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Summary 
 
This work addresses nonlinear finite element analysis of laminated structures with weak 
interfaces. Considered first are shallow laminated beams subject to arbitrary large 
displacements, small layer strains and moderate interface slippage. Under these 
requirements rigorous development of layer-wise kinematic field is performed assuming 
First order Shear Deformation Theory (FSDT) at the layer level. The final form of this 
field is highly nonlinear and thus awkward in direct finite element (FE) implementation. 
However, the small strain assumption allows decomposition of element displacements into 
large rigid-body-motion and small deforming displacement field. In this case, the 
conjunction of linearized kinematic relations and the von Kármán strain measure applied in 
moving element frame allows for robust co-rotational FE formulation. This formulation is 
here extended to account for material nonlinear behaviour of layers and interfaces. To 
complete the development, means of obtaining efficient FE implementation are indicated. 
Discussed topics include the choice of suitable element interpolation schemes, proficient 
methods of alleviating numerical locking, evaluation of element deforming displacement 
field and management of layer-wise boundary conditions. In addition, a novel approach is 
proposed for a posteriori enhancement of the transverse shear stress distribution. Finally, 
the proposed model is tested with a number of demanding benchmark tests. 
The above modelling approach is next extended to geometric nonlinear analysis of 
laminated plates. Constraining plate displacements to be moderate (in von Kármán’s sense) 
and using Total-Lagrangian FE formulation it is shown that the simplicity and robustness 
of the beam formulation can be preserved also in plate analysis. FE solutions obtained with 
the adopted approach are again shown to provide reliable results in global and local scale. 
However, it is also indicated that methods used to alleviate shear locking in single-layer 
plate elements are not entirely satisfactory in multi-layer ones. Thus, FE implementation 
allowing for non-regular meshes needs yet to be identified. 
Considered next is the possibility of extending the developed plate model to the co-
rotational FE analysis of shallow laminated shells. Primary concern here is assuring 
consistency of 3D rotations of element vectors and matrices. This problem is resolved here 
by modifying the description of interface displacement field and including vertex rotations 
in finite element kinematics. With these enhancements FE matrix formulation is 
constructed to allow geometric nonlinear analysis of shallow laminated shells subject to 
arbitrary large displacements, small layer strains and moderate interface slippage. 
 
Keywords: 
Laminated Structures, Layer-Wise Approach, Inter-Layer Slip, Large Displacements, Co-
rotational Finite Element Formulation, Material Nonlinearity 
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Résumé 
 
Ce travail a pour cadre l’analyse non linéaire par éléments finis de structures multicouches 
avec glissement d’interface. Dans un premier temps, sont traitées les poutres multicouches, 
droites ou faiblement courbes, soumises à de grands déplacements produisant de petites 
dilatations dans les couches et à des glissements modérés aux interfaces. Sous ces 
conditions, une description rigoureuse de la cinématique des couches est effectuée sur la 
base de la théorie du premier ordre de la déformation à l’effort tranchant (FSDT) au niveau 
de chaque couche. La forme finale de cette cinématique est hautement non linéaire et est 
ainsi particulièrement embarrassante pour son introduction directe dans la formulation des 
éléments finis. Cependant, l’hypothèse des petites déformations autorise la  décomposition 
du mouvement d’un élément  en un champ de grands déplacements  rigides et un champ de 
petits déplacements déformants. Dans ce cas, la conjonction de la linéarisation des 
relations cinématiques et de l’utilisation de la déformation de von Kármán, écrites dans le 
repère qui suit le mouvement de l’élément, permet d’obtenir une formulation 
corotationnelle robuste. Cette formulation est étendue au comportement non linéaire 
matériel des couches et des interfaces. Pour compléter ces développements, on indique les 
moyens d’obtenir une implémentation efficace des éléments finis. En particulier, les sujets 
suivants sont discutés : le choix des schémas adéquats d’interpolation des éléments, les 
méthodes efficaces pour éviter les divers verrouillages numériques, la manière d’évaluer 
les déplacements déformants de l’élément et la gestion des conditions de bord. De plus, 
une nouvelle approche est proposée pour l’enrichissement a posteriori de la distribution 
des contraintes de cisaillement transverse. Finalement, le modèle proposé est vérifié à 
l’aide de plusieurs benchmarks exigeants. 
La même approche de modélisation est étendue ensuite à l’analyse géométriquement non 
linéaire des plaques multicouches. En se restreignant aux déplacements modérés (au sens 
de von Kármán) et en utilisant la formulation lagrangienne totale, on montre que la 
simplicité et la robustesse de la formulation développée pour les poutres peuvent être 
conservées pour l’analyse des plaques multicouches. Les solutions obtenues par cette 
approche fournissent également des valeurs sûres tant dans le comportement global que 
local. Par contre, il est mis en évidence que les méthodes utilisées pour éviter le 
verrouillage d’effort tranchant pour les plaques à une seule couche ne donnent pas entière 
satisfaction dans le cas des plaques multicouches. Ainsi, une autre approche par rapport à 
ce problème doit être identifiée pour les réseaux non réguliers. 
On considère ensuite la possibilité d’étendre le modèle de plaque développé à l’analyse en 
formulation corotationnelle des coques légèrement courbes. La première exigence est 
d’assurer la consistance des vecteurs et matrices en rotation tridimensionnelle. Cette 
question est résolue ici en modifiant la description du champ des déplacements aux 
interfaces et en incluant les rotations "vertex" dans la cinématique de chaque couche. Avec 
cet apport, la formulation proposée permet l’analyse non linéaire géométrique des coques 
multicouches légèrement courbes soumises à de grands déplacements arbitraires induisant 
des petites déformations et des glissements modérés. 
 
Mots-clés: 
Structures Multicouches, Approche "Layer-Wise", Glissement d’interface, Grands 
Déplacements, Formulation Corotationnelle, Non Linéaire Matérielle. 
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1. Introduction 
 
Basic theoretical provisions in the analysis of laminated structures emerge from the 
equilibrium of inter-laminar forces and are often referred to as the 0

zC -requirements [1], 
[2]. They can be summarized in the form of limitations imposed on transverse continuity of 
the stress and the strain fields at an interface of two layers with different thermo-
mechanical properties. In such case, transverse stresses are required to maintain 0C  
continuity, whereas membrane stresses and the strain field may in general be 
discontinuous. This implicates that the transverse continuity of the displacement field at 
such interface cannot be imposed beyond the 0C  level. Moreover, if complete layer 
interaction is not assured, the displacement field may also be discontinuous. 
As the traditional structural models are not capable of fulfilling the aforementioned 
limitations, new modelling approaches are being developed for analysis of laminated 
structures. Particularly investigated are theories a priori postulating certain kinematic field 
distribution in structure transverse direction. According to Reddy’s classification [1], these 
theories can be sub-divided into two major categories: the Equivalent-Single-Layer (ESL) 
and the Layer-Wise (LW) ones. ESL theories are constructed by through-the-thickness 
enhancement of the traditional structural models. This is typically done by including higher 
order terms of the displacement field, e.g. [3], or by introducing so-called zig-zag functions 
[4]. Obviously, approaches uniting the two concepts are also reported, e.g. [5]. The most 
advantageous property of the ESL models is their constant and usually very low number of 
independent variables. Thus, finite elements based on these theories can often be used in 
parallel with traditional (single-layer) elements. However, many of these approaches are 
reported to yield poor estimation of transverse stress distributions.  Thus, they may not be 
used to obtain reliable local response of laminate. Layer-Wise models can be regarded as 
transverse stacking of chosen single-layer theory applied at each layer. Thus, in contrast to 
the ESL approach, the number of variables is here proportional to the number of layers. In 
general, this allows LW models to be more versatile and immune to the drawbacks of the 
ESL approach. However, it also requires constraining displacement field of each layer to 
represent physically admissible behaviour of laminate. This is usually achieved by 
constructing layer-wise kinematic relations which make use of reduced number of 
independent variables. Several, comprehensive reviews comparing most common ESL and 
LW approaches can be found in the literature, e.g. [2], [6], [7] and [8]. Additionally, a 
valuable assessment of result quality and prospective refinements is given in [9]. These 
reviews are primarily concerned with beam and plate formulations. However, equally 
advanced models are also reported for laminated shells, e.g. [10] and [11]. 
Developments listed in the above classification assume that material layers are perfectly 
bonded. However, in many engineering applications, complete layer interaction is not 
obtained. So called weak interfaces originate in fabrication process (steel-concrete 
compositions or nailed timber), develop in operation phase (de-lamination due to impacts), 
or can be purposefully introduced to enhance specific properties of layered structure (PVB 
inter-layer in laminated safety glass). At weak interface a relative displacement of initially 
adjacent layers may occur. It is usually subdivided into two components: transverse 
separation and slip tangent to the interface surface. In laminated structure analysis it is 
usually assumed sufficient to consider only interface slippage. Thus, works dealing with 
transverse layer separation are relatively rare, e.g. [12], [13]. 
Another important aspect is geometric nonlinear behaviour of laminated structures. The 
difficulties encountered in including geometric nonlinearities for the case of arbitrary large 
displacements, combined with inherent complexity of laminate kinematic models, 
substantially limit the number of far-reaching developments in this area [14], [15], [16], 
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and [17]. When model complexity is further augmented by incorporating interface 
slippage, developments including geometric nonlinear effects become rare. To author’s 
knowledge there are no models with proven ability to address arbitrary large displacements 
and interface slippage at the same time. Beam models having this capability are reported in 
[18] and [19]. However, they are developed assuming special case of the two-layer 
configuration and Bernoulli kinematics at the layer level. Other noteworthy developments 
in this domain are constrained to moderate displacements in the von Kármán’s sense [20], 
[21] and [22]. 
In order to complete the presentation of approaches available for modelling laminated 
structures with weak interfaces it is worth mentioning several niche developments. 
Particularly valuable here is the group of interface models, e.g. [23], [24], [25] and [26]. 
These are developed to connect two single or multi-layer elements in order to simulate 
laminate with single weak interface. Thus, they provide computationally efficient 
alternative for some particular applications. Another group of specialized approaches is 
dedicated to analysis of sandwich beams and plates with soft core, e.g. [27]. In such 
developments bending stiffness of the core is neglected allowing development of simple 
analytical relations suitable for linear and buckling analysis. For simply supported and 
sinusoidally loaded multi-layer beams with multiple weak interfaces the same is achieved 
by some other approximate methods, e.g. [28]. 
Material nonlinear effects investigated in laminated structures include elasto-plastic 
yielding of layers and interfaces, e.g. [28] and [29], visco-elastic behaviour of Polyvinyl-
Butyral (PVB) inter-layer in laminated safety glass, e.g. [30], or combinations of fracture 
and contact mechanics applied for the analysis of fibre-reinforced-polymers, e.g. [25]. A 
noteworthy amount of interest is dedicated to the analysis of concrete structures. The 
discussed topics include the non-symmetric response of concrete to tension and 
compression, e.g. [29], brittle concrete behaviour incorporated through the continuum 
damage mechanics, e.g. [26], and the time effects (shrinkage and creep) in rehabilitated 
concrete structures, e.g. [19]. 
 
Addressed in present work is nonlinear analysis of laminated structures composed of 
arbitrary number of layers connected by weak interfaces. In the centre of interest are the 
geometric nonlinear effects associated with arbitrary large displacements and moderate 
inter-layer slips. The discussion is here gradually extended from beam to plate and shallow 
shell approach. In each case layer-wise kinematic field is formulated assuming the First 
order Shear Deformation Theory (FSDT) at the layer level. Rigorous development of this 
field is shown to be one of the key components necessary to obtain an approach capable to 
address arbitrary large displacements. The second such component is the use of the co-
rotational FE formulation, possible under the assumption of small layer strains. This 
formulation is shown here to be straightforwardly extendable with some readily available 
material nonlinear models formulated at the layer and the interface level. 
 



NONLINEAR ANALYSIS OF LAYERED STRUCTURES WITH WEAK INTERFACES 

- 6 - 

2. Beams 
 
Considered here is a planar laminated beam composed of Nlay layers (lay = 1, 2,..., Nlay) 
and referred to Cartesian axes ( )yx, . Layers are counted from the beam bottom. Each 

layer has a rectangular cross-section of area )()()( laylaylay hbA =  and refers to local Cartesian 
axes ( ))()( , laylay yx , with )(layx  parallel to x and located at layer midline. Hence, xx lay ≡)(  

and 2,2 )()()( laylaylay hhy −∈ . Layer interfaces are identified by the indices of layers 

above them (int = 2,3,..., Nlay). 
 

2.1. Theoretical development 
 
As in traditional beam models, kinematic relations are here constructed around a reference 
line chosen to coincide with the x ordinate (arbitrarily located within beam thickness). A 
set of 2Nlay+1 independent kinematic variables used for this purpose consists of axial and 
transverse displacements of the beam reference line, ( )xu  and ( )xv  respectively, layer 

cross section rotations ( )xlay )(θ , and interface slips ( )xg int )( . 
For the clarity of the theoretical development, an auxiliary set of 3Nlay dependent 
kinematic variables is additionally employed. It consists of the axial and transverse 
displacements and cross section rotation defined at each layer midline: ( )xu lay )( , ( )xv lay )( , 

( )xlay )(θ . The layer-wise kinematic, strain and stress fields expressed in terms of the 
auxiliary variable set may straightforwardly be associated with the well-known 
Timoshenko beam theory applied at each layer. Hence, clear physical interpretation is 
given to the developed mathematical relations. The equilibrium relations for the proposed 
model are provided in strong and weak forms. In both cases, the development process is 
based on standard procedures used for beam models.  
 

2.1.1. Kinematic relations 
 
Laminated beam kinematic field is developed here assuming large displacements, 
moderate slips and small layer strains. According to FSDT, the displacement field in each 
layer ( ))()( , laylay yxu , ( ))()( , laylay yxv  can be expressed as: 
 

)1(                                           
( ) ( ) ( )( )
( ) ( ) ( )( )[ ]1cos,

sin,
)()()()()(

)()()()()(

−+=
−=

xyxvyxv

xyxuyxu
laylaylaylaylay

laylaylaylaylay

θ
θ

 

 
Figure 1 shows the layer containing laminated beam reference axis (called here the 
reference layer); the midline displacements of this layer can be evaluated as: 
 

)2(                                        
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )[ ]1cos

sin
)()(

ecc
)()(

)()(
ecc

)()(

−−=→

+=→

xyxvxvxv

xyxuxuxu
refrefreflay

refrefreflay

θ
θ

 

 
where index ref and the ordinate )(

ecc
refy  determine unique location of the reference line in 

the laminated beam thickness.  
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Figure 1 Kinematic relations at the reference layer 

 
Taking advantage of the small-strain / moderate-slip assumptions, interface slip is 
understood here as a scalar measure along locally straight interface of the deformed 
configuration (small interface curvature can be neglected over the slip span). As shown in 
Figure 2, this simplification enables the axial and the transverse displacement jumps at an 
interface to be evaluated as functions of the slip and the interface rotation:  
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The interface rotation angle ( )xi )(α  is a dependent variable which can be evaluated as a 
function of the transverse displacement of the neighbouring layers: 
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Figure 2  Interface slip (positive sense and decomposition) 

 
Subdivision of the interface slip into horizontal and vertical components allows definition 
of the axial and the transverse displacements for the layers that do not contain the reference 
line. Relations (5) and (6) provide a definition of the layer midline displacements for the 
layers above the reference layer (lay > ref): 
 

)5(                    

( ) ( ) ( )( ) ( )( )
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For the layers below the reference layer (lay < ref) the above relations need to be 
substituted by equations (7) and (8) (note that the summations have negative increments 
here) 
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Graphical interpretation to the above relations is provided in Figure 3. 
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Figure 3 Kinematics of a multilayer beam with interface slips 

 
The displacement field of a laminated beam with moderate slips and small layer strains is 
established here for a general case of large displacements and rotations. Total of 2Nlay+1 
independent kinematic variables are used. Importantly, this field is expressed as an 
assembly of displacement fields of every layer, each of which is treated as a Timoshenko 
beam. It should also be noted that, including inter-layer slips significantly increases the 
complexity and the nonlinear character of the kinematic relations. 
As in many engineering applications displacements and rotations remain small, a linearized 
solution provides satisfactory results with significantly reduced computational effort. 
Moreover, the small strain assumption implies that the displacement field in a small section 
of a laminated beam (e.g. a finite element) can be decomposed into a large rigid-body-
motion followed by a moderate deformation. According to the co-rotational formulation, 
see e.g. [31], the rigid-body-motion can be eliminated from the element displacement field 
using a local reference frame moving with the element. In this case, use of linearized 
kinematic relations is also sufficient. For these reasons a linearization of the developed 
kinematic field is discussed below. 
Following the standard approach in beam analysis, trigonometric functions are expanded 
into Taylor series and higher order terms are truncated (note that )(intα  and )(layθ  are of the 
same order of magnitude, as only small shear strains are considered): 
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Assuming (9), kinematic relations (2), (5) and (7) become linear. However, expressions for 
layer transverse displacement ((6) and (8)) remain nonlinear functions of interface slips 
and interface rotation angles. They can now be written as: 
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Small strain assumption implies that, in element co-rotated frame, gradient of transverse 
displacement and resulting interface rotation angles α(i) are moderate, irrespectively of 
large rigid-body-motion of the element. Hence, it can be assumed that the nonlinear 
influence of interface slippage on the element transverse displacement can be neglected if 
the slips remain sufficiently small. In this case: 
 

)11(                        ( ) ( ) ( ) Nlaylayxvxvxv reflay ,...,2,1;)()( ==≈ 

 
It can be observed that accuracy of the simplified relation (11) diminishes with increasing 
number of interfaces (relations in (10) contain summation over interfaces). Additionally, it 
must be remembered that the smallness of interface slip and interface rotation angle is 
referred here to the amount of the reference line transverse displacement. As in the co-
rotational approach all these quantities are the deforming displacements defined in moving 
element frame, performing mesh refinement does not allow to accommodate significantly 
larger interface slips (both, interface rotation angle and reference line transverse 
displacement diminish with element size).  
Assuming small displacements, moderate inter-layer slips and small layer strains, the 
approximate kinematic relations can be expressed in the following, linear form: 
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where for the reference layer (lay = ref): 
 

)13(                                                                                        ( ) ( ) ( )xyxuxu refref )(
ecc

)( θ+≈ 

 
for the layers above the reference layer (lay > ref): 
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and finally, for the layers below the reference layer (lay < ref): 
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2.1.2. Geometric relations 
 
Layer-wise strain field of laminated beam can now be expressed analogously to the well-
known geometric relations of the Timoshenko beam theory applied at each layer. For 
example, considering only small displacements, the infinitesimal strain measure reads: 
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Employing the linearized kinematic relations (12), the layer strain field has remarkably 
simple form: 
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Large displacements and rotations require use of nonlinear kinematic relations in 
conjunction with a nonlinear strain measure. The combination of these two fields leads to 
complex solution process, frequently accompanied by undesirable membrane and shear 
locking of the finite element formulation. However, combining small strain assumption 
with co-rotational formulation allows for an important simplification, i.e. the use of 
moderate displacement (second order) von Kármán strain measure in element co-rotated 
reference frame: 
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where ( ))(, layyx ′′  is the co-rotated reference frame and the star symbol denotes the 
deforming displacements. As these displacements are moderate, the linearized kinematic 
relations may be applied and the von Kármán strain measure reads: 
 

)19(                                             
)(*

*
)(

2*)(*
)(

)(*
)(

d

d

d

d

2

1

d

d

d

d

laylay
yx

lay
lay

lay
lay
xx

x

v

x

v

x
y

x

u

θγ

θε

−
′

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

+
′

′−
′

=

′′

′′

 

 
It should be noted here that the only nonlinear strain component in (19) is identical for all 
layers. 
The process of evaluating the deforming displacements is demonstrated in paragraph 2.2.4 
where some aspects of the finite element implementation are additionally addressed. 
 
In the spirit of the development presented in [32] an initial shallow curvature can be 
incorporated in present formulation by enhancing the strain field with an additional, linear 
term. Relations (19) can now be written in the following form: 
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where: 
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In the above Mε  is the strain correction reflecting presence of initial shallow beam 
configuration. Figure 4 provides graphical interpretation of the initial curvature at the 
element level. In such case )( 0M xv  can be conveniently defined through the element end 

slopes 0M dd xv  in A and B. Moreover, it can be observed that ( ) ( )0MM ' xvxv ≡ , thus 

0MM dd'dd xvxv ≡ . 
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Figure 4 Initial shallow curvature 

 
It should be noted that using linearized kinematic relations, the influence of the initial 
curvature is unique in the thickness of laminated beam. Hence, applicability of present 
approach is limited to the analysis of moderately thick beams. 
 

2.1.3. Constitutive relations 
 
In present development, the constitutive relations need to be provided for each layer and 
interface. The considerations presented herein encompass linear and nonlinear elasto-
plastic models applicable to analysis of some common engineering problems. The 
development is made in view of the finite element incremental plasticity formulation and, 
for the simplicity sake, only a case of monotonic loading is assumed. 
The simplest, linear form of layer constitutive relation is the Hooke’s law. In present 
development it is written as: 
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where )(layD  is elastic constitutive matrix, )(layE  is layer Young’s modulus, and )(layG  is 
layer shear modulus.  
A model suitable for elasto-plastic yielding of mild steels is next considered. The 
development follows the approach presented in [33] (see also [34] for more general 
formulation), which is a specialization of the radial return algorithm [35] for plane stress 
problems. It is based on the split of the deformation field into elastic and plastic 
subcomponents (24), the proportionality of the stress gradient to the elastic strain gradient 
(25), the von Mises yield criterion with isotropic hardening rule (26) and the associated 
flow rule (27). As the considerations are made at the layer level, index (lay) is temporarily 
omitted to simplify the notation. 
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where the relation ( )ν+=
12

E
G  holds between components of the elastic constitutive 

matrix. In elastic problems the Poisson constant 5.0,0∈ν  and in active plastic processes 

it is identically taken as 5.0=ν . ( )pεYY =  is given hardening rule and pε  is effective 

plastic strain defined by the rate equation ( ) ( )22
31 p

xy
p
xx

pε γε &&& += . The ˙ symbol denotes 

differentiation with respect to pseudo time parameter. Taking dot product of the vector 

components on both sides of (27), λ&  can be expressed as: 
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Using (25) and (28) stress increments σd  in an iterative solution process (e.g. the Newton-
Raphson method) can be evaluated as: 
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and the total stress is given by: 
 

)30(                                                                                                   σσσ d0 +=  
 
where 0σ  is known initial stress state. Relation (30) can be re-written as: 
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where Eσ  is a trial stress state that would occur if the stress increment was purely elastic. 
The admissible stress states are required to satisfy the Kuhn-Tucker conditions: 
 

)32(                                                                       000 ≡∧≥∧≤ ff λλ && 

 
Hence, if the trial stress state Eσ  remains within the volume delimitated by the yield 

surface ( )0≤f , there is no active plastic process and 0d~d =λpε . Otherwise, relation 
(31) can be re-cast in the form: 
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and the stresses (33) are to remain on the yield surface ( )0=f . This reduces the problem 

to a single nonlinear equation with the increment of effective plastic strain pεd  as the only 
unknown: 
 

)34(                                          ( ) ( ) ( ) ( ) 0d
d

3
d

d 2

22

=−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= p

p

E
xy

p

E
xxp εY

εaεa
εf

τσ
 

 
The above equation can be locally solved at each Gauss point using the Newton-Raphson 
method, thus giving the stress field that satisfies the Kuhn-Tucker conditions (32). 
In order to maintain convergence properties of the global iterative solution process, a 
consistent tangent constitutive matrix εσD ∂∂=EP  must be used. Adhering to the 
approach proposed in [33], the elasto-plastic constitutive matrix for the discussed problem 
takes the following form: 
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where: 
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Noteworthy, the elasto-plastic constitutive matrix is symmetric, but in active plastic 
processes ( )0d ≠pε  it is no longer diagonal (in contrast to the elastic case). 
 
Provided that given interface possesses certain amount of tangential rigidity, a reaction 
parallel to this interface is developed. This reaction is called here interface shear stress 
and, in the simplest case, can be evaluated using the following linear relation (compare to 
[36]): 
 

)37(                                                                                             )()()( intintint gkf = 
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where )(intf  [N/m2] is interface shear stress, )(intg  [m] is interface slip and )(intk  [N/m3] is 
interface stiffness. Adopting convention used in the laminated glass analysis [37], the 
parameters used in (37) can be interpreted by regarding the interface as a thin layer of 
finite thickness )(inth  [m] and shear modulus )(intG  [N/m2]. In this case, interface 
constitutive relation is typically postulated in the classical form of Hooke’s law: 
 

)38(                                                                                             )()()( intintint G γτ = 

 
where )()( intint f=τ  [N/m2] is interface shear stress and )()()( intintint hg=γ  [-] is interface 
shear strain. Hence, interface stiffness of present approach can be interpreted as: 
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In the literature dedicated to laminated beams with discrete shear connectors, e.g. [20], yet 
another form of interface constitutive relation is frequently encountered: 
 

)40(                                                                                            )()()( intintint gKF = 

 
where )(intF  [N/m] is interface shear force and )(intK  [N/m2] is interface stiffness. Noting 
that slip is always assumed constant over the interface width )(intb  [m], the following 
relations can be deduced: 
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As indicated herein, various formalisms proposed in the literature can be linked through 
simple algebraic relations. Though the discussion is provided for the linear case, it can 
straightforwardly be extended to material nonlinear analysis. 
A representative case of elasto-plastic interface yielding is presented in Figure 5 where the 
interface shearing force F versus interface slip g is plotted for a nailed wood connection 
[28]. This type of behaviour is also characteristic for headed studs used to enforce 
interaction in steel-concrete composite bridge decks [29]. It is usually fitted through a 
power law in the form (interface index omitted to simplify the notation): 
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where Figure 6 provides graphical interpretation to the parameters srKFFK pyu  and,,,,  

used to fit the experimental results. 
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Figure 5 Nonlinear behaviour of nailed wood interface 
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Figure 6 Graphical interpretation of parameters used in (42) and (43) 

 
Derivation of the tangent stiffness gFK ddEP =  for a one-dimensional interface model is 
straightforward and hence it is not discussed herein. 
 

2.1.4. Equilibrium relations 
 
Figure 7 shows a small section of an arbitrary layer in laminated beam. A set of three 
equilibrium equations can be written for this domain: 
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where ( )xN lay )( , ( )xV lay )(  and ( )xM lay )(   are layer normal force, shear force and bending 

moment, )(layn , )(laym , )(layq  are distributed loads applied at the layer midline, )(layf , 
)1( +layf  and )(layp , )1( +layp  are interface shear and normal stresses at the layer bottom and 

top, and )(layb , )1( +layb  are interface widths at the layer bottom and top. Interface width is 

assumed as a minimum width of the neighbouring layers { })1()()( ,min −= laylaylay bbb . Layer 

width )(layb  is an arbitrary, geometric parameter. However, in order to comply with the 
planar beam theory, it is assumed here that the laminated beam cross-section is 
symmetrical with respect to the ( )yx,  plane and that the changes in layer width are 
moderate (to avoid in plane deformation of an initially planar cross-section of the layer). It 
should also be noted that there is no interface at the bottom of the first layer and at the top 
of the last layer. Thus, stresses )1(f , )1(p , )1( +Nlayf , )1( +Nlayp  are boundary conditions. 
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Figure 7 Equilibrium of a layer segment (sign convention for forces) 

 
Lack of transverse separation between adjacent layers induces development of normal 
reactions between them )(layp , lay = int = 2,..., Nlay. Those unknown reactions can be 
eliminated from laminated beam equilibrium by summing up the transverse force 
equilibrium equation (46) for all the layers: 
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where V  is the total shear force, and q  is the total transverse load: 
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In order to complete the discussion on the strong form of laminated beam equilibrium, a 
definition of layer stress resultants is provided here in the spirit of beam analysis. As only 
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small deformations are considered, the integration is performed over the reference 
configuration. 
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where )(layA  is layer cross-section area. Equations (50), together with suitable constitutive 
and geometric relations, provide a complete link between the 2Nlay+1 independent 
kinematic variables and the 2Nlay+1 equilibrium relations given by (44), (45) and (47). 
 
In view of the finite element formulation also a weak equilibrium form is provided here. It 
can be derived from the strong form in a manner typical for beam analysis. Namely, 
2Nlay+1 equilibrium equations need to be pre-multiplied with suitable weighting functions 
and integrated over the laminated beam length. After performing integration by parts, re-
arranging the summations and interpreting weighting functions as virtual displacements 
(symbol δ), the weak equilibrium takes the form of the Principle of Virtual Work (PVW): 
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where intWδ  and extWδ  are virtual works of internal and external forces, ( )layΩ  is layer 

volume, Lx ,0∈  is axial co-ordinate, and L is laminated beam length. An important 

property of the weak equilibrium form is that the virtual work of internal forces can be 
clearly subdivided into the work performed in each layer and at each interface. It should be 
remembered, that no relation between layer and interface shear stresses was made up to 
this point. Additionally, it is worth noting that the natural boundary condition for the 
transverse force is a global one. This indicates that the layer transverse force distribution is 
governed by the model and cannot be externally imposed. On the other hand, the layer-
wise normal forces and bending moments may be separately defined for each layer. 
Moreover, observing that auxiliary kinematic variable u(lay) is, amongst others, a function 
of the interface slips means that they can be externally imposed (e.g. blocked). 
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2.2. Finite element development 
 
Main purpose of this section is to present derivation of matrix formulation for the proposed 
scheme of nonlinear FE analysis of laminated beams. Based on this development, a 
discussion is provided on some key aspects of element implementation process. These 
include constructing element interpolation scheme, sources of numerical locking and 
methods of its alleviation, evaluation of element deforming displacement field and 
management of layer-wise boundary conditions. In addition, a novel technique of 
transverse shear stress enhancement is proposed along with some considerations on its 
applicability and efficiency. Using these considerations, a family of finite elements of 
varying complexity and quality is proposed and discussed. 
 

2.2.1. Co-rotational finite element formulation 
 
Nonlinear finite element formulation for the proposed model is here derived. The 
development is made in view of the co-rotational approach and including geometric and 
material nonlinear effects. An iterative solution using the Newton-Raphson method is 
assumed and the consistent matrix formulation is obtained. 
In the co-rotational approach, considerations at the element level are made in local co-
ordinate frame of this element. However, for the sake of clarity, the prime marks linked 
with the co-rotated element frame are here omitted. In addition, it should be remembered 
that the element vectors and matrices developed in local frame must be rotated to the 
global structural frame before they are assembled. Though, due to the choice of the 
independent kinematical variable set, standard rotation procedures can be applied. 
Formulation at the element level starts from definition of the element kinematic field (12). 
Let d be the vector of element degrees of freedom (DOFs). If A and B are the end nodes of 
the element and C,D,... are possible element internal nodes, then d can be organized as 
follows: 
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where md  (m = A,B,C,D...) are vectors of nodal DOFs, e.g.: 
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Element interpolation of 2Nlay+1 independent kinematic variables can now be expressed 
as: 
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where ( )xuN , ( )xvN , ( )xlay )(

θN , ( )xint
g

)(N  are vectors of element shape functions for u , 

v , )(layθ , )(intg , respectively. It should be noted here that independent interpolation 
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scheme is allowed for each kinematic variable. In general, relations (54) can be shortly re-
written as: 
 

)55(                                                                                       ( ) ( )dNu xx = 

 
where u  is a vector of 2Nlay+1 independent kinematic variables and ( )xN  is a matrix of 
element shape functions.  
The element virtual displacement field is defined as: 
 

)56(                                                                                    ( ) dNd
d
u

u δδδ x=
∂
∂= 

 
and by analogy, the element virtual strain field is: 
 

)57(                                                        ( ) ddBd
d

ε
ε δδδ ,, )()(

)(
)( laylay

lay
lay yx=

∂
∂

= 

 
Following the strain decomposition given in (20), the matrix )(layB  can be written as: 
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)()(
0
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where: 
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Employing relations (56) and (57), the PVW statement (51) can now be used to express 
virtual work of element internal and external forces: 
 

)60(                                                  ( ) extextintint QddQd TT and δδδδ −== WW 

 
where ( )dQint  and extQ  are vectors of element internal and external forces:  
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where VQ , )(lay

NQ , )(lay
MQ  are load vectors structured in accordance to the organization of d. 

A detailed discussion on constructing layer-wise load vectors is presented in paragraph 
2.2.5. 
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After rotation of element force vectors to the global co-ordinate system and assembling 
them according to the adopted discretization, laminated beam equilibrium can be expressed 
as a system of nonlinear algebraic equations: 
 

)62(                                   ( ) extint QdQ = 

 
where intQ  is the global vector of laminated beam internal forces, extQ  is the global vector 

of external loads and d  is the global vector of degrees of freedom. 
Numerical solutions for this type of problems are typically obtained using incremental load 
stepping with the Newton-Raphson iterative solution algorithm. For the sake of 
completeness, the scheme of deriving this solution algorithm is briefly recalled here. Let 

n
0d  denote a known initial configuration, where n refers to the load step. Provided certain 

load vector 1+n
extQ  is applied, a configuration 1

0
+nd  satisfying the global equilibrium is to be 

established: 
 

)63(                                        ( ) 11
0

++ = nn
extint QdQ 

 
A linear expansion of the above relation can be used to obtain an iterative solution scheme: 
 

)64(         ( ) ( )
01 =−Δ

∂
∂+ +nn

i

n
in

i ext
int

int Qd
d
dQ

dQ 

 
where i is the iteration counter and starting from n

0d  the current configuration n
id  is 

updated using the following scheme: 
 

)65(                                                                        n
i

n
i

n
i ddd Δ+=+1 

 
Relation (64) can be re-formulated as: 
 

)66(                                                                            ( ) 1+=Δ n
i

n
i

n
i RddKTAN 

 
where ( )dKTAN  is referred to as the tangent-stiffness-matrix, and ( )dR  is the vector of 

residual (out-of-balance) forces: 
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d
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dK
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n
in

i
int
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)68(                                                                          ( )n

i
nn

i dQQR intext −= ++ 11 

 
The iterative solution process is typically continued until the vector of residual forces 

1+n
iR , or the vector of displacement increments n

idΔ , become sufficiently small. At this 

point, the equilibrium configuration is obtained as the sum of the preceding linearized 
solutions: 
 

)69(                                           ∑Δ+=+

i

n
i

nn ddd 0
1

0 
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Provided that the starting point is sufficiently close to the exact solution, the method is 
proved to converge to this solution and the convergence rate to be quadratic. 
 
The global tangent stiffness matrix (67) is assembled from local matrices evaluated at the 
element level: 
 

)70(                                                                                   ( ) ( )
d
dQ

dK
∂

∂=
n

in
i

*
int*

TAN  

 
Noteworthy, in co-rotational approach, element stiffness matrix is evaluated using 
contemporary deforming displacement field n

i
*d  of the element. Analogously to (65), this 

field is obtained by summing up deforming displacements increments *
idΔ . These are 

obtained by subtraction of the rigid-body-motion increment R
idΔ  from the total solution 

increment idΔ : 
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On the other hand, increments of the element rigid-body-motion are used to re-define the 
co-rotated element frame and update the element rotation matrix. Detailed discussion on 
updating element deforming displacement field and re-definition of element reference 
frame is provided in paragraph 2.2.4. 
Using the internal force vector definition (61) and noting that: 
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where )(

EP
layD  and )(

EP
intk  are tangent (elasto-plastic) constitutive relations, element tangent 

stiffness matrix can be expressed as: 
 

)73(                                    ( ) ( ) ( )dKdKdK σ+=TAN  

 
where matrix ( )dK  is: 
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Noting that one of the two rows of ( )dB ,T

vK x  is identically equal to zero, evaluation of the 

initial stress matrix ( )dKσ  can be considerably simplified: 
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It should be underlined here that matrix 
2
vK

2

d∂
∂ ε

 is not only identical for all the layers, but it 

is also a function of the transverse displacement DOFs only. Thus, in present approach, the 
initial stress matrix is sparse, allowing for highly efficient numerical evaluation. 
 
Components of the developed matrix formulation can be used to obtain several other types 
of solutions. In particular, many engineering applications do not require large displacement 
capability. In such cases it is possible to use an analysis option suppressing evaluation of 
the von Kármán strains and the initial stress matrix. Maintaining the initial configuration as 
the reference one and substituting the deforming displacements with the total ones, a 
geometric linear Total Lagrangian formulation is obtained for material nonlinear analysis. 
This leads to more stable solution behaviour and hence larger load steps can be used. The 
element tangent stiffness matrix for this case takes the following form: 
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Assuming elastic material behaviour, the analysis can be further simplified to a linear 
problem in the form: 
 

)77(                                 extQdK =00 

 
where 0K  is the linear stiffness matrix. On the element level it is obtained from (76) by 

substituting elastic constitutive relations )()( and intlay kD . 

Linearized buckling can be addressed in the form of an eigenvalue problem: 
 

)78(                                                                                   ( )[ ] 000 =+ crλ ddKK σ 

 
where 0d  is preceding linear solution, σK  is the initial stress matrix defined in (75), λ  is 

the buckling load multiplier (eigenvalue), and crd  is the buckling mode (eigenvector). 

 

2.2.2. Criteria for establishment of element interpolation 
 
The adopted mathematical model requires that interpolation of the independent kinematic 
variables must be at least C1 continuous within an element and C0 continuous between 
elements. Consistency of the kinematic and strain field interpolation leads to additional 
restraining conditions. Although not necessary, these conditions need to be satisfied if 
numerical locking is to be avoided. Considering polynomial interpolation, consistency of 
the linearized kinematic relations (12) to (15) implies that the reference line axial 
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displacement, layer cross-section rotations and interface slips must have identical degree of 
interpolation for all layers and interfaces. This can be denoted as: 
 

)79(                                                                                        gu degdegdeg == θ 

 
This is also sufficient for the coherence of the linear, layer-wise normal strain (17). To 
assure consistency of the layer shear strain, transverse displacement interpolation needs to 
be one degree higher than the interpolation of the layer cross-section rotation: 
 

)80(                  1−= vdegdegθ 

 
Noteworthy, satisfying relations (79) and (80) implies that the degree of layer shear stress 
( )θτ degdeg =  is equal to the degree of interface shear stress ( )gf degdeg = . This 

observation is essential for the use of transverse stress enhancement technique discussed in 
paragraph 2.2.6. 
Allowing for initial element curvature or including geometric nonlinear von Kármán strain 
component (20) leads to an additional restriction: 
 

)81(                12 −= vdegdegθ 

 
As the conditions (80) and (81) are self excluding (except for the trivial case of 0=vdeg ), 

it can be concluded that it is not possible to obtain a locking-free polynomial interpolation 
scheme for the developed formulation. Hence, an additional technique of suppressing 
numerical locking must be employed to obtain a reliable finite element. 
Use of the co-rotational approach suggests an additional criterion for the choice of element 
interpolation. Instead of using classical, higher order shape functions, it is advantageous to 
define basic, linear interpolation spanned between the end nodes of the element and enrich 
it with hierarchic (bubble) modes. As these modes do not contain rigid-body-motion, they 
are the deforming displacements of the co-rotational framework. Hence, the process of 
evaluating the deforming displacement field can be considerably simplified. Moreover, the 
DOFs associated with hierarchic modes can be eliminated at the element level through 
static condensation process, see e.g. [38]. Hence, they do not need to explicitly appear in 
the global formulation (matrix assembly). 
 

2.2.3. Management of numerical locking 
 
As already indicated, present formulation requires use of an additional technique to 
suppress numerical locking. This is usually attained through simplification of the 
inconsistently defined strains. Hence, it is advantageous to obtain a locking free 
interpolation for the dominant strain components ( ))(

0
)(

0 and laylay γε  and simplify the minor 

ones ( )vKM and εε . This can be achieved by defining an identical interpolation of all 

kinematic variables and enriching it with an additional hierarchic mode for transverse 
displacement only. To suppress resulting membrane locking associated with the Marguerre 
and the nonlinear von Kármán strain components, a reduced numerical integration can be 
used. Another approach is to employ a variant of assumed strain method. This is 
particularly suitable, if more flexibility is needed for the choice of numerical integration 
scheme (e.g. in post-processing or material nonlinear analysis). In present development, 
the assumed strain is derived from the last square error condition: 
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)82(                                                         ( ) ( ) ( )[ ]∫ −==
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d

εε 

 
where ( )de  is the error norm between the assumed strain ( )d,xε  and the strain derived 

using the geometric relations ( )d,xε . Condition (82) represents a system of algebraic 
equations that can be a priori resolved, provided element interpolation scheme. 
 

2.2.4. Deforming displacement field evaluation 
 
A characteristic feature of the co-rotational approach is the necessity of splitting element 
displacement field into the rigid-body-motion and the deforming displacements. This 
paragraph shows that this operation can be performed in a robust way also in analysis of 
laminated beams. Figure 8 shows an element spanned between nodes Ai and Bi defining its 
reference frame ( )ii yx ,  at i-th step of the iterative solution process. The element 

configuration iΓ  is expressed through the deforming displacement field 

[ ])*()*()2*()2*()1*(**T* ,,...,,,,, Nlay
i

Nlay
iiiiiii ggvu θθθ=u  defined in the element reference frame. For 

the sake of transparency, the index n of the load increment is here omitted. 
 
Performing iterative solution step defined in (66), a displacement increment iuΔ  is 

obtained and new element configuration 1+Γi  is established as iii uuu Δ+=+
*

1 . The 

objective is now to define a new deforming displacement field *
1+iu  expressing 

configuration 1+Γi  in the new co-ordinate frame ( )11, ++ ii yx  alleviating the rigid-body-

motion of the element. 
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Figure 8 Deformed element configuration and co-rotated element frame 
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Increment of the element rigid-body-translations between steps i  and 1+i  is chosen as 

iuAΔ , ivAΔ . Increment of the rigid-body-rotation iβΔ  is evaluated using the following 

relation: 
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⎞
⎜⎜
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Δ
Δ=Δ

i

i
i x

y
arctgβ 

 
where Figure 8 provides graphical interpretation to parameters ixΔ  and iyΔ  defined as: 

 

)84(                                                               
iii

iiii

vvy

LLuux

AB

0AB

Δ−Δ=Δ

+Δ+Δ−Δ=Δ
 

 
In the above 0L  is the initial length of the element and iLΔ  is the elongation at step i . 

Using hierarchic interpolation scheme proposed in paragraph 2.2.2, the vector of 
deforming displacement DOFs at node A can now be expressed as: 
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Noteworthy, there are no special operations on the interface slips DOFs, as the slips are 
scalars measured in the deformed beam configuration. 
The vector of deforming displacements at node B is defined in a similar manner, the only 
exception being the first term evaluated as:  
 

)86(                  ( ) ( ) 0
22

1
*

1B LyxLu iiii −Δ+Δ=Δ= ++ 

 
As indicated earlier, the DOFs associated with possible hierarchic modes do not represent 
rigid-body-motion of the element. Hence, at any inside element node associated with a 
hierarchic mode, the following simple relation holds: 
 

)87(                                                         imimim ddd Δ+=+
**

1 

 
where ,...D,C=m . 
For clarity of the development, presence of the element initial curvature was not 
considered here. However, as indicated at the end of paragraph 2.1.2 (see also Figure 4), 
including this feature is straightforward and, in particular, does not affect herein developed 
relations. 
It should also be noted here that invoking element deforming displacement field at given 
iteration always refers to the co-rotated element reference frame at this iteration. 
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2.2.5. Management of layer-wise boundary conditions 
 
The independent variable set chosen for present model allows for simple and efficient 
management of essential boundary conditions encountered in common engineering 
problems. In particular, having interface slips as independent kinematic variables (nodal 
DOFs) gives a possibility of straightforward suppression of inter-layer slips (representing 
complete layer interaction). 
However, management of natural boundary conditions associated with layer-wise 
distribution of external loads requires special attention. For example, consider an element 
with two layers of thickness )1(h  and )2(h , respectively. Figure 9 shows two external load 
systems applied at both ends of this element. 
 

 x 

 y 

 Le 

 h(1) 

 h(2) 

 A  B 

xQhM )2(
2
1=xQ

xQ xQ

xQ

 
Figure 9 Layer-wise element loads 

 
The vector of degrees of freedom at a node m = A or B is:  
 

)88(                                                       [ ])2()2()1(T ,,,, mmmmmm gvu θθ=d 

 
Assuming the reference line to be the midline of the bottom layer, load vector at node A 
can be evaluated from the expression for virtual work of element external loads in (51) and 
the kinematic relation (14): 
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Analogically, the load vector at node B can be evaluated as:  
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Two important observations can be made here. First, the form of the load vectors 
corresponding to axial forces applied away from the beam reference line is not trivial and 
depends on the kinematic relations. Second, the structure of the right-hand-side vector does 
not permit unique determination of the applied load system. The above properties have 
several implications in geometric nonlinear FE formulation. Due to the co-rotational 
approach, the kinematical relations and the resulting right-hand-side vector need to be re-
defined at each iteration of the Newton-Raphson solution (note that the right-hand-side 
vector re-definition can easily be incorporated into the process of evaluating the element 
residual force vector, see (68)). Moreover, when layer cross-section undergoes large 
rotations, nature of the conservative loads applied to this cross-section changes from axial 
to transverse and vice versa. Hence, it is essential to provide the layer-wise distribution of 
all such loads (even the transverse ones with respect to the initial configuration). This 
information needs to be stored and made available at each evaluation of the right-hand-side 
vector. 
 

2.2.6. Transverse refinement of shear stress  
 
In elasticity problems, transverse distribution of the shear stress obtained with the proposed 
beam model is layer-wise constant and hence, violates one of the 0

zC -requirements. 
However, the following enhancement of layer shear stress field can be considered: 
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where )()(2 laylay hy=η  is local, non dimensional ( )1;1−∈η  ordinate of a point in the 

layer. The proposed layer-wise parabolic shear stress field ( ))()( , laylay
xy yxτ  is equivalent, in 

the integral sense, to the layer constant shear stress ( ) ( )xGx lay
xy

laylay
xy

)()()( γτ = , and complies 

with interface shear stresses at layer top and bottom, ( )xf lay )1( +  and ( )xf lay )(  respectively. 

Hence, it satisfies the 0
zC -requirements. In sharp contrast to the traditional a posteriori 

enhancement methods employing elasticity equations, e.g. [39], present approach is 
defined only at the layer level. Thus, it is considerably simpler and more efficient from the 
computational point of view. In addition, it is worth noting that the interface shear stresses, 
dominating the proposed shear stress field, are super-convergent quantities (they are 
algebraic functions of independent variables of present formulation), see e.g. [40]. 
The above refinement technique is appropriate provided that layer and interface shear 
stress fields have analogous nature. This is indicated in the discussion of interface 
constitutive law, where the interface is considered as a thin layer with certain shear 
rigidity. However, in present formulation, compliance of the two stress fields is not granted 
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and, in certain conditions, they may behave differently. This can occur near boundary 
conditions, e.g. at built-in end (imposed zero interface slip / shear), or near concentrated 
transverse force (imposed jump of global shear force / layer shear stress). For this reason, 
the presented refinement technique is primarily intended for an a posteriori treatment of 
layer shear stresses. 
However, it can also be a priori incorporated into element formulation through the 
Hellinger-Reissner mixed principle [41], [38]. In this case, the expression for element 
internal work in the PVW (51) is substituted by the following one: 
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where )()()( laylay

xy
lay

xy Gτγ = . Using (91) as the definition of the assumed shear stress )(lay
xyτ , 

no new variables are introduced. Moreover, as the assumed shear stress field is geometric 
linear, there are no additional complications in derivation of matrix formulation for the 
geometric nonlinear co-rotational formulation. Hence, provided that the aforementioned 
boundary condition types are avoided, the formulation based on the mixed principle can 
offer significant qualitative improvement for elasticity problems. However, so defined 
formulation can become ill conditioned if order of interface stiffness is larger than order of 
layer shear stiffness (as in case of simulating complete layer interaction). In FE matrix 
formulation this corresponds to appearance of negative terms at the diagonal of element 
stiffness matrix. Thus, applicability of this formulation is further limited to analysis of 
beams with weak and moderately strong interfaces. 
 

2.2.7. Survey of investigated elements  
 
Table I gives a survey of some of the investigated element configurations. The elements 
are implemented as part of the finite element code FELINA [42]. 
Elements 737 and 739 deserve particular attention, as they are formulated according to the 
proposed criteria for establishing optimal element configuration. In both cases, shear 
locking is eliminated by incorporating an additional hierarchic mode for interpolation of 
the element transverse displacement, and membrane locking is alleviated using assumed 
strain method proposed in (82) (in element 737 assumed normal strain is constant over the 
element length and in element 739 it is linear). According to the reasoning presented in 
[38], the higher order element 739 is primarily intended for the use in elasticity problems 
where smooth solutions are expected, whereas the lower order element 737 is intended for 
the material nonlinear analysis where non-smooth yielding criterions are often employed. 
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Table I Survey of investigated elements 

Element 
ID 

Degree of kinematic 
variable interpolation 

u, v, θ (lay),  g (int) 

Degree of not locked 
stress resultants 

N (lay), V (lay), M(lay), f (int) 

shear 
locking 

cure 

membrane 
locking 

cure 
731 1, 1, 1, 1 0, 0, 0, 1 RI NO 

732 1, 2, 1, 1 0, 1, 0, 1 HM RI 
733 2, 2, 2, 2 1, 1, 1, 2 RI RI 
734 2, 3, 2, 2 1, 2, 1, 2 HM RI 
736 1, 1, 1, 1 0, 0, 0, 1 ASM NO 

737 1, 2, 1, 1 0, 1, 0, 1 HM ASM 
739 2, 3, 2, 2 1, 2, 1, 2 HM ASM 

739R 2, 3, 2, 2 1, 2, 1, 2 HM ASM 
NO 
 
RI 
ASM 
HM 
739R 

- no membrane locking in the co-rotational formulation (transverse 
deforming displacement is identically zero) 

- reduced Gaussian integration 
- assumed strain method 
- additional hierarchic mode for transverse displacement interpolation 
- element using Reissner principle to a priori enhance layer shear stress field 

 



NONLINEAR ANALYSIS OF LAYERED STRUCTURES WITH WEAK INTERFACES 

- 31 - 

2.3. Numerical benchmarks 
 
The examples presented herein are chosen to illustrate performance of the developed 
elements and the underlying theoretical model. The elastic results are obtained with 
element 739 and the material nonlinear analysis is performed with element 737. Sampling 
points for graphs of layer and interface stress resultants are the points of Gaussian scheme 
of numerical integration. Nine Gauss points per element length and layer thickness are 
typically used for aesthetic reasons. 
 

2.3.1. Patch tests 
 
Two patch tests can be proposed for finite elements based on present formulation. The first 
one is uniform bending test shown in Figure 10 and the second one is uniform shear test 
shown in Figure 11. In both cases an isotropic, simply supported beam of length L , 
thickness toth  and width b  is considered. 

 
y

tot
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y
sbys =

L

toth
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Figure 10 Uniform bending test 
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tb−

toth
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x

 

Figure 11 Uniform shear test 

 
In order to pass the patch tests, the finite element solution should represent the imposed 
uniform stress states independently of transverse and longitudinal discretization. For the 
case of uniform bending, the stress field should take the form: 
 

)93(                                                  ( ) 0and0and
2

tot

≡≡= f
h

y
sy xyxx τσ 

 

where [ ]2mNs  is the maximum normal stress and f  is the shear stress at an interface of 
arbitrary location and stiffness. For the purpose of present formulation, transverse 
distribution of load is represented by an equivalent layer-wise loading established using the 
following relations: 
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where )()( and laylay MN  are layer normal force and bending moment applied at the layer 
midline. Hence, it can be noted that, for a single layer discretization, the uniform bending 
test reduces to the form commonly used for validation of elements based on the 
Timoshenko beam theory. 
In the uniform shear test the stress field should take the form: 
 

)95(                                                             tftxyxx ≡≡≡ andand0 τσ 

 

where [ ]2mNt  is the constant shearing stress applied at the beam top and bottom.  
All elements listed in Table I are verified to pass the proposed patch tests. 
 

2.3.2. Cantilever bent by transverse force 
 
Cantilever bent by transverse force is a classical benchmark for beam models. In order to 
validate present approach two reference solutions are considered. The first one is obtained 
with the well-known Timoshenko beam theory. However, the constant shear stress in the 
beam thickness returned by this model is inconsistent with the theory of elasticity requiring 
zero shear stresses at the top and the bottom of the beam. Therefore, another analytical 
solution [43], allowing for parabolic shear stress distribution in beam thickness, is 
considered as well. This simple solution is in fine agreement with more elaborate, exact 
elasticity solution [44]. 
 

x

Qy

L

toth

 

Figure 12 Cantilever bent by transverse force 

 
The numerical results presented in this work are obtained for a homogenous, isotropic 
beam shown in Figure 12. The geometric parameters are: length L = 1000 [mm], total 
thickness toth = 20 [mm] and width b = 1 [mm]. The material properties are: E = 104 

[MPa], G = 0.4 104 [MPa]. The transverse force applied at the beam tip is yQ = 1 [N]. The 

global co-ordinate system is chosen so that the x axis coincides with the beam midline and 
its origin is situated at the built in end of the beam. 
Basic functionality of the present finite element formulation is tested by investigation of a 
single-layer, single-element solution, where numerical results are verified to coincide with 
the analytical solution provided by the Timoshenko beam theory. 
If the cantilever is split into two identical layers and constant interface stiffness is assumed 
along the beam length, the analytical solution for the interface shear stress of the present 
formulation can be expressed in the following form: 
 

)96(                                                                     ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

+−= −

−−

CL

CxLxC
y

e

ee

A

Q
xf 2

)2(

1
1

2

3
 

 
where f  is the interface shear stress, totbhA =  is the beam cross-section area, 

⎥⎦
⎤

⎢⎣
⎡= 2

2 116

mEA

kb
C , and k  is interface rigidity. Figure 13 shows the interface shear stress 
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distributions analytically evaluated for several representative values of the interface 
stiffness. It can be observed that with increasing interface stiffness the interface shear 

stress rapidly stabilizes on the level of ]MPa[075.0
2

3
max ==

A

Q
f y , which corresponds 

exactly to the shear stress value at beam midline provided by [43]. 
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Figure 13 Interface shear stress distribution in cantilever, analytical solutions, 2 layers 

 
Figure 14 shows finite element results obtained for two layer model and a uniform mesh of 
ten elements. Two interface rigidities are considered (kb = 0.0001E and kb = 0.01E). It can 
be observed that the analytical solution is retrieved, provided that the polynomial 
interpolation is capable of representing the interface slip variation within an element. If the 
slip variation takes excessive exponential form, the element solution becomes inaccurate. 
This inaccuracy applies only to the interface slip/shear results and it is highly localized / 
decays fast, allowing the analytical solution pattern to be recovered. Moreover, it can be 
effectively reduced with local mesh refinement.  
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Figure 14 Interface shear stress plot for Ekb 410−=  and Ekb 210−= , 10 elements, 2 layers 
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Figure 15 shows transverse distribution of the shear stress at the beam tip obtained with 
eight identical layers and inter-layer slips suppressed by large interface stiffness. It can be 
observed that both interface and layer shear stresses follow the reference solution [43]. 
Additionally, indicated here is an a posteriori evaluated layer-wise parabolic shear stress 
distribution proposed in (91). It should be underlined, that the same fine agreement of the 
post processed shear stress with the reference solution can be obtained using only two 
layers. 
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Figure 15 Shear stress distribution at cantilever tip 

 
It can be remarked in Figure 13 that relatively low interface stiffness (in respect to layer 
stiffness) is necessary to obtain maximum interface shear stress, and hence complete layer 
interaction. This is due to relatively large length to thickness ratio of the considered beam 
setup 50=tothL . However, as indicated in [45], amount of interface stiffness necessary to 

obtain the same level of interaction increases nonlinearly with the beam thickness. 
 

2.3.3. Pagano test 
 
Recalled here is the elasticity solution for laminated plate strips in cylindrical bending [46]. 
A rectangular, simply supported plate strip is loaded with transverse pressure. The load 
amplitude has sinusoidal variation between the supports. The material properties simulate 
high modulus graphite / epoxy composite: EL = 25 106 [psi], ET = 106 [psi], GLT = 0.5 106 
[psi], GTT = 0.2 106 [psi], νLT = νTT = 0.25, where L denotes the direction parallel to the 
fibres and T is the transverse direction. A two layer, antisymmetric lamination scheme 
(0/90) is assumed here. The layers have equal thickness and their material properties 
represent the case when the reinforcing fibres are parallel to the strip length in the bottom 
layer and perpendicular in the top one. Complete layer interaction is assumed. 
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Figure 16 Two layer Pagano test, q0 = 30 [psi] 

 
In the finite element beam model the plate effects are accounted for by specifying the 
bottom material properties ( )LTTLLEE νν−= 1BOT , LTGG =BOT  and the top material 

properties ( )TLLTTEE νν−= 1TOP , TTGG =TOP . The interface slips are suppressed by 
large interface stiffness (k = 1012 [psi/in]). Geometric proportions and boundary conditions 
are shown in Figure 16. A uniform mesh of twenty finite elements per half span is used. 
The sinusoidal load distribution is approximated by element constant one. 
Two finite element solutions employing one and four sub-layers in each material layer are 
presented. As in the previous example, transverse refinement significantly improves the 
transverse shear stress distribution (compare Figure 17 and Figure 18), the interface shear 
stresses are in close agreement with the reference solution and satisfactory shear stress 
distribution can be obtained through the proposed post-processing technique. 
Independently of transverse refinement, the finite element results show certain discrepancy 
with respect to the 2D elasticity solution. This is manifested by smaller shear stress in the 
upper material layer and should be ascribed to the assumption of zero transverse strain in 
the adopted model. Some characteristic numerical results are summarized in Table II. 
 

Table II Numerical results for Pagano test 

 ( )Lxv 5.0=  [in] ][
)0,0(

0

−==
q

yxτ
 

2 layer FE solution –0.0031148 0.85508 
8 layer FE solution –0.0032584 0.85042 
elasticity solution –0.0032414 0.91348 
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Figure 17 Normalized shear stress distribution at the support, 2 layer FE solution 
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Figure 18 Normalized shear stress distribution at the support, 8 layer FE solution 

 

2.3.4. Ren test 
 
Ren [47] performed an extension of the Pagano solution procedure to the analysis of 
laminated plate strips in cylindrical co-ordinates. Figure 19 shows a simply supported 
beam spanning over angle o60=φ  and of radius 10=R  [in]. Laminated beam thickness is 

defined through non-dimensional parameter hRS = ; two cases are here considered 
10=S  and 50=S . Material properties are identical as in the preceding Pagano test, 

lamination scheme is (0,90,0), the layers are of equal thickness and complete layer 
interaction is assumed. 
 

R

( )φθπθ sin)( 0qq =

θ

φ

r

h

 

Figure 19 Simply supported, cylindrical plate strip 
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Table III and Table IV compare the elasticity solution and the finite element ones obtained 
with a uniform mesh of 20 elements and 3 layers corresponding to the three material 
layers. Tabulated transverse deflection and stresses are normalized as follows: 
 

)97(                    
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Table III Ren test, S = 50 

 ⎟
⎠
⎞

⎜
⎝
⎛ ==

2
,

φθRrw  ⎟
⎠
⎞

⎜
⎝
⎛ ==

2
,

2

φθσθθ
h

Rr m  ( )0, == θτθ Rrr  

Elasticity 0.808 − 0.798 
0.782 

0.526 

FE, initial 
curvature 

0.8134 − 0.7851 
0.7778 

0.5225 

FE, no initial 
curvature 

0.8130 − 0.7849 
0.7776 

0.5223 

 

Table IV Ren test, S = 10 

 ⎟
⎠
⎞

⎜
⎝
⎛ ==

2
,

φθRrw  ⎟
⎠
⎞

⎜
⎝
⎛ ==

2
,

2

φθσθθ
h

Rr m  ( )0, == θτθ Rrr  

Elasticity 0.144 − 0.995 
0.897 

0.525 

FE, initial 
curvature 

0.1425 − 0.9187 
0.8778 

0.5084 

FE, no initial 
curvature 

0.1424 − 0.9185 
0.8776 

0.5083 

 
It can be observed that the quality of the finite element solution deteriorates when 
parameter S decreases. This is expected, as present FE formulation is developed in 
Cartesian co-ordinates. As relatively dense FE mesh is used, including initial element 
curvature in the form of Marguerre strain has negligible effect on FE results.  
The normalized stress distributions are plotted in Figure 20 and Figure 21. As observed in 
[47], these distributions become clearly unsymmetrical in respect to the beam midline with 
diminishing parameter S. 
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Figure 20 Normal stress ( )2φθσθθ =  
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Figure 21 Layer wise parabolic shear stress ( )0=θτθz  

 

2.3.5. Buckling of laminated columns 
 
The analytical considerations presented in [45] show that the stiffness of a laminated 
structure with partial layer interaction does not change proportionally to the interface 
stiffness and, in addition, it depends on the structure deformation mode. Evidence to that 
fact is provided by considering buckling of a two layer pinned column shown in Figure 22. 
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Figure 22 Stability of a two layer column  
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Under the assumption of Bernoulli kinematics at the layer level, [45] gives the consecutive 
buckling loads of the laminated column in the form:  
 

)98(                                                                                            ),(][][ knPP nn
k η∞= 

 
where n is identification number of the consecutive buckling load (n = 1 corresponds to the 
Euler load), k is uniform interface stiffness, ][nP∞  are the buckling loads for the case of 
complete layer interaction and ),( knη  describes buckling load evolution in terms of 
interface stiffness and deformation mode: 
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where 123bhI =  is moment of beam cross section inertia for the case of complete layer 

interaction and Ehk42 =ϖ . ∑=
layer

layer II2β  is a geometric parameter, which for the 

chosen layer setup is 25.02 =β . Hence, the buckling loads of the considered beam setup 
are contained between two limits. When the interface rigidity assures complete layer 
interaction 1),(lim =∞→knη , and when the layers work independently 

25.0)0,(lim =→knη .  
Assuming arbitrary values of geometric and material properties 100=L  [mm], 1== bh  
[mm] and 410=E   [MPa], Table V gives a comparison of the reference and present FE 
solution obtained with a uniform mesh of 30 elements. In order to enforce the Bernoulli's 
type of kinematics at the layer level, large layer shear stiffness 1010=G   [MPa] is used in 
the FE model. It can be observed that the two solutions are in excellent agreement. 
 

Table V Buckling loads of laminated beam-column with partial layer interaction 

]1[][
k

n
k PP  1=n  2=n  3=n  4=n  

reference         ( )∞→k  1.00 4.00 9.00 16.00 

FE         ( )∞→k  1.00 4.00 9.00 16.01 

reference   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

4L

Eh
k

π
 1.00 2.56 4.68 7.52 

FE   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

4L

Eh
k

π
 1.00 2.56 4.68 7.53 

 
The nonlinear dependence of laminated column stability on the interface stiffness and the 
deformation mode is further illustrated in Figure 23, where function ),( knη  is plotted for 
four consecutive buckling modes.  
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Figure 23 Laminated column stability in function of interface stiffness and deformation 
mode 

 
Above considerations explicitly reveal the complexity of weak interface influence on 
laminated structure behaviour. Using a simple, linear interface constitutive model it is 
shown that the laminate rigidity is a nonlinear function of the interface stiffness, as well as 
the structure deformation character. 
 

2.3.6. Beam-column with partial interaction 
 
Influence of shear deformability on the response of a simply supported beam-column 
considered in [20] and [19] is here investigated. Figure 24 shows the structure 
configuration and boundary conditions. The normal, compressive load Qx = 50 [kN] is 
distributed between the two layers accordingly to their axial stiffness (so that it does not 
induce any bending of straight column). A constant, transverse load q0= –1 [kN/m] is 
applied at the top of the second layer. The material properties correspond to wood and 
concrete in the bottom and the top layer respectively. As the referenced works did not 
address shear deformations, only Young’s modulus was specified for each layer: E(1) = 8 
[GPa], E(2) = 12 [GPa]. In present work, two cases are considered. First, large shear 
stiffness at both layers is assumed. Hence, Bernoulli's type of layer kinematics is enforced 
and the reference solutions are reproduced. Next, influence of layer shear deformations is 
considered. For wood (the bottom layer), a representative ratio 20)1()1( =GE  is assumed. 

For concrete (the top layer), Poisson ratio is assumed to be ν(2) = 0.2. Hence, G(2) = 5 
[GPa]. Partial interaction between the two layers is provided by shear connectors. In the 
referenced works, behaviour of these connectors is characterized using interface stiffness K 
= 50 [MPa]. Employing relation (39) the interface stiffness is here k(2) = 1 [GPa/m]. A 
uniform mesh of twenty elements is used. 
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Figure 24 Beam-column with partial interaction 

 
The linear results are compared in Table VI, where MAXv  is maximum deflection, )(

MAX
layM , 

)(
MAX

layN , )(
MAX

layV  are maximum layer stress resultants, and MAXF  is maximum shearing force at 
the interface (F = Kg(2) = b(1)k(2)g(2)). Suppressing layer shear deformations, fine agreement 
with both reference solutions is obtained. Including shear deformations, deflection of the 
beam-column increases by 5%, but the interface slip/shear remains unchanged. As the 
rigidity of the bottom layer is significantly reduced (small shear stiffness) this layer is 
partially unloaded and the stresses in the top layer increase. Noteworthy, in geometric 
linear solution, there is no re-arrangement of layer normal force due to change of layer 
shear stiffness. 
 

Table VI Geometric linear results 

 
analytical, 

[20] 
FE, 
[19] 

FE, present, 
shear 

deformations 
suppressed 

FE, present, 
shear 

deformations 
allowed 

change 
due to shear 
deformations 

[%] 

MAXv  [mm] –7.560 –7.559 –7.560 –7.935 5.0 
)1(

MAXM  [kNm] 0.4977 0.4978 0.4984 0.4915 –1.4 
)2(

MAXM  [kNm] 0.1659 0.1659 0.1661 0.1731 4.2 
)1(

MAXN  [kN] 0.863 0.862 0.884 0.884 0.0 
)2(

MAXN  [kN] –50.863 –50.862 –50.884 –50.884 0.0 

MAXF  [kN/m] 11.444 11.442 11.444 11.444 0.0 

 
 
If Bernoulli kinematics at the layer level is enforced, the buckling load provided by present 
finite element formulation ]kN[0.271FEM

Bcr =Q  corresponds closely to the value obtained 

analytically in [20] ]kN[0.271ref
cr =Q . Allowing for layer shear deformation, the buckling 

load decreases by 4.8% ( )]kN[9.257FEM
Tcr =Q . 

Geometric nonlinear results are summarized in Table VII. As the relative displacements 
and rotations remain small, the linearized second-order analysis performed in [20] provides 
sufficiently accurate estimation of the geometric nonlinear effects. Noteworthy, stress re-
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distribution taking shear deformations into account is more pronounced in geometric 
nonlinear analysis and affects layer normal forces and the interface shearing force. 
 

Table VII Geometric nonlinear results 

 
analytical, 

[20] 
FE, 
[19] 

FE, present, 
shear 

deformations 
suppressed 

FE, present, 
shear 

deformations 
allowed 

change 
due to shear 
deformations 

[%] 

MAXv  [mm] –9.276 –9.274 –9.276 –9.851 6.2 
)1(

MAXM  [kNm] 0.6126 0.6157 0.6168 0.6151 –0.3 
)2(

MAXM  [kNm] 0.2054 0.2052 0.2056 0.2169 5.5 
)1(

MAXN  [kN] 3.897 3.918 3.954 4.145 4.8 
)2(

MAXN  [kN] –53.897 –53.933 –53.954 –54.145 0.4 

MAXF  [kN/m] 13.878 13.881 13.865 14.022 1.1 

 

2.3.7. Uniform bending of cantilever 
 
This classical benchmark problem is adopted here in the form allowing for geometric 
nonlinear validation of laminated beam models with inter-layer slip. Figure 25 shows two 
adjacent cantilevers of equal length L. Bending moment applied to the tip of the first 
(bottom) beam is chosen to deform it into a quarter of a circle: 
 

)100(                               
( )

)1(

3)1()1(
)1()1(

12R

hb
EM = 

 
where πLR 2)1( =  is radius of the bottom beam midline, )1(E  is the beam Young’s 

modulus, and )1(b , )1(h  are its width and thickness. Requiring the second beam to bend 
into a concentric arc defines the moment applied at the upper beam tip: 
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where ( ))2()1(

2
1)1()2( hhRR +−=  is the radius of the second beam midline, )2(E  is the 

second beam Young’s modulus, and )2(b , )2(h  are its width and thickness. Provided that 
the two beams can slip freely, they should deform so that neither transverse separation nor 
transverse reactions develop. Slip at their interface is: 
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−−= 

 
Using the proposed model, the beam assembly is represented as a two layer laminate with 
zero interface stiffness. Laminate reference line is chosen to be the bottom beam midline. 
Geometric and material properties are: L = 100 [mm], h(1) = 3h(2) = 3 [mm], b(1) = b(2) = 1 
[mm], and 2E(1) = E(2) = 24.0 [GPa], 2G(1) = G(2) = 9.6 [GPa]. 
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Table VIII gives the summary of numerical results obtained with a uniform mesh of ten 
elements. This, relatively coarse, mesh is sufficient to obtain fine agreement with the 
proposed benchmark. It can be observed, that the layer bending moments returned by 
present model do not correspond exactly to the applied load. Instead, they are redistributed 
proportionally to the layer bending stiffness: 
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This should be attributed to the use of linearized kinematic relations (unique transverse 
displacement throughout beam thickness) in the co-rotated element frame 
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x

y
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Figure 25 Two cantilevers bent into concentric arcs (figure to scale) 

 

Table VIII Uniform bending of the two layer assembly 

 Analytical  FE (10 elements) error 
v(x=L) [mm] R(1)= 63.662 63.743 0.1 % 
u(x=L) [mm] R(1)–L= –36.338 –36.481 0.4 % 
g(x=L) [mm] 3.167 3.149 0.6 % 
M(x=0.5L) 

[Nmm] 
M(1) = 424.115 
M(2) =  32.435 

M(1) = 425.064 
M(2) =   31.486 

0.2 % 
2.9 % 

max |V(x)| [N] V(1)= V(2)= 0.000 0.460 - 
max |N(x)| [N] N(1)= N(2)= 0.000 0.249 10–6 - 

 
A minor perturbation of the FE results can be observed near the laminated beam tip, where 
the layer bending moments are driven to match the applied load system. As a result, a 
small transverse reaction is developed between the layers. This is manifested by 
appearance of opposing transverse layer forces (total transverse force remains zero). As 
this perturbation is due to the use of linearized kinematic relations, it remains small if small 
strain, moderate slip postulates are satisfied. For example, in the considered case, the ratio 
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of the maximum normal stress to the maximum shear stress ( )yLxlay
xx ,max )( =σ  / 

( )yLxlay
xy ,max )( =τ  remains above 100 in both layer cross-sections. 

 

2.3.8. Nonlinear buckling of sheathed walls 
 
A discussion on nonlinear buckling of a sheathed wood wall presented in [48] is here 
referenced. The wall setup consists of a simply supported stud with sheathing applied to 
one of its sides. The geometric parameters of the model are shown in Figure 26. Young’s 
modulus of the stud and the sheathing is E(1)= 7.84 [GPa] and E(2)= 4.90 [GPa], 
respectively. Wood shear deformations are not considered. Partial interaction of the two 
layers is obtained through nail connection characterized by a linear spring model (K  = 49 
[MPa]), which for present formulation is k  = K/b(1) = 1.28947 [MPa/mm]. 
Employing uniform mesh of thirty elements and suppressing layer shear deformations by 
large (penalty) shear stiffness, the linear buckling load of FEM

crQ = 58.04 [kN] is obtained. 

This corresponds closely to the reference analytical solution ref
crQ = 58.19 [kN]. 

A notion of wall centre of compression introduced in [48] corresponds to the location in 
the wall thickness where the applied boundary condition system (the normal, compressive 
force Qx, and the supports) results in minimal deflection. Measured from the stud midline, 
the centre of compression for the considered wall is e ≈ 13.25 [mm] (it is worth noting that 
the location of the wall centre of compression depends on the interface stiffness). 
 

 e  x 

 y 

 h (2)= 9 [mm] 

 h(1)= 88 [mm] 

 b(1)= 38 [mm] 

 b(2)= 341 [mm] 

 L= 2400 [mm] 

xQ

 

Figure 26 Sheathed wall setup 

 
Figure 27 shows dramatic change of the wall behaviour when boundary conditions are 
applied at three nearby locations: e = 15.00 [mm], e = 13.25 [mm] and e = 11.50 [mm]. 
Additionally, pronounced changes in deformation patterns for various load levels indicate 
considerable geometric nonlinear behaviour before buckling load is reached. Evidence to 
this is also provided in Table IX, where geometric linear and nonlinear deflections are 
compared. 
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Figure 27 Transverse deflection patterns for various boundary conditions 

 

Table IX Deflections at wall centre, Qx = 40 [kN] 

 
e = 15.00 

[mm] 
e = 13.25 

[mm] 
e = 11.50 

[mm] 
present, linear, FE – 1.1355 0.3308 1.7972 

present, nonlinear, FE – 4.4738 0.3823 5.2387 
second order, analytical 

[48] 
– 4.4805 0.3823 5.2451 

 
An interesting effect of slip reversal near the buckling load for the case of e = 11.50 [mm] 
is shown in Figure 28. 
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Figure 28 Evolution of the interface slip at the wall tip, FE results 

 

2.3.9. Nonlinear response of hyperstatic laminated beam 
 
Laminated structures with large degree of transverse anisotropy can exhibit substantial 
geometric nonlinear behaviour at small loads and deflections. This effect is here presented 
on the example of a two-layer, asymmetrically laminated plate strip considered in [49] and 
[17]. As shown in Figure 29, the laminate is pinned at two opposite ends and loaded with 
uniform transverse load q . 
 

q

x

L

y

toth

 

Figure 29 Pinned-pinned, asymmetrically laminated plate 

 
The geometric parameters are: width b=1.5 [in], thickness htot = 0.04 [in], length L = 9 
[in]. The material properties are: E1 = 20 [msi], E2 = 1.4 [msi], ν = 0.3, G12 = G13 = G23 = 
0.7 [msi], where direction 1 is parallel to the fibres, while 2 and 3 are perpendicular. 
Lamination scheme is (90/0). In present beam formulation, the plate effects are accounted 
for by specifying material properties of the layers as: ( )12212

)1( 1 νν−= EE , 23
)1( GG = , 

( )21121
)2( 1 νν−= EE , 12

)2( GG = . The interface slips are suppressed by large interface 

stiffness 7)2( 10=k  [msi/in]. A uniform mesh of 20 elements is used. 
For the supports located at the laminate midline, Figure 30 shows maximum plate 
deflection in function of the load amplitude. The geometric nonlinear effects appear 
instantly and are significant within small displacement range. Noteworthy, strong 
dependence on the load direction can be observed. 
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Figure 30 Geometric nonlinear response of laminated plate, supports at plate midline 

 
Figure 31 shows response of the laminate when the supports are displaced to the bottom of 
the first layer. The dependence on loading direction is more pronounced here and the snap-
through type of behaviour is observed. 
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Figure 31 Geometric nonlinear response of laminated plate, supports at plate bottom 

 

2.3.10. Steel-concrete bridge deck 
 
Addressed here is nonlinear behaviour of continuous steel-concrete bridge deck 
experimentally investigated by Teraszkiewicz [50] and further discussed in [29]. The 
bridge consists of steel I beam and an overlying concrete slab. Partial interaction between 
the two sub-components is enforced through uniformly spaced shear studs. Details of the 
configuration are shown in Figure 32.  
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Figure 32 Continuous steel-concrete bridge deck 

 
Elasto-plastic behaviour of the steel I beam is governed by a bi-linear hardening law with 
Young’s modulus 5

st 1007.2=E  [MPa], yield stress 08.307sty =σ  [MPa] and hardening 

ratio 005.0st =α . Additionally, a representative value of Poisson constant 3.0st =ν  is 

assumed in elastic domain. The I beam is subdivided into three layers corresponding to its 
flanges and the web. Interface slips between these layers are suppressed by large interface 
stiffness. 
The concrete slab is also subdivided into three layers, with the second layer corresponding 
to steel reinforcement of the slab. This layer is located at 80% of the total slab thickness 
and its thickness is chosen to obtain the area of reinforcement 16.445r =A  [mm2]. Elasto-
plastic behaviour of the reinforcement is governed by a bi-linear hardening law with 
Young’s modulus 5

r 1007.2=E  [MPa], yield stress 321ry =σ  [MPa] and hardening ratio 

005.0r =α .  Poisson constant 3.0r =ν  is assumed in elastic domain of the reinforcement. 
Modelling inelastic behaviour of the concrete layers requires special attention. Following 
[29], the concrete is assumed not to possess any tensile strength and its behaviour in 
compression is characterised by an initial modulus 8.16270c =−E  [MPa], maximum 

compressive stress 677.40cu −=−σ  [MPa] and compressive crushing strain 006.0ccr −=−ε  

where the stress level instantly drops to zero. The above characteristic is used here only for 
the normal stress-strain relationship, whereas the shear stress-strain relation is assumed 
linear, symmetric (with shear modulus )1(2 ccc ν+= −EG  and 25.0c =ν  arbitrarily 

assumed). This grossly simplified approach seems, nevertheless, sufficient in this 
particular problem where shear deformations of the concrete slab are negligible. A more 
rigorous approach would necessitate change of yield criterion in the radial return 
development of paragraph 2.1.3. However, it can be observed that assuming lack of tensile 
concrete strength leads to instant failure of the top layer at the mid support of the deck 
( )Lx = . This would result in null tangent constitutive matrix for this layer and, in 
consequence, singular stiffness matrix would be obtained. Thus, in order to stabilize 
numerical solution, some small shear stiffness would have to be defined for the failed top 
layer of concrete. 
Nonlinear behaviour of shear studs, providing interaction between the steel beam and the 
concrete slab, is idealized using a power law in the form: 
 

)104(                                                                                    ( )intuint1intu
fgk

eff
−−= 

 
where g  [mm] is the interface slip, 82.5int =uf  [MPa] is the ultimate load carrying 

capacity of the interface and 54.27int =k  [MPa/mm] is the initial tangent modulus. [29] 
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provides somewhat vague estimation of the shear connector failure for the interface slip 
4.1±=ug  [mm]. 

Figure 33 provides graphical interpretation to the constitutive laws used for steel, concrete 
and shear studs.  
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Figure 33 Constitutive laws for steel (a), concrete (b) and shear studs (c) 

 
Figure 34 shows load-deflection curve obtained with uniform mesh of thirty finite 
elements. The shear connector failure occurs at the load 4.139FEM1

ult −=Q  [kN]. However, 

due to the yield plateau of the employed interface constitutive model, the FE solution 
remains smooth until 4.144FEM2

ult −=Q  [kN], where compressive failure of concrete slab 

occurs in the load application zone and the deflection radically increases. This is in fine 
agreement with the experiment, for which interface failure was registered at 4.150exp

ult −=Q  

[kN] and concrete spalling was reported briefly before reaching the ultimate load 
(indicating that concrete slab failure was imminent).  
In addition, numerical and experimental results are here compared for the load 

5.121−=xQ  [kN], being 81% of the experimentally measured ultimate load. Double 

experimental results along the beam length in Figure 35 and Figure 36 correspond to the 
values measured for the left and the right span. As indicated in [51], these discrepancies 
can be well accounted for by assuming a small asymmetric change of interface stiffness in 
the two spans of the beam. 
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Figure 34 Load-deflection curve for continuous bridge deck, FE results 
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Figure 35 Transverse deflection at 5.121−=xQ  [kN] 

 

-0.6

-0.3

0

0.3

0.6

0.0 558.8 1117.6 1676.4 2235.2 2794.0 3352.8

x [mm]

g
(x

) 
[m

m
]

FE

EXPERIMENT
 

Figure 36 Interface slip at 5.121−=xQ  [kN] 

 
It can be added that the geometric nonlinear effects in present analysis are negligible. This 
can be deduced from Figure 34, showing that the transverse deflections remain small until 
ultimate state is reached. 
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2.4. Summary for beam formulation 
 
The above development provides a model suitable for geometric and material nonlinear 
analysis of laminated beams with inter-layer slips. Remarkable property of the proposed 
formulation is the balance between simplicity (computational efficiency) and quality of the 
results. Two properties deserve particular attention. First, evidence is provided to the 
robustness of the co-rotational formulation in dealing with large displacements of 
laminated beams. Second, a relatively simple model based on FSDT is shown to provide 
reliable transverse shear stress distributions. It should also be underlined that the 
development is made for an arbitrary number of layers. Hence, remarkable flexibility is 
provided for modelling complex engineering problems. Performance of the proposed 
model is tested in a series of demanding numerical tests and the FE results are found to be 
in satisfactory agreement with all benchmarks. 
 
When compared to classical beam formulations, the proposed laminated beam model offers 
significant improvement in modelling capabilities. As usually in such cases, this is 
obtained at the expense of greater susceptibility to numerical problems. An overview of 
these problems is provided here. The discussion is sub-divided into three main categories: 
reliability of layer stress/strain fields, layer interface problems and singularity of numerical 
solution. 
As in 2D elasticity, present model may return singular stress distributions. This can occur 
in presence of point-wise bending moment, point-wise normal force, or equivalently for 
normal reaction developed at a pin support. In such case, performing transverse 
refinement, singular stress concentration is revealed. If this refinement is excessive, 
numerical solution using higher order elements may become ill conditioned. It is 
manifested by perturbation of the bending moment distribution at the layer where the point 
load (or support) is applied. This is due to the fact that the layer bending stiffness 
diminishes with cube of the layer thickness, while normal and shear stiffness are linear 
functions of the thickness. Noteworthy, this perturbation spreads through the entire layer 
(beam) length. On the other hand, the layer-wise shear stress field is not prone to singular 
concentrations. This is due to uniqueness of transverse displacement in laminated beam 
thickness. However, this property leads to poor quality of shear stress estimation at built-in 
supports. Suppressing transverse displacements and layer rotations at the same time is 
observed to drive layer shear stress re-distribution proportional to layer shear rigidity. 
Hence, in vicinity of this type of boundary condition, transverse shear stress distribution 
provided by present formulation is not reliable. Notably, this rearrangement has no effect 
on estimation of the global transverse force.  
Using linearized kinematic relations, the interface slip variable is effectively the axial 
component of the real slip. Hence, if the reference configuration is curved, its 
approximation by assembly of straight elements leads to inconsistency of interface slip 
interpretation at element junctions. As a result, a small perturbation of interface slip 
distribution can be observed for higher order elements (with at least quadratic variation of 
interface slip within element). It should be noted that, if the small-strain / shallow-
curvature assumptions are satisfied, the terms simplified in the linearization of kinematic 
relations are negligible, and hence, solution perturbation remains small. Another problem 
associated with interface is the possibility of numerical solution ill conditioning due to 
applying excessive interface stiffness with respect to layer shear stiffness. This might take 
place if large interface stiffness is employed to simulate complete layer interaction. 
However, performed numerical experiments show that the developed elements support 
well order of interface stiffness three to four times larger than the order of layer shear 
stiffness. This is usually sufficient to suppress the slippage effects to negligible level.  
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Using the proposed formulation special attention need to be paid to avoiding singularity of 
the FE solution. Two major cases can be distinguished here. If element reference layer or 
one of external layers has zero stiffness, the element stiffness matrix has zero diagonal 
terms. This property is of particular importance in material nonlinear analysis where such 
condition may occur due to layer yielding. Interestingly, in all other cases (zero stiffness of 
non reference, internal layers and zero interface stiffness), the element stiffness matrix 
does not have zero diagonal terms. This is due to the additive character of the kinematic 
relations. Another important aspect is preventing rigid-body-motion within laminate. 
Though this problem can be easily eradicated, its presence is not always evident. For 
example, note that having zero interface stiffness or zero layer stiffness can be admissible 
in a cantilever but will lead to singular stiffness matrix for a simply supported 
configuration. 
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3. Plates 
 
Proposed here is a model of laminated plate with weak layer interfaces. The development 
is largely similar to the laminated beam formulation obtained in previous paragraphs. 
Hence, presented are only its key components and the main accent is put on novel aspects. 
In sharp contrast to the beam model, present development is restricted to moderate 
displacements and the Total Lagrangian FE formulation. This is due to the fact that the use 
of the co-rotational FE formulation, to account for large rigid-body-motion of a 2D 
element, would require the shallow shell approach rather than the plate one.  
The material nonlinear effects are also not considered. This however can be 
straightforwardly included noting the well-known Reissner-Mindlin plate formulation at 
the layer level. 
 

3.1. Theoretical development 
 
Laminated plate is here assumed to lie in x-y plane and layer stacking sequence follows the 
z ordinate direction. Layers are of uniform thickness )(layh . Independent variable set 
consists now of 14 +Nlay  components. These are, three reference plane displacements 

( ( )yxu , , ( )yxv , , ( )yxw , ), Nlay2  layer cross-section rotations ( ( )yxlay
x ,)(θ , ( )yxlay

y ,)(θ ) 

and ( )12 −Nlay  interface slips ( ( )yxg int
x ,)( , ( )yxg int

y ,)( ). Right-Hand-Rule (R-H-R) is used 

for sign convention of layer cross-section rotations. 
 

3.1.1. Kinematic relations 
 
In 2D problems the FSDT is known as the Reissner-Mindlin plate theory. Applying it at 
the layer level, the following linearized kinematic relations can be written: 
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where for the reference layer (lay = ref): 
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for the layers above the reference layer (lay > ref): 
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and finally, for the layers below the reference layer (lay < ref): 
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In the above, layer index ref  and local ordinate )(

ecc
refz  are used to define location of the 

reference plane in laminate thickness. Interface slips are again taken as measures in 
deformed configuration. Using the small-strain and the moderate-slip assumptions )(int

jg  

( )Nlayintyxj ,...,3,2;, ==  is here defined as a line measure of interface slip in direction 
j . Thus, the norm of the total interface slip can be written as: 

 

)109(                                                        ( ) ( )[ ] ( )[ ]2)(2)()( ,,, yxgyxgyxg i
y

i
x

i += 

 
It should be noted that )(i

xg  and )(i
yg  constitute a 2D vector field dependent on the choice 

of the reference frame. In here developed plate formulation the reference frame may at 
most be subject to 1D rotation (about the z axis). Thus, transformation of so defined 
interface displacement field does not pose a particular problem. On the other hand, it can 
be deduced that constructing consistent transformation of this field can be rather 
cumbersome when the reference frame is subject to arbitrary 3D rotations (as it is the case 
in the co-rotational shallow shell formulation). 
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3.1.2. Geometric relations 
 
The layer-wise strain field of the von Kármán type can now be written as: 
 

)110(                                               

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

∂
∂+

∂
∂=

∂
∂+

∂
∂=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂

∂+
∂

∂+
∂

∂=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂+
∂

∂=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂+
∂

∂=

z

v

y

w

z

u

x

w

y

w

x

w

x

v

y

u

y

w

y

v

x

w

x

u

laylay
lay

yz

laylay
lay

xz

laylaylaylay
lay

xy

laylay
lay

yy

laylay
lay

xx

)()(
)(

)()(
)(

)()()()(
)(

2)()(
)(

2)()(
)(

2

1

2

1

γ

γ

γ

ε

ε

 

 
It should be noted here that in the Total-Lagrangian formulation, derivatives are performed 
with respect to the initial reference frame and total displacements are used. 
To simplify further developments, relation (110) is re-cast here in the matrix notation: 
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3.1.3. Constitutive relations 
 
In present development only linear constitutive relations are considered. At the layer level, 
these can be written in the following compact form: 
 

)115(                                                                                            )()()( laylaylay εDσ = 

 
where )(layσ  and )(layε  are vectors grouping layer stress and strain components and )(layD  is 

layer constitutive matrix. Assuming that layer material is linear, orthotropic and that its 
principal axes coincide with axes of the plate reference frame, the Hooke’s law for plane 
stress problems states: 
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where )()()()( lay

y
lay

xy
lay

x
lay

yx EE νν =  in order to satisfy the requisite of the constitutive matrix 

symmetry. If material principal axes do not coincide with the plate reference frame, the 
constitutive matrix needs to be rotated to this frame, see e.g. [1]. 
  
Interface constitutive relation is here expressed using analogous matrix notation: 
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where 
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As in case of beams, reactions developed at an interface are interpreted here as the 
interface shear stresses )(intf  ]m/N[ 2 . Assuming that interface is linear, orthotropic, with 

two principal axes corresponding to the laminated plate reference frame axes, the 
constitutive matrix )(intk  takes the following form: 
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As in the case of layer Hooke’s law, there is no coupling assumed between two interface 
shear components. 
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3.1.4. Equilibrium relations 
 
Considerations on laminated plate equilibrium start here from introducing the notion of 
layer stress resultants. These are defined here in the classical form used in the plate 
analysis: 
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where yxji , and =  and (lay)(lay)(lay) hhz 5.0,5.0−∈ . It should be remembered that the 

physical interpretation of so defined stress resultants is the intensity of layer forces and 
bending moments along layer cross-section. Considering a small layer segment yxdd , 
these intensities can be reduced to the total forces and moments applied in the middle of 
the segment facets. Figure 37 provides graphical interpretation and sign convention for 
these forces. 
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Figure 37 Sign convention for layer stress resultants 

 
The strong form of layer equilibrium can now be obtained following the usual approach for 
Reissner-Mindlin plates, see e.g. [52]: 
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where )(lay

xq , )(lay
yq , )(lay

zq  refer to components of distributed loading applied at  the mid-

plane of a the layer segment yxdd . As usual in plate analysis, distributed bending moments 

are not considered. )(l
if  and )(l

zp  ( )1, += laylayl  are interface shear and normal stresses at 

layer top and bottom. Analogously to the preceding beam development, normal interface 
stresses can be eliminated from laminated plate equilibrium by summing up relations 
(125): 
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where 
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Hence, (121) to (124) and (126) constitute 14 +Nlay  equilibrium relations necessary to 
resolve the proposed laminated plate model. 
 
Following the derivation scheme presented for laminated beams, the weak equilibrium of 
laminated plate can be provided in the classical form of the Principle of Virtual Work 
( )0=+ extint WW δδ . In this case, the virtual work of internal forces takes the following 

form: 
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In the above relation all layers are assumed of identical shape. Thus, all interfaces have 
equal area A  and layer volume is )()( laylay AhΩ = . The virtual work of external forces is: 
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As the shape of all layers is identical, a simplified notation iΓ  is used here to denote layer 

mid-plane edge with normal direction i=x,y. Thus, yΓ x dd =   and xΓ y dd = . Additional 

index σ  is used to underline the fact that considered are only edge portions with imposed 
natural boundary conditions. )(lay

ijN , )(lay
ijM  and iQ  are the imposed force and bending 

moment intensities on relevant edge segment σ
iΓ . 
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3.2. Finite element development 
 
Presented in this section is the development of laminated plate FE matrix formulation and 
its implementation in the form of four node quadrilateral element. 
 

3.2.1. Total-Lagrangian finite element formulation 
 
It should be remembered that present development is made in view of geometric nonlinear 
Total-Lagrangian FE formulation. Hence, integration of element vectors and matrices is 
performed over the initial element configuration and total displacements are used at all 
times. 
Typical plate elements have either triangular or quadrilateral topology. In the simplest 
case, these are the three node triangle and the four node quadrilateral. Thus, the vector of 
plate element degrees of freedom d  can be written as: 
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where md  (m = A,B,C,...) are vectors of nodal DOFs. In present development these can be 

written in the following form: 
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Choosing element topology implies the interpolation scheme used to approximate the 
element kinematic field (105): 
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xyx ggwvu θθθθ=u  is the transpose of a 14 +Nlay  

vector of  independent kinematic variables. If Lib  is used to denote the total number of 
element degrees of freedom (dimension of vector d ), the matrix of element shape 
functions ( )yx,N  is ( ) LibNlay ×+14 . 
The element virtual displacement and virtual strain fields can be written in the form 
analogous to the beam formulation: 
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Following the strain decomposition given in (111) , the matrix )(layB  can be decomposed 

into linear and geometric nonlinear components: 
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It should be remembered that in present plate formulation there are five strain components. 
Hence, dimension of all B  matrices is Lib×5 .  
To simplify further development, yet one more matrix definition is here introduced: 
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where ( )yxint

g ,)(N , Nlayint ,...,2=  are Lib×2  sub-matrices of ( )yx,N , containing only 

interpolation functions used for given interface. 
Employing relations (133) to (136), the virtual work of element internal and external forces 
can now be expressed as: 
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where the vector of element internal forces is: 
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As in the preceding beam formulation, the vector of element external forces extQ  is to be 

established with the aid of layer-wise kinematic relations. Despite its lengthiness, this 
operation does not bring in any novel aspects and hence it is not discussed. 
Passage from element to structure level and obtaining matrix formulation for the Newton-
Raphson iterative solution algorithm adhere to the development presented for the 
laminated beam formulation. Hence, for the sake of completeness, only the final form of 
element tangent stiffness matrix is recalled here: 
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where matrix ( )dK  is now defined as: 
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Analogously to the beam formulation, evaluation of the initial stress matrix ( )dKσ  can be 

considerably simplified: 
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where xyyyxxij ,,= . Hence, the initial stress matrix is obtained as a sum of three sparse 

matrices 
2

2

d

ε
∂
∂ ij  multiplied by sums of relevant layer force intensities. 

Analogously to the preceding beam formulation, it can be noted that present formulation 
can be down-graded to address geometric-linear problems, as well as, linearized buckling. 
Alternatively, using some well-known material non-linear approaches for Reissner-
Mindlin plates, e.g. [33], the above matrix formulation can be trivially extended to include 
material non-linear effects at the layer level. 
 

3.2.2. Element topology and mapping 
 
Element chosen for FE implementation of the developed plate formulation is the four node 
quadrilateral with bi-linear interpolation of all kinematic variables. Figure 38 shows an 
arbitrary element shape in global reference frame (X-Y-Z). The element is defined by four 
corner nodes 1, 2, 3, and 4. Auxiliary points A, B, C and D are established as the element 
edges mid-points. The x  axis of the element local frame (x-y-z) is chosen along segment 
D-B, with origin at point O. The y  axis is orthogonal to the x  axis, and lies in plane 
defined by segments A-C and D-B. The z  axis is then constructed as orthogonal to x  and 
y  axes. As indicated in [53], this choice of element local frame allows for an elegant 
treatment of warped element configuration. Hence, it is particularly suitable for future 
extension to the co-rotational laminated shell formulation. 
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Figure 38 Quadrilateral plate element reference frame and mapping 

 
Figure 38 shows also natural element configuration defined in non-dimensional (natural) 
reference frame (ξ-η-ζ). In this configuration the element shape functions are defined as: 
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where 4,3,2,1=n  refers to the element nodes and 1, ±=nn ηξ  are non-dimensional co-

ordinates of these nodes. Element spatial co-ordinates can now be mapped using the 
element shape functions and nodal co-ordinates: 
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where [ ]yx,T =x  and [ ]ηξ ,T =ξ . Layer transverse ordinate can be trivially expressed as: 
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In order to complete the discussion on element mapping, spatial derivatives need to be 
expressed in the natural reference frame. This can be written in the following compact 
form: 
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where x∂∂ξ  is defined in the usual manner (compare to e.g. [54]): 
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and  (143) stipulates that: 
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3.2.3. Rotation of element vectors and matrices 
 
As shown in Figure 38 base vectors of the global and element reference frames are not 
necessarily parallel. Hence, in order to perform element assembly (aggregation), element 
vectors and matrices need to be rotated to a common, e.g. global, frame. In present plate 
formulation this is 1D rotation about z||Z axis. Hence, constructing appropriate rotation 
matrix does not pose particular problem. However, it should be underlined here that this 
transformation now applies also to the interface slip field. For example, recall the form of 
element kinematic variable vector given in (132): 
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Rotation of this vector to the global co-ordinates can be expressed as: 
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where R  is the rotation matrix from the global frame to element frame. This matrix has the 
following form: 
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where ( )zc αcos= , ( )zs αsin=  and zα  is the angle measured from the global X  axis to 
the x  axis of element frame. 
 

3.2.4. Management of numerical locking 
 
Four node quadrilateral elements based on the Reissner-Mindlin formulation are subject to 
shear locking. As in beam formulation, this can be circumvented by reduced integration of 
transverse shear components. However, the rank deficiency of element stiffness matrix 
caused by this operation has severe impact on plate element behaviour, see e.g. [38]. 
Therefore, in present development, an assumed strain method is chosen to alleviate the 
shear locking. The adopted approach follows the one proposed by Bathe and Dvorkin in 
[55]. This prevents appearance of spurious zero-energy modes and improves results for 
non-rectangular element configurations. Moreover, the assumed shear strains are integrated 
using the same scheme as the normal strains, e.g. 2x2 Gaussian scheme. Hence the method 
is also suitable in material nonlinear analysis. 
The assumed shear strain field proposed by Bathe and Dvorkin is defined in natural co-
ordinate system of the element. Each component of transverse shear strain is taken as 
constant in one direction and linear in the other one. They are required to comply with the 
shear stress field computed from the displacement field at selected points along the 
element edges and read: 
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where ηζξζ γγ ,  are the assumed transverse shear strains and m

ηζ
m
ξζ γγ ,  are the shear strains 

evaluated from the kinematic field at points  Dand C  B,A,=m . As the presented 
development is to be applied at each layer of laminated plate, the layer index is here 
omitted to simplify the notation. 
Element deformation field in the element natural co-ordinate system is evaluated as the 
linear part of the Green-Lagrange strain measure: 
 

)152(                                                                                 ( )lklkkl gggg 0011
2
1 −=ε 
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where ζηξ ,,, =lk  and lk gg 00 ,  are co-variant base vectors of the natural co-ordinate 

system of the element initial configuration and lk gg 11 ,  are co-variant base vectors of the 

natural co-ordinate system of the element deformed configuration. The geometric linear 
part of transverse shear strains evaluated from (152) can be written as: 
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Using the finite difference approach to evaluate the partial derivatives in (153), the shear 
strains at the element edge mid-points can be expressed as: 
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and 
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where nynxnw θθ ,,  refer to nodal degrees of freedom at node 4,3,2,1=n . 

The assumed shear strain field defined in (151) needs now to be transformed from the 
natural to the spatial co-ordinates of the element. The definition of strain tensor 
transformation states: 
 

)156(                                                                                            jiij
lk

kl gggg εε = 

 
where ji gg ,  are the co-variant base vectors of the element spatial frame zyxji ,,, =  and 

lk gg ,  are the contra-variant base vectors of the element natural frame ζηξ ,,, =lk . It is 

worth to remind that the contra-variant base vectors are defined as orthogonal to the co-
variant ones: 
 

)157(                                                                                                       s
nn

s gg δ= 

 
where s

nδ  is Kronecker’s delta. Hence, noting that axes z  and ζ  are parallel and have the 

same orientation, the assumed transverse shear strains in spatial co-ordinates are evaluated 
as: 
 

)158(                                                                                               ( )i
k

kiz ggζγγ = 

 
This gives the following relations: 



NONLINEAR ANALYSIS OF LAYERED STRUCTURES WITH WEAK INTERFACES 

- 66 - 

 

)159(                                                              

⎪
⎪
⎩

⎪
⎪
⎨

⎧

++
−
+=

−
+

+
=

ηζ
ξ

ξζ
ξ

ηζ
ξ

ξζ
ξ

γηγξγ

γ
η

γ
ξ

γ

J

EB

J

EC

J

E

J

EC

xxxx
yz

yyy
xz

 

 
where  
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Noteworthy, when compared to [55], the final form of the assumed strain field is simpler 
here. This is due to the particular choice of element reference frame in present formulation. 
Figure 39 provides graphical interpretation to the parameters defined in (160). Points E1 
and E2 are mid points of segments 1-3 and 2-4 respectively. 
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Figure 39 Parameters in the assumed strain field (159) 

 
It can be remarked that a similar form of the assumed strain field is obtained using the 
approach presented by Ibrahimbegović in [56]. In fact, for rectangular element topology, 
the two formulations coincide and successfully alleviate the shear locking. On the other 
hand, neither method is capable of entirely suppressing the phenomenon for non-
rectangular elements. This effect is further discussed in the paragraph dedicated to 
laminated plate patch tests. 
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It is also worth mentioning that Ibrahimbegović’s approach uses cross-section rotations to 
enhance element transverse displacement field. Hence, if simple support is specified along 
element edge, the rotations about normal to this edge should also be suppressed (note 
analogy to Kirchhoff plate theory). Remarkably, this is also the case in present 
formulation. As evidenced in the following benchmarks, failure to fulfil this requirement 
may lead to erroneous estimation of the stress field near the supported edge. However, in 
laminated plate formulation, the Bathe-Dvorkin approach (interpretation) seems more 
suitable than the one adopted by Ibrahimbegović, where logical inconsistency appears 
between the unique transverse displacement stipulated by the kinematic relations and the 
layer dependent transverse displacement obtained through enrichment with layer cross-
section rotations. 
 
Using the von Kármán strain measure, the four node quadrilateral element is also subject to 
membrane locking in geometric nonlinear analysis. This can be alleviated assuming 
element constant nonlinear strains vKε : 
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where vKε  is given in (114). 
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3.3. Numerical benchmarks 
 

3.3.1. Patch tests 
 
In this paragraph three patch tests are proposed for validation of laminated plate elements. 
In all cases considered is a square plate of edge length a2  and constant thickness toth . The 

reference plane is located at the plate mid-plane: tottot 5.0,5.0 hhz −∈ . Plate material is 

isotropic with Young’s modulus E , Poisson’s constant ν  and the shear modulus 
( )( )ν+= 12EG . 

Figure 40 shows a representative form of the uniform bending patch test. Here, the plate is 
simply supported at two opposite edges ax ±= . Normal stress distribution on the plate 
vertical facets is defined as: 
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where σ  is the amplitude of maximum normal stress. These boundary conditions imply 
that the only non-zero stress components in the plate are ( ) tot/2 hzzxx σσ =  and 

( ) tot/2 hzzyy σνσ = . Hence, by the property of Hooke’s constitutive relations, the only 

non-zero strain component is: 
 

)163(                                                                                              σνε
E
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21−= 

 
Moreover, it can be noted that in the limit case of 0=ν  the above test reduces to the 
uniform bending patch test proposed in the preceding beam formulation. 
 

( ) tot/2 hzzsyy σν=

( ) tot/2 hzzsyy σν=

( ) tot/2 hzzsxx σ=

y

( ) tot/2 hzzsxx σ=
x

 

Figure 40 Uniform bending test  
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A representative form of uniform shear patch test is shown in Figure 41. The plate is again 
simply supported at two opposite edges ax ±= . The uniform shearing pressure applied at 
its top and bottom is defined as: 
 

)164(                                                                                           τ=−= BOTTOP
xx qq 

 
This implies that the only non-zero stress component in the plate is ττ =xz . 

  

x

y

TOP
xq
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Figure 41 Uniform shear test  

 
Figure 42 shows the uniform twist patch test. Here the plate is simply supported at three 
corners. The twisting stress applied at vertical facets of the plate is: 
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These boundary conditions result in uniform twisting of the plate ( ) tot/2 hzzxy ττ = , where 

τ  is the amplitude of maximum twisting stress. It is noteworthy that in sharp contrast to 
the classical form of the twist patch test, e.g. [57], the above formulation is not constrained 
to the thin plate limit. 
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Figure 42 Uniform twist test  

 
In order to satisfy the above tests, finite element results should return the imposed uniform 
stress distributions irrespectively of transverse and planar discretization. For the proposed 
FE implementation this is achieved only for uniform bending and twisting tests. The 
uniform shear test is passed for rectangular element meshes. However, when element 
topology is non-rectangular, the Bathe-Dvorkin approach is insufficient to alleviate the 
shear locking and element stress field is perturbed. This effect is here assessed by 
considering a patch of elements proposed in [55]. Figure 43 recalls the details of element 
mesh and material properties.  
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Figure 43 Element patch for uniform shear test  

 
Table X resumes finite element results obtained with uniform two-layer discretization and 
uniform isotropic interface stiffness tothGk = . It is worth noting that the average values 

of membrane stresses correspond exactly to the expected values. This is verified to be 
equally true at the element level. In contrast, element transverse shear stress evaluation 
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remains poor. For example, in element established by nodes 2-8-6-4 average shear stress 
error is –21.3%. Thus, it can be concluded that the proposed FE implementation is not 
reliable for analysis of shear-sensitive problems with non-rectangular element meshes. 
 

Table X Uniform shear patch test results (entire plate) 

stress  patch test FE FE error 
max 1.000 1.482 48.2 %  

xzτ  
min 1.000 0.690 – 31.0% 
max 0.000 0.243 - 

yzτ  
min 0.000 – 0.200 - 
max 1.000 1.444 44.4 % 

xf  
min 1.000 0.481 – 51.9 % 
max 0.000 1.506 - 

yf  
min 0.000 – 1.202 - 
max 0.000 1.999 - 

xyτ  
min 0.000 – 1.999 - 
max 0.000 2.500 - 

xxσ  
min 0.000 – 2.500 - 
max 0.000 4.511 - 

yyσ  
min 0.000 – 4.511 - 

 

3.3.2. Pagano test 
 
The developed FE formulation is validated here using the elasticity solutions obtained by 
Pagano [58]. Considered here is a rectangular plate tot3 haa ×× . The plate consists of three 

layers of equal thickness. The lamination scheme is (0/90/0) and the material properties are 
identical to those used in the preceding Pagano test (paragraph 3.3.2). Hard simple 
supports are assumed along all plate edges: 
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Transverse load applied at the plate top is defined as: 
 

)167(                                                                        ( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

a

y

a

x
qyxqz 3

sinsin, 0

ππ
 

 
where 0q  is the load amplitude. 

Table XI compares the elasticity and the FE results for several aspect ratios tothaS = . FE 

results are obtained with uniform 1010×  mesh per quarter of the plate and three layer 
discretization. The thin plate ( )100=S  results are given to asses the error associated with 
the FE discretization. It can be observed that with decreasing S , the stress distributions 
obtained from the elasticity solution become significantly non-symmetric in respect to 
plate mid-plane. This effect is entirely due to transverse compressibility of the layers. 
Hence, it is not reproduced by present approach. The tabulated results are normalized using 
the following relations ( )yxi ,= : 
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Table XI Pagano test for plates 

 ( )2
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2 , aa

w
 ( )tot2

1
2

3
2 ,, haa

xx

±
σ

 ( )tot6
1

2
3

2 ,, haa

yy

±

σ
 ( )tot2

1,0,0 h

xy

±

τ
 ( )0,,0 2

3a

xzτ
 ( )0,0,2

a

yzτ
 

elasticity 
4=S  

2.820 
1.14 
–1.10 

0.109 
–0.119 

–0.0269 
0.0281 

0.351 0.0334 

FE 
4=S  

2.738 ±0.96 ±0.104 ±0.0257 0.350 0.0307 

elasticity 
10=S  

0.919 
0.726 
–0.725 

0.0418 
–0.0435 

–0.0120 
0.0123 

0.420 0.0152 

FE 
10=S  

0.899 ±0.687 ±0.0395 ±0.0116 0.418 0.0146 

elasticity 
100=S  

0.508 ±0.624 ±0.0253 ±0.0083 0.439 0.0108 

FE 
100=S  

0.505 ±0.613 ±0.0243 ±0.0082 0.437 0.0108 

 
Figure 44 shows a representative FE transverse shear stress distribution obtained with the 
post processing technique introduced earlier for the beam formulation. Also in this case 
satisfactory agreement with the elasticity solution is obtained. 
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Figure 44 Transverse shear stress distribution ( ) 4;,,0 2
3 =Sza

xzτ  

 
As indicated in 3.2.4, present formulation requires special attention to the simple support. 
Table XII compares FE results obtained with two types of this boundary condition. In the 
first case layer rotations about normal to supported edges are suppressed and in the other 
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they are left free. As further evidenced in Figure 45 and Figure 46, there is a significant 
difference in stress distributions near the boundary conditions. 
 

Table XII Pagano test for plate 4=S , influence of boundary conditions 
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 ( )tot2
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 ( )0,0,2
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FE – rotations 
suppressed 

2.738 ±0.96 ±0.104 ±0.0257 0.350 0.0307 

FE – rotations 
allowed 

2.751 ±0.96 ±0.104 ±0.0061 0.353 0.0301 
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Figure 45 Twisting stress distribution for two types of boundary condition, 4=S  
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Figure 46 Normal stress distribution for two types of boundary conditions, 4=S  
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3.3.3. Uniform bending test 
 
Recalled here is the geometric nonlinear benchmark proposed paragraph 2.3.7. Table XIII 
and Table XIV compare analytical and FE results obtained with one row of ten plate 
elements. It can be noted that the amplitude of applied bending moments is diminished 
here in order to comply with moderate displacement assumption made in the development 
of the plate formulation. The two result sets are given to demonstrate deterioration of result 
quality with increasing displacements. Thus, further evidence is provided to the 
attractiveness of the co-rotational formulation in analysis of large displacements of 
laminated structures. Numerical results are obtained for geometric and material properties 
used in paragraph 2.3.7. Additionally it is assumed here that the Poisson ratio of both 
layers is 0=ν . Thus the plate solution is rendered compatible with the beam one. 
 

Table XIII Uniform bending of the two layer beam, 10% of load 

 Analytical  FE error 
v(x=L) [mm]   7.8378  7.8716 0.4 % 
u(x=L) [mm] –0.4107 –0.4120 0.3 % 
g(x=L) [mm]   0.3167   0.3149 0.6 % 

bMxx(x=0.5L) 
[Nmm] 

)1(
xxM = –42.412 

)2(
xxM = –03.244 

)1(
xxM = –42.503 

)2(
xxM = –03.152 

0.2 % 
2.8 % 

max |bQx| [N] V(1)= V(2)= 0.000 0.017 - 
max |bNxx| [N] N(1)= N(2)= 0.000 0.000 - 

 

Table XIV Uniform bending of the two layer beam, 20% of load 

 Analytical  FE error 
v(x=L) [mm]   15.579  15.743 1.0 % 
u(x=L) [mm] –1.6368 –1.6482 0.7 % 
g(x=L) [mm]   0.6334   0.6297 0.6 % 

bMxx(x=0.5L) 
[Nmm] 

)1(
xxM = –84.824 

)2(
xxM = –06.488 

)1(
xxM = –85.006 

)2(
xxM = –06.304 

0.2 % 
2.8 % 

max |bQx| [N] V(1)= V(2)= 0.000 0.034 - 
max |bNxx| [N] N(1)= N(2)= 0.000 0.000 - 

 

3.3.4. Nonlinear behaviour of laminated glass plates 
 
Addressed here is experimental investigation of laminated glass reported in [59]. The 
tested plate is 60x60 [in] and consists of two glass layers of identical thickness =Gh  

0.1875 [in]. Interaction between the glass units is provided by an inter-layer of Polyvinyl-
Butyral (PVB) of thickness =PVBh  0.06 [in]. The plate is simply supported along all edges 

and subject to uniform transverse pressure zq . Glass is taken as an isotropic material 
characterized by Young's modulus =E  107 [psi] and Poisson's ratio 22.0=ν . Polyvinyl-
Butyral is a visco-elastic material with strong dependence of material properties on 
temperature. In laminated glass analysis it is typically characterised by providing its shear 
modulus ( )tTG ,PVB  in function of temperature T  and load duration t . Several such 

characteristics can be found in the literature, see e.g. [30], [60], or [61]. In the discussed 
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experiment the maximum load was incrementally reached in s][60exp =t  and the recorded 

temperatures were [ ]F80,70 00
exp ∈T . However, specific material properties of the PVB 

inter-layer are not provided. Instead, it is evidenced that PVB behaviour can be 
satisfactorily approximated as an elastic one. Using the model adopted in [59] the optimum 
value of the effective PVB shear modulus was declared to be =PVBG  100 [psi]. As 

indicated in Figure 47, this estimation provides a reasonable approximation of the 
experiment also in present approach, where a mesh of 10x10 elements is used for a quarter 
of the plate. However, a better fit is attained for =PVBG  146 [psi]. The discrepancy 

between the two approaches is due to the finite thickness of the PVB inter-layer (13.8% of 
the total plate thickness). In present formulation the inter-layer is treated as an interface; 
thus its thickness is neglected. On the other hand, the development adopted in [59] uses the 
approach proposed for analysis of sandwich plates with soft core (accounting for finite 
thickness of the core).  
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Figure 47 Nonlinear response of laminated glass unit, experiment vs. FE 

 
A noteworthy fact here is significant increase of laminated plate stiffness due to the use of 
relatively soft PVB inter-layer.  This can be deduced from Figure 49 where plate response 
is compared with the limit cases of full layer interaction ∞→PVBG  and lack of layer 

interaction 0PVB →G . 
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Figure 48 Influence of PVB inter-layer on laminated glass stiffness 

 

3.3.5. Laminated glass buckling 
 
Addressed here is experimental investigation of laminated glass buckling reported in [62]. 
Figure 49 shows schematic representation of the experiment. A square plate of edge length 

]mm[1000=a  is simply supported along all edges and loaded in its plane by imposing 

uniform lateral displacement v . The plate consists of two glass layers of thickness Gh  = 8 

[mm] and a thin inter-layer of Polyvinyl-Butyral of thickness PVBh  = 1.52 [mm]. 
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a  

Figure 49 Laminated glass buckling, schematic representation 
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Figure 50 shows details of plate mounting at y=±0.5a. It can be deduced that fastening 
metallic clamps gives rise to friction between glass sheets constituting the plate, washers 
and clamps. This friction restricts relative movement of the two glass sheets. Thus, present 
(Finite Element) model uses essential boundary conditions to suppress interface slips (gx 
and gy) at y=±0.5a. On the other hand, both interface slips are left free at x=±0.5a, where 
the experimental setup does not restrict slippage. 
 

 

Figure 50 Detailed view of experimental setup at y=±0.5a 

 
Three experimental results are reported in [62]. The experiments were conducted at the 
average temperature of [ ]C200

exp ≈T  and the average time needed to reach the ultimate 

load was s][5000exp ≈t . Thus, following the discussion given in [62], the effective (linear, 

elastic) stiffness of the PVB interlayer can be estimated to be PVBG  = 0.8 [MPa]. Glass 

Young’s modulus is taken as =E  7 104 [MPa] and Poisson’s ratio is 23.0=ν . 
 
Figure 51 compares experimental and present (Finite Element) results obtained with 
uniform 10x10 element mesh per quarter of the plate. N  is the total compressive force 
(integrated along edge y=+0.5a). Numerical results are obtained taking the reference plane 
at =)1(

eccz  3 [mm] (1 [mm] away from the plate mid-plane). This location is chosen to match 

the laminate response in early stage of loading. 
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Figure 51 Laminated glass buckling, comparison of experimental and FE results 
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3.4. Summary for plate formulation 
 
In the above, the analytical and the finite element formulation is provided for geometric 
nonlinear analysis of laminated plates subject to moderately large displacements (in the 
von Kármán sense). The development is performed assuming Reissner-Mindlin kinematics 
at each layer and moderate slip at layer interfaces. No transverse separation is allowed. 
Analogously to the preceding beam development using interface slips as independent 
variables allows obtaining robust FE formulation for laminated plates. However, the 
approach is shown unsuitable for the extension to the shallow shell formulation. 
As evidenced in numerical benchmarks, the proposed model is capable of representing 
complex stress distributions expected in laminated plate structures with large transverse 
anisotropy. It is also shown to provide reliable description to a number of geometric 
nonlinear effects. However, the adopted FE implementation does not provide satisfactory 
solution to the shear locking for non-rectangular element configurations. Thus, a suitable 
solution to this problem needs yet to be identified.  
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4. Shallow shells 
 
Laminated shell is assumed here to undergo arbitrary large displacements, moderate 
interface slips and be subject to small layer strains. Thus, allowing for shallow initial 
configuration, the co-rotational FE formulation can be used to approximate shell behaviour 
with elements having flat reference surface, small initial curvature, and subject to moderate 
deforming displacements (in the von Kármán sense). Therefore, the purpose of present 
development is to extend the preceding plate formulation to accommodate the required 
features. 
 

4.1. Theoretical development 
 

4.1.1. Kinematic relations 
 
Laminated plate kinematic field developed in paragraph 3.1.1 makes use of simplifying 
assumptions preventing its consistent 3D rotation. Hence, it is not well suited for the 
intended FE shell formulation. The encountered problems can be cast here into two 
categories. In the first one, no )(lay

zθ  rotations appear in description of layer displacement 
field. This problem received substantial amount of interest in single-layer formulations. 
The successful approaches can be sub-divided into two main trends. Representative of the 
first one is the pioneering work of Allman [63] where vertex rotations zθ  are used to 
enhance FE kinematic field. Despite additional problems with numerical locking and zero 
energy mode control (e.g. [64]), this method gained substantial popularity due to its 
relative simplicity. In more recent works, e.g. [65] and [66], drilling rotations zθ  are 
introduced as independent kinematic field. Here however, the use of mixed principles is 
necessary to enforce the strain and the stress tensor symmetry. It can be shown that any of 
the aforementioned approaches can be applied at the layer level of present (layer-wise) 
development. However, for the sake of simplicity Allman`s approach is assumed here and 
the vertex rotations )(lay

zθ  are introduced only at the stage of the FE development. 
Another difficulty with 3D rotations is associated with the use of interface slips as 
independent variables. These quantities constitute a 2D vector field. Therefore, 
transformation of this field is rather awkward in case of 3D rotation of the reference frame. 
To circumvent this problem present development uses the following vector description of 
interface displacement: 
 

)169(                                   ( ) ( ) ( ) ( )[ ]yxwyxvyxuyx intintintint ,,,,,, )()()(T)( ΔΔΔ=Δ 

 
where ( )yxu int ,)(Δ , ( )yxv int ,)(Δ  and ( )yxw int ,)(Δ  are projections of the total interface 

displacement ( )yxint ,)(Δ  on relevant axes of the adopted reference frame. Hence, using 
these quantities as independent variables provides appropriate dimension and 
straightforward 3D rotation of the interface displacement field. However, it does not 
exclude the possibility of layer transverse separation/overlapping.  
Figure 52 shows a representative vector )(intΔ  and its projections on the reference system 
axes. Assuming moderate interface slips and small layer strains allows local approximation 
of the deformed interface surface as a plane (shaded area in Figure 52). In this case, vector 

)(intΔ  can be restricted to represent only interface slippage by stating: 
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where ( )yxint

j ,)(α  are interface rotation angles defined as: 
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where ( ))()( ,, laylay zyxw  is layer transverse displacement field (note the analogy to the 
relation (4) of the laminated beam development). 
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Figure 52 Vector representation of interface displacement 

 
Thus, assuming that )1( −intw  is known: 
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or if )(intw  is known: 
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As indicated in Figure 52 interface slip field used in the preceding laminated plate 
formulation can now be expressed as: 
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The change of the independent kinematic variable set requires re-formulating layer 
kinematic relations. At an arbitrary layer these can be written as: 
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where at the reference layer ( )reflay = : 
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at the layers above the reference layer (lay > ref): 
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and at the layers below the reference layer (lay < ref): 
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Moderate rotations expected in the co-rotational FE formulation allow simplifying the 
above relations by expanding trigonometric functions into Taylor series and truncating 
higher order terms. In such case layer kinematic relations can be written in the following 
linear form: 
 

)183(                                               

( ) ( ) ( )
( ) ( ) ( )
( ) ( )yxwzyxw

yxzyxvzyxv

yxzyxuzyxu

laylaylay

lay
x

laylaylaylay

lay
y

laylaylaylay

,,,

,,,,

,,,,

)()()(

)()()()()(

)()()()()(

≈

−≈

+≈

θ

θ

 

 
where at the reference layer (lay = ref): 
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at layers above the reference layer (lay > ref): 
 

)185(                   

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )yxwyxwyxw

yxvyxh

yxhyxhyxvyxv

yxuyxh

yxhyxhyxuyxu

lay

refi

ilay

lay

refi

i
lay

refl

l
x

l

lay
x

layref
x

refreflay

lay

refi

i
lay

refl

l
y

l

lay
y

layref
y

refreflay

,,,

,,

,,,,

,,

,,,,

1

)()(

1

)(

1

)()(

)()(
2
1)()(

2
1)()(

1

)(

1

)()(

)()(
2
1)()(

2
1)()(

∑

∑∑

∑∑

+=

+=+=

+=+=

Δ+≈

Δ++

+−+≈

Δ+−

++−≈

θ

θθ

θ

θθ

 

 
and finally, at the layers below the reference layer (lay < ref): 
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From (170) it can be concluded that ( )yxw int ,)(Δ  is significantly smaller than ( )yxw , . 

Thus, the above relations could be further simplified leading to constant transverse 
displacement across laminate thickness. This simplification was shown to be the source of 
some minor problems in the laminated beam formulation. Thus, leaving ( )yxw int ,)(Δ  in 

(185) and (186) gives present approach the potential to avoid these problems. 
It can also be noted that neglecting influence of ( )yxw int ,)(Δ  and using (174) to replace 

( )yxu int ,)(Δ  and ( )yxv int ,)(Δ  with interface slips, the form of linearized kinematic relations 

is identical to the ones formulated for analysis of laminated plates. 
 

4.1.2. Geometric relations 
 
Layer-wise strain field of the von Kármán type can now be written in the following form: 
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where the linear strain field )(

0
layε  is defined as (note the use of deforming displacements 

and moving reference frame):  
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Geometric nonlinear part of von Kármán strains is: 
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Using Marguerre's approach to account for initial curvature of the reference surface, vector 

)(
M
layε  is: 
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4.1.3. Constitutive relations 
 
Constitutive relations used in present formulation are identical as the ones proposed for the 
laminated plate development (see paragraph 3.1.3). 
 

4.1.4. Equilibrium relations 
 
Present approach employs Nlay5  independent kinematic variables. Thus, the same number 
of equilibrium relations needs to be provided. 14 +Nlay  of them are the equilibrium 
relations developed in paragraph 3.1.4 for laminated plate formulation. The remaining 

1−Nlay  relations are obtained by constraining interface displacement field to represent 
only layer slippage. This is obtained by writing equation (170) at each interface. In the 
perspective of FE development it is particularly convenient to do so by using relations 
(172) or (173). 
Regarding the weak form of equilibrium, only the expression for virtual work of internal 
forces is here changed in respect to the form provided for laminated plates. In present 
development it can be written as: 
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where equations constraining interface displacement field are incorporated through 
variable ( )yxc int ,)( . If )1( −intw  is known then: 
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or if )(intw  is known then: 
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It should be noted here that the variable ( )yxc int ,)(  contains linear, as well as, geometric 

nonlinear terms. Thus, it can be concluded that incorporating it in the FE matrix 
formulation results in substantial increase of computational effort necessary to establish 
consistent tangent stiffness matrix. This effort cannot be diminished by neglecting the 
geometric nonlinear terms in (192) and (193), as these terms can be as large as the linear 
term. Additionally, it can be observed that the unit of the penalty parameter )(

C
intλ  is [N/m3]. 

Thus, it is identical as the unit of interface stiffness )(intk . 
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4.2. Finite element development 
 

4.2.1. Co-rotational finite element formulation 
 
Detailed co-rotational shallow laminated shell matrix formulation can be straightforwardly 
obtained using elements of the preceding beam and plate formulations. Thus, discussed 
here are only selected components of this development.  
The form of consistent tangent stiffness matrix at the element level can now be written as: 
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First, it should be noted that only deforming displacements *d  are used in (194). Second, 
the vector of element DOF’s is here substantially larger than in case of laminated plate 
element. For example, at a representative node m the vector of nodal DOF’s is now: 
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Thus, it contains Nlay6  components instead of 14 +Nlay  used at laminated plate nodes. 

Matrix ( )dK  is now defined as: 
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In the above matrix ( ))()(

0 ,, laylay zyxB  refers to geometric linear strains defined in (188), 

( )0
)(

M ,, dB yxlay  refers to geometric linear strain field associated with given initial curvature 

0d  (relation (190)), ( )dB ,,)(
vK yxlay  refers to geometric nonlinear strains defined in (189) 
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and  ( )yxlay ,)(
AB  refers to layer-wise strains ( ))()(

A ,, lay
mz

lay yx θε  appearing as a result of 

enriching element kinematic field with the vertex rotations. In Allman’s approach these 
strains are in general geometric linear relations dependent on adopted element topology. 
Thus, particular form of these is not yet defined here. 
In (196) vector ( )dB ,,)(

C yxint  represents nonlinear interface constraint and is defined as: 

 

)199(                                                                                     ( )
d

dB
∂

∂
=

)(
)(

C ,,
int

int c
yx 

 
The initial stress matrix ( )dKσ  is now defined as: 
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4.2.2. On finite element implementation 
 
Briefly discussed here is an attempt to implement the above formulation in the form of 4 
node quadrilateral used in the preceding plate development. For such element topology the 
vertex rotations can be independently incorporated at each layer following the 
development presented in [64]. In this case, standard bi-linear interpolation of layer 
kinematic field is enriched by quadratic interpolation associated with vertex rotations. 
Obviously, this leads to membrane locking due to incompatibility of layer strain 
interpolation. In single-layer approaches it is typically alleviated by using reduced 2x2 
Gaussian integration scheme and adding stabilization matrices to assure under-integrated 
element performance. However, in multi-layer case this is insufficient and membrane 
locking persists. This is due to the incompatibility of layer and interface displacement field 
interpolation. This implies that an interface of non-zero stiffness is unable to consistently 
transmit inter-laminar forces. Taking into consideration the co-rotational character of 
present formulation, the most advantageous solution to this problem seems to be including 
hierarchic modes to selectively enrich interface interpolation. This however, needs yet to 
be investigated. 
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4.3. Summary for shallow shell formulation 
 
Presented in the above paragraphs are some general lines for the FE co-rotational analysis 
of shallow laminated shells subject to arbitrary large displacements, moderate interface 
slips and small layer strains. Rigorous development of theoretical basis (in particular layer-
wise kinematics) allows expecting fine performance of elements based on the proposed 
formulation. However, FE implementation allowing satisfactory suppression of all 
numerical locking needs yet to be studied in detail. 
It should also be noted that the versatility of laminated shell formulation is obtained at the 
expense of substantial increase of computational demands in respect to the preceding plate 
development. This observation underlines the usefulness of less resourceful, but 
computationally efficient, models of laminated beams and plates. 
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5. Concluding remarks 
 
This chapter provides summary of the key observations regarding present work and 
perspectives of further development. 
The co-rotational FE formulation is shown to be a simple and efficient mean of geometric 
nonlinear analysis of laminated structures. The possibility of using linearized kinematic 
relations and the von Kármán strain measure is particularly advantageous in the analysis of 
laminates with weak interfaces where the combined complexity of kinematic and 
geometric relations limits preceding (Total-Lagrangian) developments to the moderate 
displacement regime. Thus, the co-rotational formulation can be used to substantially 
extend versatility of some, readily available, models. 
However, the co-rotational approach requires evaluation of element deforming 
displacement field, which in turn necessitates rigorous approach to the formulation of 
laminate kinematics. In present work this is assured by starting the considerations from the 
assumption of arbitrary large displacements. The additional benefit of such approach is the 
insight to the linearized model limitations and possibilities of its refinement. For example, 
it is here observed that neglecting influence of interface slips on layer transverse 
displacement field allows significant simplifications; but it is also the source of minor 
stress re-distribution within laminate thickness. Thus, an approach avoiding this effect and 
maintaining computational robustness is worth pursuing. 
Another interesting observation can be made regarding the choice of independent variable 
set used to formulate layer-wise kinematic relations. Employing interface slips as 
independent variables allows constructing simple and computationally efficient beam and 
plate models. However, the same approach is shown to be rather cumbersome in shell 
formulation. This problem is resolved here by changing independent variables used to 
define interface displacement field. This however, necessitates introducing additional 
interface constraint equations which reduce computational robustness of the approach. 
Thus, it is worth investigating alternative possibilities of formulating robust, yet consistent, 
shell formulation. 
It can be noted that the form of layer constitutive relations used in present work is identical 
as in relevant single-layer approaches. As evidenced in the laminated beam development, 
this allows straightforward extension of present FE formulations to include the variety of 
material nonlinear models readily available for such single-layer approaches. 
Underlined here should also be the importance of efficient alleviation of numerical 
locking. As indicated in laminated plate and shell developments, methods considered 
satisfactory in single-layer approaches are not necessarily sufficient in multi-layer ones. 
Particularly important here is alleviation of the shear locking, as the shear stresses govern 
layer delamination and may in consequence lead to global laminate failure. 
The above remark allows identifying yet another prospective direction of development. 
Assuming FSDT at the layer level, present approach does not satisfy the theoretical 
requirement stating 0C  inter-laminar continuity of transverse shear stresses. Thus, 

recognizing importance of these stresses, it is worth investigating possibilities of meeting 
the above requirement. One such opportunity is indicated in the laminated beam approach, 
where mixed principle is proposed to enhance the formulation with the assumed shear 
stress distribution. 
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