
Using an Ontologcial A-priori Score to Infer User’s
Preferences

Vincent Schickel and Boi Faltings1

Abstract. With the ever growing importance of the web in our life,
people have become overwhelmed by information and are unable to
find the object that matches their need. To help the users in this pro-
cess, recommendation systems filter unnecessary objects and only
show the most suitable ones. However, due to an incomplete prefer-
ence model, today’s systems may fail to recommend the items that
best match the user’s preferences. We propose a novel technique for
filling in missing elements of a user’s preference model using the in-
formation captured in an ontology. Furthermore, we show through
experiments on the MovieLens data set that our model achieves a
high prediction accuracy and personalization level even when little
about the user’s preferences is known.

1 Introduction

Recommendation systems (RS) have been devised as tools to help
people find items on the internet. Two kinds of techniques are widely
used in e-commerce sites today.

The first technique is item-to-item collaborative filtering (CF,
[13]), which recommends products to users based on the experience
of like-minded groups of users. CF assumes that similar users like
similar objects, which means that its ability to recommend items
depends on the capability to successfully identify the set of simi-
lar users, known as the target user’s neighbourhood. Furthermore, it
does not build an explicit model of the user’s preferences. Instead,
preferences remain implicit in the ratings that the user gives to some
subset of products. In practice, CF is the most popular recommen-
dation technique, and this is due to three main reasons. First, studies
have shown it to have satisfactory performance when sufficient data
is available. Second, it can compare items without modeling them
and thus can theoretically deal with any kind of item, as long as they
have been rated by other people. Finally, the cognitive requirement
on the user is very low. However, it has been argued by many au-
thors that CF suffers from profound handicaps such as the cold-start,
first-rater, and scalability problems [6], [10], and [14].

The other widely used technique is preference-based recommen-
dation. Here, a user is asked to express explicit preferences for certain
attributes of the product. If preferences are accurately stated, multi-
attribute decision theory (MAUT, [4]) provides methods to find the
preferred product even when the set of alternatives is extremely large
and/or volatile. This technique does not suffer from cold start, latency
or scalability problems, since recommendations are based only on
the individual user’s data. However, the big drawback of preference-
based methods is that the user needs to express a potentially quite
complex preference model. This may require a large number of in-

1 Swiss Federal Institute of Technology - EPFL, Switzerland, email:
{vincent.schickel-zuber,boi.faltings}@epfl.ch

teractions, and places a higher cognitive load on the user since he has
to reason about the attributes that model the product.

At the same time, the use and benefit of ontologies in recommen-
dation systems has been widely accepted. [1] have used a simple on-
tology called Concept Tree to build a personalized search engine that
increased classification accuracy by more than 60%. [10] have re-
duced data sparsity in CF by combining semantic and item similar-
ities together. [7] have used ontological relationships between top-
ics of interest to infer other topics of interest, which might not have
been browsed explicitly. More recently, it has been shown that topic
diversity in recommendation via the use of an ontology can increase
recommendation usefulness [16].

In this paper, we define a novel similarity measure called Ontology
Structure based Similarity (OSS). It is based on assigning concepts
in the ontology an a-priori score (APS), and computing the relations
between the scores assigned to different concepts. APS is used to de-
termine propagation parameters for scores between concepts. We use
this in a novel preference based technique that solves the recommen-
dation problem even when very little data about the user is known.
As in collaborative filtering, user’s preferences are expressed implic-
itly via the ratings of some items. The novelty of our work is to infer
missing preferences using the OSS approach, thus avoiding the need
for complex preference elicitation.

2 DEFINITIONS & ASSUMPTIONS

In this work, an ontology λ is defined as a directed acyclic graph
(DAG) where a node represents a primitive concept, and an edge
models the binary specialization relation (isa) between two concepts.
Thus, the ontology establishes a hierarchy where each concept can
have a set of sub-concepts known as the descendants, but not all in-
stances of a concept must belong to a sub-concept.This work assumes
the existence of an ontology, where all the items of our catalog are
instances of a concept. Our model allows an item to be instance of
any concept in the ontology, not just a leaf concept.

An example of a popular ontology is WordNet [8], where concepts
represent groups of similar words (synonyms), and edges are hyper-
nyms (is-subset-of) and hyponyms (part-of) relations. E-commerce
sites like Amazon.com also use simple taxonomies to classify their
items.

In the recommender system context, a concept represents a group
of items with the same features. Consequently, items in the differ-
ent sub-concepts are distinguished by differences in certain features.
However, these are usually not made explicit in the ontology. Con-
cretely, we see a feature as a restriction on a property or a combi-
nation of properties that differentiates a concept from its parent. For
example, the subclasses of red and white wines are distinguished by a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147916853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

combination of features which include color and also certain aspects
of taste.

The recommendation problem can be seen as the problem of pre-
dicting a score S assigned to an item. For example, the score could be
a preference score or popularity rating. We assume that the score is a
positive real-valued function that satisfies the following assumptions:
• A1: the score depends on features of the item.
• A2: each feature contributes independently to the score S.
• A3: unknown and disliked features make no contribution to S.

The first assumption is very intuitive and reflects the fact that an
item is instance of a concept, which is modeled by a set of features.
Following this, all instances of the same concept will have the same
score, and this score will only be influenced by the features mak-
ing up the concept. Assumption A1 is also present in multi-attribute
decision theory [4], where the utility of an item depends on the pref-
erence value of the attributes making that item. Thus, all instances
of the same concept will have the same score as they share the same
features.

The second assumption eliminates the inter-dependence between
the features and allows the score to be modeled as the sum of the
scores assigned to each feature. In MAUT, an even stronger assump-
tion (the mutually preferentially independence) is used to build an
additive value function of an item. In parallel, [11] extended the idea
of additive value function to a decision strategy called the weighted
additive strategy (WADD).

The third assumption may appear counterintuitive, but it reflects
the observation that users are risk averse. For example, if the score
models the price that a user is willing to pay for an item, it is rational
for users to adopt this pessimistic view, since one would not normally
be willing to pay for features that have not been explicitly provided or
which are disliked. Thus, the score attached to a concept can be seen
as a lower bound on the score that items belonging to that concept
might have.

More generally, some analogy can be made between the score
function and the lower prevision [15]. The lower prevision of a gam-
ble X is a real number, which is interpreted as the highest price a user
is willing to pay for X . In fact, the score of a concept c corresponds
to a strict lower bound of the prevision for selecting any instance of
c. Preferences can be reasonably modeled as scores, but scores could
also model other properties.

We show in experiments that such an assumption about scores
yields the best known model of concept similarity.

3 Computing an A-Priori Score

A major ingredient of OSS is to compute the a-priori score of a con-
cept c, APS(c), based on its location in the ontology. The APS mod-
els the expected score of each concept for an average user, but with-
out using any user information. It is not used as a prediction of actual
scores, but only to estimate constants (α and β) that determine how
actual user’s scores propagate through the ontology.

As we have no information about the user, we assume that all the
items have an a-priori score that is uniformly distributed between 0
and 1. This is often a reasonable assumption as each concept exists
to satisfy the desire of a similar group of people. The score repre-
sents how much an item is liked, where 0 means maximally disliking
the concept and, conversely, 1 means maximally liking it. Following
assumption A3, the score of a concept is the greatest lower bound of
the scores of its items. The probability that the score of a concept c is
superior to the threshold x, (S(c) > x), is equal to 1− x. However,

this probability ignores the fact that concepts can have descendants.
Our model is by definition pessimistic (A3), which means that the
score should be a lower bound of the score of items belonging to this
concept, and the score of its descendants. Therefore, the probability
that the score of any concept c is superior to a threshold x is equal to
(1−x)n+1, where n is the number of descendants of c. Note that we
count all descendants, not just the leaves, to account for the fact that
each concept has instances that do not belong to any sub-concept.

The probability distribution of the score for a concept c is
P (S(c) ≤ x) = 1−(1−x)n+1, with the following density function:

fc(x) =
d

dx

(
1− (1− x)n+1

)
= (n + 1) . (1− x)n (1)

To compute the expected score of the concept c, E(c), equation
(1) is integrated as shown in equation 2.

E(c) =

∫ 1

0

xfc(x)dx = (n + 1)

∫ 1

0

x(1− x)ndx =
1

n + 2
(2)

The expected score tells us that the expected score of a concept
c will be inversely proportional to the number of its descendants +
2. Following equation (2), the a-priori score of a concept c with nc

descendants is defined as:

APS(c) =
1

nc + 2
(3)

The a-priori score defined in equation (3) implies that the leaves
of the ontology will have an APS equal to 1/2, which is equal to the
mean of a uniform distribution between 0 and 1. Conversely, the low-
est values will be found on the root. This means that when we travel
up the ontology, the concept becomes more generalized, and there-
fore the APS decreases. From an economic point of view, it means
that a user is willing to pay less for a general concepts as there is
more chance that it subsumes an items that the user dislikes. Another
important aspect of this APS is the fact that the difference in score
between concepts decreases when we travel up the ontology, due to
the increasing number of descendants.

To illustrate the computation of the a-priori score, consider the
simple ontology λ shown in Figure 1(a). First, the number of descen-
dants of each concept nc is computed. Then, we apply equation (3)
to compute the a-priori score of each concept in λ.

(a)

Concepts nc APS

y 0 1/2

u 0 1/2

x 0 1/2

s 1 1/3

t 2 1/4

z 5 1/7

root 5+d 1/(7+d)

(b)

t

s

u

y

z

root

x

d features

Figure 1. (a) a simple ontology λ and its corresponding a-priori score (b)

An ontology is usually designed in such a way that its topology
and structure reflects the information contained within and between
the concepts. For example, [12] also uses the topology to compute
the information content of a concept, which is then used to compute
the similarity between two concepts. He extended the definition of
the entropy and defined the information carried by a concept c as
−log(P (c)), where P (c) is the probability that the concept c or one
of its descendants occur. The APS share some similarities with the
information content approach. First, the difference in both the score
and information content decreases when we travel up the ontology.
Second, Resnik also uses the number of descendants to compute the

probability of occurring of a concept. However, some profound dif-
ferences exist. The APS is a bottom-up approach that considers the
differences between the concepts, while Resnik’s is a top-down ap-
proach and considers the similarities. Second, we use the 1/x func-
tion to compute our score, while Resnik uses the logarithm to base 2.
In the validation section, we show that the APS brings better results
than the information content approach.

4 Propagating Scores in an Ontology
The a-priori score represents an average without considering a par-
ticular user. When user’s scores for certain concepts are known more
precisely, we can derive a personalized score for the other concepts
by propagation.

Re-consider our ontology λ contained in Figure 1(a), and imag-
ine a situation where only S(x) is known to be 3/4. To propagate the
score from concept x to y, a link between these two concepts must be
found. Thus, the first task in the propagation is to identify the chain
that contains both concepts. To minimize the amount of propagation,
we construct the chain through a lowest common ancestor. In a tree
graph, a lowest common ancestor is defined as the closest upward
reachable node shared by x and y [5]. However, in an ontology mod-
eled as a directed acyclic graph, there can be any number of lowest
common ancestors. If this situation arises, it is the ancestor with the
maximum a-priori score that is selected as lowest common ancestor.

4.1 Upward Inference
This situation arises when there is a path going from concept x to
its kth parent z (x ⊂k z). From the tree construction, both concepts
have d features in common but the concept x has an extra k features
that differentiate it from its ancestor. By definition of the model, we
know that the score of a concept depends on the features defining
that concept (A1). Informally, it means that the score of z can be es-
timated knowing the score of x, S(z|x), by looking at the ratio of
features they have in common. Formally, S(z|x) is defined as fol-
lows.

S(z|x) = αS(x) (4)

where α is the coefficient of generalization that contains the ratio
of features in common which are liked according to their respective
distribution. Obviously, α is unknown in our case. We estimate α
by using the a-priori score captured by the concepts in the ontology.
Thus, the coefficient of generalization can be estimated as the ratio
of a-priori scores:

α = APS(z)/APS(x) (5)

4.2 Downward Inference
Inversely, we have the case when y is the lthdescendant of z (y ⊂l

z). From the previous result, it is very tempting to assume that
S(y|z) = βS(z), where β is a coefficient of specialization that con-
tains the ratio of features in common. However, this reasoning is not
compatible with our second assumption – features contribute to the
score independently. To understand this assumption, imagine that the
score of the object is equal to the maximum price a user is willing to
pay. Consider two concepts a and b, where a has one more feature
than b. Now consider two users A and B such that A values b more
than B does. This does not automatically mean that A will also at-
tach a higher value to the extra feature that distinguishes a from b.
Notice also that when we were traveling upwards, we were consider-
ing super concepts, which means that we were removing known fea-
tures whose contribution to the score is likely to be proportional to 1.
However, when traveling downwards, we are adding new (unknown)
features to the concept. Therefore, we need to consider the score of

each new feature independently. Formally, it means that S(y|z) must
be defined as follows.

S(y|z) = S(z) + β (6)

where β is the coefficient of specialization that contains the score
of the features contained in concept y but not in z. Again, β can be
estimated using the a-priori score:

β = APS(y)−APS(z) (7)

4.3 Upward & Downward Inference
Finally, we consider the case when there is no direct path between
concepts x and y. Figure 1(a) reveals that in order to transfer the
preference, we need to carry it up to the lowest common ancestor z,
and then down to the concept y. Furthermore, and because the chain
between concept x and y is not a path, we assume independence
between x and y (the same reasoning is done on Bayesian Networks
if no hard information is known about z). Thus, and using the result
contained in equations (4) and (6), the score can be decomposed as
follows. S(y|x) = αS(x) + β (8)

4.4 Example of the Score Propagation on λ

Following the example of Figure 1(a), we now compute the score of
each concept using the method described in the previous sub-section.

Table 1. Score of the concepts in the ontology λ of Figure 1(a)

Concept Propagation Score
x - 3

4

s ↗ 3
4
× (

1/3
1/2

) = 1
2

z ↗ 3
4
× (

1/7
1/2

) = 3
14

root ↗ 3
4
× (

1/(7+d)
1/2

) = 3
2∗(7+d)

t ↗↘ 3
4
× (

1/7
1/2

) + (1
4
− 1

7
) = 9

28

u ↗↘ 3
4
× (

1/7
1/2

) + (1
2
− 1

7
) = 4

7

y ↗↘ 3
4
× (

1/7
1/2

) + (1
2
− 1

7
) = 4

7

Table 1 clearly shows that it is the relations between APSs that
is used to determine the parameters for propagation scores of un-
known concepts, while the initial S(x) determines the magnitude of
the score of the other concepts. Informally, it means that the amount
of score being transferred depends on the topology of the ontology,
while the magnitude of the resulting score depends on the user’s ini-
tial score S(x).

5 Validation of the Model
To validate the approach, we used it to derive a similarity metric for
the WordNet ontology.

There exist two main approaches for estimating similarity between
concepts in a hierarchical ontology: the edge based approach and the
node based approach. The edge based approach is the traditional,
most intuitive, and simplest similarity measure. It computes the dis-
tance between two concepts based on the number of edges found
on the path between them. One of the biggest problems of the edge
based approach is that it considers the distance uniform on all edges,
which is rarely the case in reality. [12] proposed a new approach
based on the information content of a concept. This node-based ap-
proach measures the similarity based on the amount of information
shared. More recently, [3] proposed a hybrid approach that inherits
the edge based approach of the edge counting scheme, which is then
enhanced by the information count calculation.

We propose a novel approach to compute the similarity between
concepts that is based on the following idea: the more features are

propagated from one concept to another, the more similar these con-
cepts will be. Following this, we define the propagation of score from
a concept x to y, θ(x, y), as the amount of score being propagated
from x to y. θ(x, y) is computed as follows. First, the score of a con-
cept is transformed in such a way that θ(x, y) = 1 iff x = y; this
is achieved by setting the score S(x) to 1. Second, we make sure
that θ(x, y) is monotonically decreasing as the distance (in term of
features) between concepts x and y increases. As a result, θ(x, y) is
equal to α when traveling upwards, and inversely 1/(1 + β) when
traveling downwards.

However, a distance function between two concepts x and y,
D(x, y), should be monotonically increasing when the number of
edges separating x and y increases, and equal to 0 iff x = y [9].
There exist many functions that satisfy the properties stated above,
but our experiments have shown that it is −log(θ(x, y)) that yields
the best results. Using the same reasoning as previously, we define
the distance between two concepts x and y as follows.

D(x, y) = − log(α) + log(1 + β) (9)

When Resnik introduced the node-based approach, he also estab-
lished an evaluation procedure that has become widely used ever
since. He evaluated his similarity metric by computing the similar-
ity of word pairs using the WordNet ontology, and then looked at
how well it correlated with human ratings of the same pairs. These
word pairs were selected in such a way that they covered high, inter-
mediate, and low levels of similarity.

WordNet is the most widely used and one of the biggest ontologies
in the world (∼80000 concepts), which makes experiments credible.
Thus, we reproduced Resnik’s experiment with the WordNet ontol-
ogy version 2.0 on the original 30 word pairs. In addition, we com-
puted the APS of each concept using equation (3), and then used
equation (9) to build the Ontology Structure based Similarity (OSS).
The correlations between various metrics and human ratings are dis-
played in table 2.

Table 2. Correlation with various similarity metrics

EdgeBased Resnik Jiang OSS
Correlation 0.603 0.793 0.859 0.893

Our approach using the a-priori score achieves nearly 90% corre-
lation with real user ratings, and clearly demonstrates significant ben-
efit over earlier approaches (t-obs = 1.65 and p-value < 0.05). These
results validate the inferring model and the a-priori score which were
used to build our similarity metric.

As expected, the hybrid approach performed better than both ex-
isting techniques, but the improvement over the information based
approach was not statistically significant (t-obs = 1.46 and p-value
' 0.08). The edge based approach is the worst performing metric
as it supposes that links in the ontology represent uniform distances,
which is obviously not true in WordNet.

Finally, we tried different combinations of the coefficients α and
β in order to test the upward and downward propagation. The exper-
iment has shown that the best correlation is obtained when using α
going up and β going down.

6 Application to Recommendation Systems
The recommendation problem is the problem of finding the items that
best match the user’s preferences. In this scenario, the score S can be
seen as the user’s preference value.

As in collaborative filtering, users express their preferences by
rating a given number of items. These ratings are then used as a

user’s preference value on the representative concepts. Then, using
our model, we infer the missing user’s preference value of each con-
cept. Finally, to recommend the best N items to the user (also known
as the top-N strategy), we simply select N items from the concepts
that have the highest preference value.

The standard metric for measuring the predictive accuracy of a
recommendation is the mean absolute error (MAE, [13]), which com-
putes the mean deviation between the predictions and the user’s true
ratings. Over the years, it has been argued that this metric may be less
appropriate for the top-N task, as the granularity in the rating is usu-
ally small. However, the data is very sparse in our situation. Thus, the
deviation in the ratings becomes very significant, which makes this
metric relevant. Furthermore, [2] has argued that the MAE has many
advantages such as the simplicity of understanding the results, and
well studied statistical properties when comparing two approaches.

We also acknowledge the fact that the accuracy of a prediction is
usually not enough to build a good recommendation system. For ex-
ample, it is less interesting to recommend very popular items that
everybody likes, and such recommendations bring nearly no infor-
mation to the user. Thus, a new dimension for analyzing predictions
that considers non-obvious predictions is required.

Novelty is a metric that measures the degree to which a recom-
mendation is non-obvious. We will use the novelty metric defined by
equation (10), which measures the number of correct recommenda-
tions made by algorithm a that are not present in the recommenda-
tions made by a reference algorithm b.

Novelty(ra|rb) = (|cra| − |cra ∩ crb|)/N (10)

where ra are the top-N recommendations made by the algorithm
a, and cra are the correct recommendations contained in ra, i.e. liked
by the user.

To test our approach, we implemented a movie recommendation
system using the famous MovieLens2; a data set containing the rat-
ings of 943 real users on at least 20 movies. There are 1682 movies in
total described by 19 themes: drama, action, and so forth. To increase
the description of the movies, we wrote a wrapper that extracted the
year, MPPA rating, and duration from the IMDb3 website. As there
is no common ontology modeling the movie domain, we created one
using common sense and definitions found in dictionaries.

The experiment was as follows. First, users with less than 65 rat-
ings were removed. For each remaining user, 15 ratings were inserted
into a test set, TS, while the rest were inserted into an intermediate
set, IS. Then, we transferred a given number of ratings from the IS
into the learning set, LS, and built the preference model as follows.
First, based on the rated item in LS, we set the user’s preference
value on the concepts that the items in LS are instances of. Then, we
estimated the missing values using our propagation model. Finally,
we predicted the grade of each movie in the TS, and the selected
the Top-5. The experiment was run 5 times, and our technique (Het-
erogeneous Attribute Preference Propagation Model - HAPPL) was
benchmarked against the following:
• Popularity is a simple but very effective strategy that ranks the

movies based on their popularity. The popularity of each movie
was computed using the users that were removed in the first phase
of our experiment.

• Hybrid combines the Popularity and HAPPL approaches based on
the averaged predicted ratings of each approach.

• CF is the adjusted cosine collaborative filtering. We set the neigh-
bors to 90 as [10] and [13] have shown that the optimum for

2 http://www.cs.umn.edu/Research/GroupLens/data/
3 http://www.imdb.com

MovieLens is very close to this value. CF was chosen as bench-
mark over classical content filtering as it is today’s best perform-
ing filtering and most widely used RS.

0.73

0.78

0.83

0.88

0.93

0.98

5 10 20 30 40 50

#learning ratings in learning set LS

M
A

E

Popularity

Hybrid

HAPPL

CF

Figure 2. Prediction Accuracy of various techniques

First, we measured the predictive accuracy of each method using
various size of the learning set LS. Figure 2 clearly shows the weak-
ness of CF when only a few ratings are used to learn the model. This
is known as the cold-start problem, where a minimum number of
ratings need to be known in order to find the right neighborhood of
similar users, i.e. at least 20 in this case. However, our approach does
not suffer from this problem and shows significant improvement over
CF (p-value<0.01), when we have less than 30 ratings in the learn-
ing set. Surprisingly, the popularity metric performs well, even better
than CF when the number of ratings in LS < 50, which shows that
users tend to like popular items. As expected, the best accuracy is
obtained using when we combine our approach with the popularity
one. The combination of the grade allows the system to better dis-
criminate between good and bad items with a higher confidence.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 20 30 40 50

#learning ratings in learning set LS

N
o

v
e
lt

y

HAPPL| Popularity

Hybrid | Popularity

CF| Popularity

Figure 3. Novelty metric of various techniques against the Popularity
approach

Second, we tested the novelty of each approach compared to the
Popularity one. Again, the results (Figure 3) are very interesting in
two points. First, it shows that it is our model that produces the best
non-obvious recommendations whatever the size of the learning set,
which has novelty value greater than 33%. Second, CF’s novelty
seems to improve when we have less than 10 ratings, and then de-
creases steadily down to the 20% threshold. This behavior can be
explained if we superpose this result with the MAE. When we have
less than 20 ratings, CF’s accuracy is very low, which tends to indi-
cate that items were selected from many diverse neighborhoods.

Finally, the Hybrid approach tells us that the use of collabora-
tive data can improve the overall recommendation accuracy over our
HAPPL approach, but this gain is then lost in recommendation nov-
elty.

7 Conclusion
This paper makes two major contributions. First, we introduced a
new technique called Ontology Structure Similarity to derive a sim-
ilarity metric based on the structure of an ontology. The similarity
metric exploits the implicit knowledge of the person who wrote the
ontology and gave it a certain structure. Experimental evaluation has
shown that it outperforms existing technique. Then, we used OSS to
define the novel recommendation system HAAPL that is able to pre-
dict items with a very high accuracy and novelty, whatever the size
of the learning set.

In future work, we will study more complex ontologies that can
contain more than one kind of relationships, and also try to see how
the a-priori score contained in the ontology can be learned to better
fit the user’s preferences.

REFERENCES
[1] K. Bradley, R. Rafter, and B. Smyth, Case-Based User Profiling for

Content Personalization (AH2000), 133–143, Springer-Verlag, 2000.
[2] J. L. Herlocker, J. A. Konstan, L. G. Terven, and J. T. Riedl, ‘Evaluating

Collaborative Filtering Recommender Systems. ACM Transaction on
Information Systems’, in ACM Transactions on Information Systems,
volume 22, pp. 5 –53, (2004).

[3] J. Jiang and D.W Conrath, ‘Semantic Similarity based on corpus and
lexical taxonomy’, in Proc. of 10th Int. Conf. on Research in Computa-
tional Linguistics, (1998).

[4] R. Keeney and H. Raiffa, Decisions with Multiple Objectives: Prefer-
ence and Value Tradeoffs, Cambridge University Press., 1993.

[5] R. Knappe, H. Bulskov, and T. Andreasen, ‘Similarity graphs.’, in Pro-
ceedings of ISMIS’03, volume LNAI 2871, pp. 668 – 672. Springer-
Verlag, (2003).

[6] Q. Li, B. M. Kin, S. Myaeng, and H., ‘Clustering For Probabilistic
Model Estimation for CF’, in Proc. of 14th Int. WWW Conf, pp. 1104 –
1005, (2005).

[7] S. E. Middelton, N. R Shadbolt, and D. C. De Roure, ‘Ontological User
Profiling in Recommender Sytems’, ACM Transactions of Information
Systems, 22(1), 54 – 88, (2004).

[8] G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller, ‘Intro-
duction to WordNet: An On-line Lexical Database’, Technical report,
Cognitive Science Laboratory, Princeton University, (1993).

[9] L. Ming, C. Xin, L. Xin, M. Bin, and P. Vitanyi, ‘The similarity met-
ric’, IEEE Transactions on Information Theory, 50(12), 3250 – 3264,
(2004).

[10] B. Mobasher, X. Jin, and Y. Zhou, ‘Semantically Enhanced Collabora-
tive Filtering on the Web’, in Proceedings of EWMF03, volume LNAI
3209, pp. 57 – 76. Springer-Verlag, (2004).

[11] J. W. Payne, J. R. Bettman, and E. J. Johnson, The Adaptive Decision
Maker, Cambridge University Press., 1993.

[12] P. Resnik, ‘Semantic Similarity in a Taxonomy: An Information-Based
Measure and its Application to Problems of Ambiguity in Natural
Language’, Journal of Artificial Intelligence Research, 11, 95 – 130,
(1998).

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ‘Item-based Collabora-
tive Filtering Recommendation Algorithms’, in Proc. of 10th Int. WWW
Conf, pp. 285 – 295, (2001).

[14] D.O. Sullivan, B. Smyth, D.C. Wilson, K. McDonald, and A. Smeaton,
‘Improving the Quality of the Personalized Electronic Program Guide’,
User Modeling and User-Adapted Interaction, 14(1), 5 – 36, (2004).

[15] P. Walley, ‘Measures of uncertainty in expert systems’, Journal of Arti-
ficial Intelligence, 83, 1 – 58, (1996).

[16] C-N. Ziegler, S. McNee, J.A. Konstan, and G. Lausen, ‘Improving Rec-
ommendation List Through Topic Diversification’, in Proc. of 14th Int.
WWW Conf, pp. 22 – 32, (2005).

