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Abstract. Exploratory search over a collection often requires users to iteratively 
apply a variety of strategies, such as searching for more general or more spe-
cific concepts in reaction to the information they encounter. Rich semantic 
models, such as WordNet, are potentially valuable aids for users to make sense 
of this information. However, these large complex models often contain spe-
cialized vocabularies and a detailed level of granularity that makes them diffi-
cult to use as an aid for opportunistic search. In this paper, we describe how 
Semantic Fisheye Views (SFEV) can be designed to transparently integrate rich 
semantic models into the search process, allowing users to effectively explore a 
diverse range of related concepts without explicitly navigating over the underly-
ing model. The SFEV combines semantic guided search with interactive visu-
alization techniques, creating a search tool that we have found to be signifi-
cantly more effective than keyword similarity alone for exploratory tasks. 

1   Introduction 

Similarity-based search models (such as the vector space model and relevance-
feedback algorithms) are often very effective for precise queries, but less effective 
when search goals are not easily defined, such as a search to learn about an unfamiliar 
domain of knowledge or to discover the diversity of “interesting” information in a 
collection.  This type of search is not simply a series of independent iterative queries, 
each of which is progressively refined towards more relevant information. On the 
contrary, it is an interactive, opportunistic process that evolves in response to the 
information found, the users’ knowledge, and their search strategies [1]. An important 
component of this process is “sensemaking,” where users construct and refine their 
mental schemas of the concepts and relationships they encounter in the documents of 
a collection [2]. In this paper, we describe the implementation details of Semantic 
Fisheye View (SFEV) [3], a focus + context technique that interactively guides a 
user’s attention over a potentially dense visualization of information to the objects 
that are the most semantically related to their current focus.  
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Bates described the following characteristics that distinguish opportunistic (or 
“berry-picking”) search from a series of separate queries [1]:  
1. Nature of the query. Queries are not static, but rather evolve as the user analyzes 

the result sets. It is important to note that this evolution is not an increase in preci-
sion, but rather a change of focus (e.g., exploratory, explanatory, exhaustive). 

2. Nature of the overall search process. Information is gathered in bits and pieces 
instead of in a single set of results (e.g., lists of keywords, an author, documents). 

3. Range of search techniques used. Users employ a wide variety of search strategies 
during the search process (e.g., keyword matching, concept expansion) [4]. 

4. Information domain where the search is conducted. More than one type of infor-
mation is consulted during the search process (e.g., text, figures, cross-references). 
Bates’ model inspired us to develop a prototype, VisAmp, which implements sev-

eral information sensemaking strategies as interest metrics in the SFEV framework 
[5]. We described the architecture of SFEV in [5], focusing on the strategies used to 
support real time display of semantic fisheye views and how interaction can be rap-
idly and smoothly handled. In a related paper [3], we described an experimental 
evaluation where users were significantly more effective at sensemaking tasks with an 
interface that revealed semantically related information rather than one that revealed 
keyword co-occurrence. The results of the experiment do not discount the usefulness 
of keyword-similarity or imply that semantic models are more effective in all cases.  
However, the results do suggest that users greatly appreciate the opportunity to access 
information using semantic models. Our research is exploring how to integrate the 
increasingly available semantic models (alongside other similarity models) into highly 
interactive visual interfaces for information retrieval. 

The contribution of this research to the domain of information retrieval is in the in-
tegration of semantic models into a highly interactive visual tool for strategically 
exploring, accessing, and understanding collections of information. The contribution 
of this paper over our previous work is a detailed description of how degree of inter-
est functions combine multiple concept similarity metrics at the keyword and docu-
ment levels to guide exploration over a collection. 

In the following sections, we first examine existing work in several domains relat-
ing to our work. We describe the general framework of SFEV, including the interest 
metrics, the concept expansion and goal refinement mechanisms, and the visualization 
component of SFEV. We then illustrate our framework with a user scenario of infor-
mation sensemaking within a large professionally annotated image collection. Finally, 
we conclude this paper with a short summary of the work achieved. 

2   Related Work 

This work can be compared with others on three themes: alternative search para-
digms, visual information retrieval interfaces (VIRI), and fisheye view visualization 
techniques.  

Researchers have sought ways to incorporate additional information, such as meta-
data and ontologies, into search tools. Some researchers have focused on tools for 
semantically organizing gathered information, for example with annotations [6] or 



concept maps [7]. Our research, on the other hand, focuses primarily on the difficulty 
of encountering relevant information. This is especially true with image collections, 
which typically have few keyword annotations. Researchers have utilizing semantic 
models to expand both the metadata related to an image as well as the query. A num-
ber of researchers have had some success using WordNet [8] to improve the effec-
tiveness of keyword-based queries [9][6] and interactive browsing [10] over image 
collections. Researchers have also used similar techniques with other large ontologies 
[11] and combinations of ontologies [12].  

However, there are several unresolved problems with these approaches. First, gen-
eral solutions have had limited success in large, complex image collections and large 
ontologies. Large collections and ontologies are often inconsistent in their level of 
detail and incomplete in their coverage, which amplifies the difficult problem of 
matching the annotations in the image collection to the specific concepts in an ontol-
ogy (i.e., lexical/semantic disambiguation). Interfaces that do not allow users to inter-
actively adjust the matching algorithms between the collection, the ontology, and the 
query limit the users’ ability to adapt in response to the results they find [1].  

A third problem is that they are not visual. Furnas identified a number of advan-
tages of Visual Information Retrieval Interfaces (VIRI) over more traditional 
query/result-list interfaces [13]. One of the most significant was the synergy between 
search and browsing. Displaying results in a persistent and meaningful location al-
lows users to accumulate knowledge through navigation. One significant obstacle for 
effective visualizations is how to handle visual complexity as the amount of informa-
tion in a representation increases.  

Furnas [14] first described fisheye view as a technique for selectively reducing the 
information in a display to show only the most interesting items, where interest was 
calculated as a tradeoff between a priori importance (global context), and relevance to 
the user’s current task. Furnas suggested that this general technique could be used to 
create compact views in a variety of domains by redefining the function that calcu-
lates the degree of interest. Researchers have developed a wide range of fisheye view 
or focus + context techniques. Many of these use geometric distortions to magnify 
objects near the focus [15]. SFEVs, on the other hand [3], calculate conceptual dis-
tance from the focus within one or more data models, and are therefore independent 
of a particular visual representation [5].  

Our research combines the main strengths of semantic-guided search, VIRIs, and 
focus + context visualization techniques in one framework. This combination allows 
users to visually explore the semantic relationships between documents as they refine 
their search goals. 

3   The Semantic Fisheye View Framework 

Fisheye views are based on the observation that, from the user’s perspective, the im-
portance or utility of information at any given moment is a function of two general 
components: a priori interest (API), and interest metrics. API reflects the importance 
of an object within a particular structure, task, or domain, and is independent of the 
user’s current focus. Interest metrics determine the relative interest of every object in 



the collection with respect to the user’s current focus and task. In a semantic fisheye 
view, both API and interest metrics can be generally described and combined [5]. 
When using SFEVs to implement search strategies, we model a user’s current search 
goal as a focus, and the system’s reaction in terms of degree of interest (DOI) and 
emphasis. The DOI is the relative importance of every object in the information 
space, and emphasis is a mapping between the DOI of an object to a visual property 
used to display that object, such as size. 

We use the following general function to calculate the DOI in a particular context 
of an object x, given the focus fp: 
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This general function highlights an important characteristic of this framework: both 
API and the conceptual distance between objects may be derived from one or more 
distance metrics (distj). The weight, wi, is the weight associated with the distance 
metric being used and n is the number of metrics being used. We define a focus fi, as a 
tuple of one or more weighted objects: 
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The focus may include objects from different domains: the history of queries (Q); 
the keywords (K) and images (I) extracted from the Corbis annotated image collection 
as a result of these queries; the Lemmas (L) and Concepts (C) extracted from Word-
Net that correspond to these keywords; and the history of previous foci (F). 

The way in which these distance metrics are combined depends on the context be-
ing modeled. By orienting the framework to support multiple metrics, it is able to 
support richer models of user interest that may span multiple domains, such as related 
concepts and history of interaction. The prototype, which we have developed for 
exploring image collections, uses multiple API and distance metrics to model relative 
interest. The focus transitions between objects in the domains of queries, keywords, 
images and concepts.  

3.1 A Priori Interest 

Conceptually, the API establishes the global context in which the user searches. In our 
framework, the API is used to model the information that should remain stable as the 
focus changes. For example, when the user moves their focus over the images and 
keywords in the collection, the system will continuously recalculate the DOI of ob-
jects. However, when there is no current focus, the DOI of each object will always 
return to its API value. In this way, objects with a high API will remain prominent and 
serve as visual landmarks. 

The prototype allows the user to set the API interactively in two different ways. 
First, the API may be defined by the result of a query (3.a). In this case, we model the 
user’s focus as a lexical or semantic query (Q), and the DOI of the objects in the 
workspace reflect their relevance to the query.  The prototype calculates the relevance 
of the keywords as a function of their frequency in the results of the query. By default 



we use relative frequency, which emphasizes common themes in the collection. Al-
ternatively, using the inverse document frequency (idf) emphasizes infrequent key-
words, which is effective for highlighting unique words such as names.  

The user may also define the API from the DOI calculated using a previous foci 
(3.b). In this case, the API is utilized to accumulate important objects in the work-
space (like Bate’s berry-picking strategy, or relevance-feedback algorithms).  

! 

APIi (x) =
DOIcontext (x | f j ) 0 " j < i (a)

DOIcontext (x | f i#1) (b)

$ 
% 
& 

 . (3) 

In this case, we use API to model information that the user would like to remain 
persistent, such as a selection. For example, this would allow a user to compare mul-
tiple foci by selecting one object and then brushing over another. 

3.2 Distance metrics  

The SFEV models semantic queries for complex combinations of concepts as a dis-
tance metric between concepts within one or more related semantic model. The ap-
proach we used for semantic queries calculates the minimum distance between collec-
tions of concepts, based on research by [16]: 
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sim(c1,c2) =
depth(ca )

depthmax
 . (4) 

In this equation, c1, c2, and ca are concepts in WordNet, depth is measured in one of 
the WordNet hierarchies, and ca is the lowest common ancestor between c1 and c2. 
This metric calculates the distance between concepts based on the generalization 
structure of WordNet. We precalculated the similarity between all concepts in the 
subset of WordNet that is related to the keywords in the image collection. The result 
of this time-consuming calculation is stored in a concept similarity table. To build this 
table, we first extracted the subset of concepts that have an exact or inexact match to 
keywords in the image collection. We then iteratively calculated the similarity of all 
combinations of concepts in the kind-of, part-of, and member-of hierarchies in Word-
Net using equation 4. Finally, we normalized the similarity values to the range [0,1].  

We calculate the similarity between a query, Q, and the collection of keywords an-
notating an image, A, using equation, (5), proposed by [17] and also used by [16]: 
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In this equation, sim(qi,aj) is the precalculated similarity described in (4), w is the 
weight of the concept in Q={<q1,wq1>, …, < qn,wqn>} or A={<a1,wa1>, …, < 
am,wam>}, and n is used to normalize the similarity measure. Essentially, this equation 
sums the similarities of the closest matching concepts between a query and an image. 
The images and keywords that are found as the result of lexical and semantic queries 
are loaded into the local workspace of the prototype. 



3.3   Concept expansion  

In addition to searching for images by similarity over its concepts, we have also de-
veloped a method for concept expansion that interactively reveals the semantic neigh-
borhood of a concept using several of the search tactics identified by Bates [4]: 
SUPER (finding more general concepts), SUB (finding more specific concepts) and 
SIBLING (finding concepts from the same parent), which Bates referred to as 
RELATE). Each concept expansion command encapsulates an algorithm for iterating 
over the WordNet structure and generating queries for related concepts. The informa-
tion seeker is only presented with related concepts that have instances in the collec-
tion (i.e., images and keywords), and therefore is not required to navigate over the 
complex structure and vocabulary of WordNet. This approach allows the user to di-
rect the search process at the tactical and strategic level, as suggested by Bates [18]. 

3.4   Goal Refinement 

As the user’s focus changes, the interface calculates the DOI of all objects in the 
workspace and smoothly animates changes in their representation. The DOI is com-
puted based on equation 1, and the interest metric is based on conceptual similarity. 
Thus, the new DOI will be computed as follows: 

! 

DOIcontext (x | f i = y) = APIi (x) + w jsim j (x, y)
j=1

n

"  . (6) 

In this equation, the results of a number of different similarity metrics, n, are com-
bined to determine DOI within a particular context. By exploring the information 
revealed by the SFEV, users learn the vocabulary and conceptual relationships within 
the collection and are able to interactively refine their search goals. 

3.5   SFEV supporting Information Sensemaking 

We now describe the interest metrics we have developed to support the sensemaking 
process. Figure 1 traces the flow of information from the user’s interaction on the 
bottom right through the composite metric that calculates semantic similarity and 
back to the updated view on the top right. The model is divided into three vertical 
regions, from left to right: WordNet, the Image Collection, and the View. The Word-
Net model is the subgraph of WordNet that is related to the keywords in the image 
collection. The image collection is modeled as a graph, where images and keywords 
are nodes and the links between them are edges. The output of an interest metric is a 
table that assigns a new DOI to each object in the related collection.  

When a user brushes over a keyword in the graphical model, the associated key-
word object is passed as a focus to an interest metric that calculates the DOI for re-
lated images and keywords as follows: 
1. Map keyword to different senses (k=>C*): A semantic disambiguation metric 

maps the keyword to one or more related concepts from WordNet and assigns a 



weight, w, to each based on a precalculated keyword/concept mapping. The weight 
indicates the confidence that the mapping is correct. 

2. Concept expansion: These concepts are passed to metrics implementing the 
SUPER, SUB, and SIBLING strategies. Each of these metrics traverse the Word-
Net graph in parallel, gathering a weighted collection of relevant concepts. The 
weight of each concept is inversely related to the distance. 

3. Semantic query: The concepts found from each strategy are then passed to metrics 
that find the most relevant images and keywords: 
• C* => K*: Calculates the similarity between a concept and a keyword based on 

lexical/semantic disambiguation. 
• C* => I*: Calculates the similarity between a concept and an image by finding 

the related keywords, and then by calculating the sum of the weights between 
keywords and the images they are related to.  

4. Limit # within strategy: These limits maintain a relatively constant amount of vis-
ual complexity, and avoid having the results of one strategy dominate the other. 
• K*-Limit Number: the number of relevant keywords is limited for each strategy. 

By default, the SUB strategy is allowed more keywords than the others because it 
will tend to branch more quickly.  

• K*-Limit Range: The distributions of interest returned by each strategy are scaled 
to a similar range (e.g., 0.3 – 1.0). Giving a preferred strategy a higher upper 
limit will make it more visible than the others. 

• I*-Limit Number: number of relevant images can be limited for each strategy.  
5. Combine results of strategies: The results of the different strategies are aggregated. 
6. Distort DOI distribution: The distribution of interest for the sets of images and 

keywords are scaled to the range of 0.1 and 1.0. The distribution may also be dis-
torted to increase the contrast between min and max values. 

 
Fig. 1. SUPER, SUB and SIBLING strategies implemented using a composite semantic metric 

The interface smoothly animates changes in the degree of interest value for each 
object, which cascades through different emphasis techniques to affect the representa-
tion of objects in the view. 



3.6   Emphasis Techniques 

Visualizations often attempt to show as much information as possible within the con-
straints of the available space.  However, Pirolli et al. [19] point out that “squeezing” 
more information into the display does not necessarily “squeeze” more information 
into the mind, but that strong information scent cues and focus + context techniques 
can enable users to navigate and search through information at more than twice the 
rate of the user of a normal browser. 

VisAmp uses several emphasis techniques to align the visual weight of objects 
with their semantic importance in a particular context so that the “most interesting” 
objects are immediately apparent (i.e., “pop out”), and “less interesting” objects fade 
to the background (e.g., through dimming, shrinking in size and detail, or filtering) 
[3]. The relative contrast creates a visual ordering that allows a user to rapidly and 
opportunistically access the most important contextual information, i.e., visual em-
phasis corresponds to information “scent”.  

4   An Image Retrieval Example 

We demonstrate the prototype with a scenario where a student uses the prototype to 
learn about China before he attends a conference there. The user starts with an initial 
query for “China” to see what kinds of images are available. The system populates the 
workspace with several hundred pictures matching the query, positions them using a 
spring layout, and resizes them to reflect their relevance as shown in Fig. 2a. The 
layout organizes images so that similarly annotated images are near each other, such 
as the images of flags clustered at the bottom.  

As he brushes the cursor over different images, they smoothly grow in size so he 
can read the captions and then fade slowly back to their original size as he moves to 
another. Pausing over an image reveals related keywords, and moving the cursor over 
a keyword reveals related images and concepts.  For example, in Fig. 2b he pauses the 
cursor over China, which reveals subconcepts (in cyan) such as the Great Wall and 
the Yangtze, superconcepts (in red) such as Asia, and siblings (in magenta) such as 
Nepal and New Zealand. 

Looking closer at the images and keywords related to the Great Wall leads him to 
the keyword Building (Fig. 2c), which expands to reveal a diverse range of subcon-
cepts, such as cafes, courtyards, skyscrapers, temples and ruins. He decides to return 
to an unfamiliar word he saw earlier, Yangtze. Brushing over the keyword (Fig. 2d) 
reveals the superconcepts River and China, and siblings such as the Great Wall, as 
well as a cluster of images of water. This leads him to believe that the Yangtze is a 
river in China, and zooming in to look closer at the images confirms this. The respon-
siveness of the prototype allows him to rapidly discover and explore the concepts and 
images that capture his attention, and the underlying semantic interest metrics allow 
him to access the information in an opportunistic but well structured manner.  

 



  

  
Fig. 2. Exploring images of China using VisAmp (clockwise from top left): (a) overview of 
search results; (b) brushing over the keyword China reveals subconcepts such as Yangtze, 
superconcepts such as Asia, and siblings such as Nepal; (c) Building; (d) Yangtze 

5   Conclusions 

In this paper, we have described the underlying interest metrics that allow SFEVs to 
support concept expansion and goal refinement using one or more semantic models 
into the interface. Users are able to rapidly and interactively discover new concepts 
and refine their current search goals by simply brushing over objects in the interface, 
without having to create queries or navigate through an explicit representation of the 
related semantic model. In many cases, large semantic models such as WordNet are 
too detailed, inconsistent, or confusing for users to navigate over explicitly.  

Preliminary results extending VisAmp to scientific literature are encouraging. Us-
ing the ACM classification model as a domain ontology, users were able to explore 
concept hierarchies for learning about the domain. Future work includes supporting 
multiple concepts and refining the interest metrics to take into account multiple con-
nections between concepts, as discussed by Andreasen in [20]. 
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