long sessions— that will degrade the
performance of the BCI. In this situation we don’t know the exact intention of the subject, so without
complete information about the performance of the BCI we would need to develop other methods for
online classifier adaptation that are not supervised.

Reinforcement learning [12] is a framework that could be useful for this situation. The problem
that reinforcement learning attempts to address is that of learning when we only receive occasional
feedback on how well or badly we are performing, rather than explicitly being told what the correct
response should have been for each sample. That is, we could use whatever partial information we
can glean about BCI performance during ongoing use to improve the classifier. In particular, we can
gain some partial information by examining the EEG signals or examining how the BCI task is being
performed.

One approach that might be able to give us some information about the performance of the
classifier is the recognition of cognitive error potentials [2]. Error potentials are the reaction in the
subject’s brain to a mistake made by the interface. Thus, if an error potential is detected when
the classifier makes a wrong classification, we know which class the subject was not attempting to
produce, even though we don’t know what was the actual target. If we can reliably recognise these
error potentials we know when the classifier has made a mistake in the recognition of the subject’s
intent, and we can update the classifier based on this information. In this case, we have rapid
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feedback on whether a classification was erroneous, and we can use this negative feedback to update
the classifier. An alternative source of information is contextual information about how well the
interface is being used, for example, evaluating the quality of the robot’s path in a robot navigation
problem, or noting when the subject deletes letters in a keyboard application. In both cases we have
only have occasional feedback on how well or badly the classifier is performing, which is the situation
addressed by reinforcement learning.

2 Online Classifier Adaptation

2.1 Gaussian classifier

We use a Gaussian classifier to separate the signal into the different classes of mental task. Each class
is represented by a number of Gaussian prototypes, typically less than four. That is, we assume that
the class-conditional probability function of class Ci is a superposition of Nj Gaussian prototypes.
We also assume that all classes have equal prior probability. All classes have the same number of
prototypes Np, and for each class each prototype has equal weight 1/Np.

Dropping the constant terms, we can define the posterior probability yc of the class c in terms of
the total activation of the classifier (A) and the activation of class c (ac):

A =

Nc
∑

i=1

Np
∑

j=1

aij (1)

ac =

Np
∑

j=1

acj (2)

yc =
ac

A
(3)

where Nc is the number of classes and aij is the activation level of the jth prototype of class Ci, with
centre µij and diagonal covariance matrix Σi, for a given sample x

aij =
1

∏

k Σik

exp

(

−
1

2

∑

k

(xk − µijk)
2

Σik

)

(4)

In this equation, µijk is the kth element of the vector µij , and Σik is the element (k, k) of the
diagonal matrix Σi. Usually each prototype of each class would have an individual covariance matrix
Σij , but to reduce the number of parameters the model uses a single diagonal covariance matrix
common to all the prototypes of the same class.

The decision of the classifier for input vector x is now the class with the highest probability,
provided that the probability is above a given threshold, otherwise the result is “unknown”.

2.2 Adaptation with stochastic gradient descent

Training of the classifier starts from an initial model that can be either a previously trained classifier
or a new classifier created by estimating the prototype centres with a clustering algorithm. This initial
estimate is then improved by stochastic gradient descent to minimise the mean square error, given by:

E =
1

2

Nc
∑

i=1

(yi − ti)
2

(5)

where t is the target vector in the form 1-of-C; that is, if the second of three classes was the desired
output, the target vector is (0,1,0).
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This optimisation is performed on the mean and covariance of each prototype. We calculate the
derivative of the error with respect to element l of the mean and the covariances respectively, for
prototype p of class c:

∂E(x)

∂µcpl

=
acp

A

[xl − µcpl]

Σcl

[

(yc − tc) −

Nc
∑

i=1

(yi(yi − ti))

]

(6)

∂E(x)

∂Σcpl

=
1

2

acp

A

[xl − µcpl]
2
− Σcpl

(Σcl)2

[

(yc − tc) −

Nc
∑

i=1

(yi(yi − ti))

]

(7)

The gradient descent update equations are now defined as follows, with learning rates for the
centres and covariances α and β respectively:

(µcpl)t+1 = (µcpl)t − α ·
∂E (xt)

∂µcpl

(8)

(Σcpl)t+1 = (Σcpl)t − β ·
∂E (xt)

∂Σcpl

(9)

At each step the updates to the covariance matrices are computed individually then averaged over
the prototypes of each class to give Σc.

When updating the covariance matrices it is important to ensure that they never become negative.
One way to do this is simply to impose a small positive lower limit on (Σcpl)t+1. An alternative
method is to use exponentiated gradient descent to update the covariances [3], which ensures that the
covariances are always positive:

(Σcpl)t+1 = (Σcpl)t · exp

(

−β ·
∂E (xt)

∂Σcpl

)

(10)

2.3 Stochastic Meta Descent

Stochastic Meta Descent (SMD) [10] is an extension of gradient descent that uses adaptive learning
rates to accelerate learning. The SMD algorithm is a non-linear extension of earlier work [11].

The SMD algorithm is applied to each parameter in the classifier separately (the centre and
covariance of each Gaussian prototype), and each parameter maintains and adapts an individual
learning rate. This is in contrast to basic gradient descent, which uses a single learning rate for all
parameters. Thus the parameters µij and Σij of prototype j of class i have learning rates pij and qij

respectively, gradient traces vij and wij respectively, and gradients (δµij)t and (δΣij)t respectively.
For simplicity the indices i and j have been dropped from the following equations.

The equation for adapting the Gaussian prototype centre µ with respect to the error function E
and input xt is:

µt+1 = µt + pt · (δµ)t, where (δµ)t ≡ −
∂E (xt)

∂µ
(11)

This equation is an extension of the gradient descent update rule, since if we replaced the vector
of learning rates pt with a scalar we have the basic gradient descent update rule. We update the
learning rates by exponentiated gradient descent, which allows the learning rates to cover a large
range of positive values:

pt = pt−1 · exp(α (δµ)
t
vt) (12)

In this equation the term α is the meta-learning rate for the centres. The term vt is the gradient
trace, which projects forward into time the effect of a change in learning parameter on the variables,
and is defined as vt ≡ −

∂µt

∂ln(p)
. From this we can derive an iterative update rule:

vt+1 = vt + pt

(

(δµ)t − (Hµ)
t
vt

)

(13)
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where (Hµ)
t

is the Hessian matrix of E with respect to µ.
A similar system of equations is derived for the covariance updates. Using linear gradient descent

would give us a parallel system of equations to those for the centres. If we choose to use exponentiated
gradient descent, we need to derive a new set of equations:

Σt+1 = Σt · exp(qt(δΣ)t), where (δΣ)t ≡ −
∂E (xt)

∂Σ
(14)

The learning rate update for the covariance is then

qt = qt−1 · exp(β (δΣ)t wt) (15)

with β being the meta-learning rate for the covariances. The gradient trace w for the covariance is
derived as:

wt+1 = exp(qt(δΣ)t) · [wt + Σtqt ((δΣ)t − (HΣ)twt)] (16)

where (HΣ)t is the Hessian matrix of E with respect to Σ.
The complicating factor when implementing SMD is the calculation of the Hessians in Equa-

tions (13) and (16). While there is a method of efficiently calculating the product of a Hessian and
a vector, this method is extremely cumbersome for a Gaussian classifier. An alternative to using
the exact Hessian is to use an approximation, such as the Levenberg-Marquardt or outer product
approximation. This approximation is based on the properties of the error function, Equation 5. The
elements of the Hessian with respect to the vector µ, where µm and µn are the mth and nth elements
of µ, can be approximated by:

Hµ(m,n) =
∂2E

∂µm∂µn

≈

∑

k

∂yk

∂µm

∂yk

∂µn

(17)

This approximation is only valid for a well-trained network, since the elements that it ignores
are only negligible on a trained network but not on an untrained network. We further simplify this
approximation by neglecting the off-diagonal elements. A similar approximation is obtained for HΣ.

3 Experimental results

3.1 The IDIAP BCI

The IDIAP BCI is based around a portable BioSemi acquisition system. The electrode caps contain
either 32 or 64 electrodes, arranged in the standard 10/20 International System.

The IDIAP BCI uses EEG rhythm modulation as a control signal. BCI experiments at IDIAP
are generally performed in an asynchronous or self-paced paradigm — that is, the subject is not tied
to a cue from the system but performs the tasks at his or her own pace, and the command signals
are extracted from spontaneous brain activity. The subject is trained to perform three mental tasks
while being given feedback on his or her performance. The system analyses the EEG signals to distin-
guish between the tasks, which may include imagination of left and right hand movement, arithmetic
operations, rotation of geometrical objects, and language tasks. The most common combination is
imagination of left and right hand movement and a language task, specifically vocabulary search.
Classification is performed by calculating the frequency components on sliding 1/2-second windows
of a selection of electrodes (in between 8 and 12) over a relevant feature band (typically between 8Hz
and 30Hz, with a resolution of 2 Hz), and passing these frequency features to a statistical classifier.
The classifier models the different classes as a number of Gaussians in this high-dimensional feature
space, and the output of the classifier is the posterior probability of each class. This system has been
used in the past to operate simple computer games, a virtual keyboard, and navigate a robot through
a model house-like environment [6, 7].
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3.2 Offline analysis

We tested these algorithms on a three class problem (imagination of left and right hand movements,
and a third task such as word association). Each task was performed for one second before switching to
a different task. Data is from three subjects, each with four sessions of almost four minutes collected
with a break of ten minutes between sessions. No feedback on classifier performance was given to
the subjects during data collection. Samples are passed to the classifier 16 times per second and the
output from eight samples is averaged to give a decision every 0.5 seconds.

In this experiment we measured how well the classifier tracked the changing signals by applying
online learning through all the sessions and measuring the classification performance. The classifier
was first trained offline on the data from the first session. The resulting classifier was then applied
to sessions two through four, with the final adapted classifier from the end of the previous session
used as the initial classifier for the next session. We tested basic gradient descent and the SMD
algorithm against the static classifier with no adaptation. Testing basic gradient descent over a range
of learning parameters shows that the optimal parameters vary between data sets. From this we chose
a good learning parameter for gradient descent, which also serves as the initialisation value for SMD.
In these experiments both gradient descent and SMD outperform the static classifier. Figure 1 shows
the performance over time of the different classifiers for the three sessions of the second subject. The
classification rates of the adaptive algorithms are better than the static classifier with SMD better
than gradient descent. A t-test shows that these differences are statistically significant. Similar trends
are observed with the other subjects.

In addition to applying the online learning algorithms throughout the session, we wanted to see
whether there is a performance gain in applying the online learning algorithms for the first half of the
session only, then applying the resultant classifier to the second half of the session with no further
learning. This is similar to a recalibration scenario, where we want to use supervised learning for only
part of the session. Results from this experiment show that there is a small but statistically significant
improvement when using the classifier trained on the first half of the data over the classifier with no
further training, but the t-test shows no statistically significant difference between gradient descent
and SMD.

Table 1 shows the classification results for the three subjects averaged over their three sessions,
and the overall average. The results are given as the percentage improvement of the online learning
algorithms over the static classifier. There are three parts: the improvement in the first half of the
data, the improvement in the second half of the data when the online learning is continued, and the
improvement on the second half of the data when the classifier is only trained on the first half of
the data. Although there is variation between the subjects, the figures hold to the general trend as
discussed above.

3.3 Initial online experiments

As an initial experiment to test feasibility of supervised online adaptation in the IDIAP BCI, we have
implemented basic gradient descent to adapt the classifier during initial training. The experimental
setup that we tested the system on was a computer simulation of driving a wheelchair through a
corridor while avoiding obstacles. The subject was guided by an operator, who told the subject which
task to attempt to produce as the wheelchair moved through the corridor. In this way the data
was labelled with the target classes and the subject was learning to generate the BCI tasks while
becoming used to the simulator interface. This means that the data sets differ from the previous sets
analysed in that they are not necessarily balanced between classes, and the length of time each class
is generated for varies. The more complicated, “real-world” setup also makes it more difficult for the
subject to concentrate on the mental tasks, as he or she can be distracted by watching the wheelchair
and anticipating its movements.

One performance measure used in this task was the time the subject took to steer the wheelchair
to the end of the corridor and back again. Times over a number of days are shown in Figure 2.



8 IDIAP–RR 06-16

We want to compare the online classification results against the offline performance of static
classifiers. For these experiments we take an initial classifier, adapt it online throughout the session,
and produce the final classifier (which then becomes the initial classifier for the next session). We
measure the classification rates of the initial classifier and the final classifier on this session, and
compare with the online classification rate. Tables 2 and 3 show the online classification rates of the
classifier, compared to the static initial and final adapted classifiers, in terms of bit rate1 and correct-
error-rejection rates, respectively. The online classification rates are much higher than the static
classifiers. Also, in each session the online adaptation produces a final classifier that outperforms the
initial classifier. A t-test on the bit rates shows that differences are statistically significant.

Figures 3 and 4 show the probabilities of each sample for Session #4, where Figure 3 is the online
classification rate and Figure 4 is the offline performance of the final classifier. The online classification
rates track the EEG signals well, with no clear bias between classes. The final classifier can be seen
to perform well on the last part of the session but less well on the early part of the session. This is
consistent with drift in the signal, which means that the final classifier is tuned to the later part of
the session but does not classify well on the different signals from the early part of the session.

In all the online adaptation seems to be providing consistent feedback to the subject, allowing for
predictable responses from the classifier. This can be observed in the consistent online classification
rates and the stable time taken to complete the task.

4 Discussion

Work until now has focused on modifying our original Gaussian classifier for online adaptation during
the user training phase, where the true target class is always known and we can use a supervised
learning method. In particular we have derived a SMD implementation for our Gaussian classifier,
which involved finding suitable approximations to make online use feasible. In both online and offline
experiments, the algorithms were performed in an online paradigm — adapting on each sample only
once, in the order the samples were generated.

Although the experimental results reported here show the benefits of online adaptation, some
questions need still to be addressed. The first of them is to validate the online findings during actual
mental control of a robot with more subjects. We will also explore the online performance of SMD
during those experiments to see whether this advanced algorithm is better at tracking the drifting
signals while keeping a good model of the data. A second key question is a better understanding
of EEG variation. We believe online classifier adaptation would improve the performance of a BCI
because of the high variability in EEG signals, but no systematic study has been done to formally
analyse the extent of signal variation through different stages in a subject’s usage of a BCI. Such
a study would be helpful in justifying the use of online adaptation and determining whether it is
necessary in all cases. Finally, the main research issue is adaptation throughout ongoing use, where
we don’t have explicit information about which is the user’s intent. As discussed above, reinforcement
learning is an appropriate framework for this situation. In particular, we can use occasional feedback
on the classifier performance coming from the recognition of cognitive error potentials or from how
well the brain controlled device is operating.
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Figure 2:
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Figure 3:
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Figure 4:
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Table 1:
First half Second half
Adapting Adapting Not adapting

Subject 1 GD 3.5 7.9 3.9
SMD 4.9 9.3 5.9

Subject 2 GD 6.1 7.8 3.1
SMD 9.3 18.6 5.2

Subject 3 GD 18.3 18.7 7.1
SMD 28.0 33.0 2.5

Average GD 9.3 11.5 4.7
SMD 14.0 20.3 4.5
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Table 2:
Session # Initial classifier Online classification Final classifier

#1 0.29 1.44 0.65
#2 0.20 1.41 0.67
#3 0.14 1.34 0.71
#4 0.18 1.34 0.67

Average 0.20 ± 0.06 1.38 ± 0.05 0.67 ± 0.02
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Table 3:
Session # Initial classifier Online classification Final classifier

Cor - Err - Rej Cor - Err - Rej Cor - Err - Rej
#1 20.1 - 37.5 - 42.3 64.3 - 11.7 - 24.0 40.3 - 26.4 - 33.3
#2 26.9 - 45.0 - 28.1 63.9 - 12.2 - 23.8 43.3 - 26.9 - 29.8
#3 23.6 - 48.7 - 27.7 62.2 - 13.4 - 24.4 41.0 - 24.2 - 34.8
#4 23.9 - 46.3 - 29.8 61.1 - 12.8 - 26.1 41.3 - 26.1 - 32.6

Av. Cor 23.6 ± 3.0 62.9 ± 1.5 41.4 ± 1.3

Av. Err 44.4 ± 5.3 12.5 ± 0.7 25.9 ± 1.2

Av. Rej 32.0 ± 8.0 24.6 ± 1.0 32.6 ± 2.1
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