
A Cooperative Internet Backup Scheme

Mark Lillibridge Sameh Elnikety Andrew Birrell Mike Burrows
Michael Isard

HP Systems Research Center∗

Palo Alto, CA

Abstract
We present a novel peer-to-peer backup technique that
allows computers connected to the Internet to back up
their data cooperatively: Each computer has a set of part-
ner computers, which collectively hold its backup data.
In return, it holds a part of each partner’s backup data.
By adding redundancy and distributing the backup data
across many partners, a highly-reliable backup can be
obtained in spite of the low reliability of the average In-
ternet machine.

Because our scheme requires cooperation, it is poten-
tially vulnerable to several novel attacks involving free
riding (e.g., holding a partner’s data is costly, which
tempts cheating) or disruption. We defend against these
attacks using a number of new methods, including the
use of periodic random challenges to ensure partners
continue to hold data and the use of disk-space wasting
to make cheating unprofitable. Results from an initial
prototype show that our technique is feasible and very
inexpensive: it appears to be one to two orders of mag-
nitude cheaper than existing Internet backup services.

1 Introduction
Traditional data backup techniques work by writing
backup data to removable media, which is then taken
off-site to a secure location. For example, a server might
write its backup data daily onto tape using an attached
tape drive; at the end of each week, the resulting tapes
would then be picked up by a truck and driven to a
guarded warehouse. The main drawback of these tech-
niques is the inconvenience for system owners of man-
aging the media and transferring it off-site, especially
for small installations and PC owners.

In contrast, Internet backup sites (e.g., www.
backuphelp.com), avoid this inconvenience by lo-
cating the tape or other media drive in the warehouse
itself and by using the Internet instead of a truck to trans-
fer the backup data. Customers need only install the sup-
plied backup software to be assured that, so long as their
system remains connected to the Internet, their data will
be automatically backed up daily1 without any further
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action on their part. These sites charge by the month
based on the amount of data being backed up. For ex-
ample, a typical fee today to backup up one gigabyte of
data is fifty US dollars a month (see Section 5.1).

In this paper we propose a new Internet-based backup
technique that appears to be one to two orders of magni-
tude cheaper than existing Internet backup services. In-
stead of relying on a central warehouse holding remov-
able media, we use a decentralized peer-to-peer scheme
that stores backup data on the participating computers’
hard drives.

To provide for off-site storage, we arrange for pairs of
geographically-separated participating computers (part-
ners) to swap equal amounts of disk space—a fair trade.
To compensate for the fact that Internet PCs are much
less reliable than a tape stored in a secure facility, we
have each computer partner multiple times so it can
spread its backup data in a redundant manner across
many machines. By using a large number of partners
per computer, we can ensure high reliability with low
space overhead.

Our scheme requires the cooperation of the partici-
pating computers: computers depend on their partners
to hold their data and make it available when needed. In
an uncontrolled environment like the Internet, such co-
operation cannot be taken for granted. Non-cooperation
must be discouraged by making it unprofitable. We use
several novel methods to do this, including the use of
periodic random challenges to ensure partners continue
to hold data (partners that fail are abandoned in favor of
new partners) and the use of disk-space wasting to make
fake crashes unprofitable.

The remainder of this paper is organized as follows:
Section 2 describes a simplified version of our scheme
that assumes cooperation can be taken for granted. It is
well suited for systems that are intended to be deployed
within a single company. Section 3 tells how to extend
the simplified scheme to an environment where cooper-
ation cannot be assumed, such as the Internet, by adding
various security mechanisms. Section 4 presents results
from an initial prototype. Section 5 compares our system
to existing Internet backup sites as well as traditional
backup techniques. Section 6 covers related work. Fi-
nally, we present our concluding remarks in Section 7.
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2 The simplified scheme
Each computer that wishes to participate in our backup
scheme runs special software. Under the software’s di-
rection, these computers link up and form a peer-to-
peer system over the Internet or a corporate intranet.
The same software, performing the same functions, runs
on each computer—except for a single external match-
ing server (see Section 2.1), the system is decentralized
and functionally symmetric. Like most peer-to-peer sys-
tems, computers are free to join or quit the system at any
time.

Each participating computer has some number of
backup partners. For example,A might have partners
B, C, andD. Partnership is a symmetric relation:A is
also a partner ofB, C, andD. Partnership is not, how-
ever, transitive:B andC need not be partners, and in
generalB andC may share no partners other thanA.

How many and which partners a given computer has
varies over time. Computers start with zero partners on
joining and quickly add enough partners to handle their
current backup needs. As their backup needs change,
they may want to add or remove partners. Partners may
also be changed if an existing partner is found to be
wanting (e.g., due to excessive downtime) or a new com-
puter needs partners.

Each pair of partners agrees at partnership-formation
time to an amount of storage to be swapped and a level
of uptime (time that they are running and connected) that
they must maintain. Different pairs may reach different
agreements. SupposeA andB agree to swaps blocks.
Then each must reserves blocks of their local disk for
use by each other. The software, running in the back-
ground, performs reads from and writes to this space on
behalf of requests from the other partner.

2.1 Finding partners
We suggest using a simple central server to keep track
of the computers in the system and their partner needs.
Many other methods of finding partners are possible—
for example, a Gnutella-like flooding approach could be
used—but the central-server method has the advantage
of being very simple to implement.

Each computer should periodically update the server
with its identity and what partners it needs and has, in-
cluding uptime and storage-swapping levels. When a
computer needs a new partner, it contacts the server with
its needs and obtains a list of candidate partners; it can
then contact those computers directly and find out if they
are still compatible.

Sometimes there may be no other computers looking
for new partners. In that case, a computer looking for
new partners needs to step between two existing part-
ners that have an agreement similar to the one it desires:
if A andB are partners,N can step between them so

thatA now hasN for a partner instead ofB andB now
hasN as a partner instead ofA. This leavesA andB
with the same number of partners, but givesN two new
partners of the type it wants. By havingN copyA and
B’s data beforehand, this can be done atomically with no
data loss.

To avoid complicated negotiation, we suggest appro-
priately quantizing uptime and storage-swapping lev-
els. Ideally, to work well, the system should have many
(at least a hundred, preferably more than ten thousand)
members spanning the range of possible agreements.
Computers wishing to swap huge amounts may still be
out of luck finding compatible partners, but can compen-
sate (with somewhat lower reliability) by using multiple
partners swapping less each.

It is important that each partner in a pair be located at
different sites in order to ensure all backups are stored
off-site. Accordingly, computers should reject candi-
date partners that are co-located. This means that our
scheme cannot be used safely within a single site. Addi-
tional reliability can be obtained by further diversifica-
tion: a single computer should choose its partners from
as many different sites and using as many different op-
erating systems (to guard against viruses) as it can. To
allow this, the identity information supplied to the cen-
tral server should include a computer’s “location” and
operating-system type. Location information can either
be obtained directly from the computer owner or esti-
mated via IP ranges or domain-registry information.

Although the central server forms a single point of
failure for finding new partners, it need keep no perma-
nent state and is thus easily replaced or replicated should
it fail or become a bottleneck. Its failure does not prevent
backups or restorations from occurring; thus, as long as
it is repaired within a reasonable amount of time (i.e.,
weeks), no real harm is done.

2.2 Creating a reliable logical disk
We use Reed-Solomon erasure-correcting codes [13] to
create a highly-reliable logical disk from a large num-
ber of partners. A(k+m, m)–Reed-Solomon erasure-
correcting code generatesm redundancy blocks fromk
data blocks in such a way that the originalk data blocks
can be reconstructed from anyk of the k+m data and
redundancy blocks. By placing each of thek+m blocks
on a different partner, the logical disk can survive the
failure of anym of thek+m partners without any data
loss, with a space overhead ofm/k.

Erasure-correcting codes are more efficient than error-
correcting codes because they handle onlyerasures (de-
tectable losses of data) rather than the more general class
of errors (arbitrary changes in data). Block errors can be
turned into block erasures by attaching a checksum and
version number to each stored block; all but the blocks
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Figure 1: Sample block layout using 6 partners (B-G)
with k = 4 andm = 2. Rw,x,y,z denotes the first redun-
dancy block andR′

w,x,y,z the second redundancy block
generated from data blocksw, x, y, andz.

k m n Reliability Overhead
6 0 6 53.144% 0%
6 1 7 85.031% 17%
6 2 8 96.191% 33%
6 3 9 99.167% 50%
6 4 10 99.837% 67%
6 5 11 99.970% 83%
6 6 12 99.995% 100%

Figure 2: Reliability and overhead for increasing values
of m, holdingk constant at 6, and assuming an individ-
ual computer reliability of 90%.

with correct checksums and the highest version number
are considered erased.2

So that we can use a small fixed block size, we stripe
blocks across the partners using the erasure-correcting
code. See Figure 1 for an example block layout for a
computerA with 6 partners that is usingk = 4 and
m = 2. We place corresponding outputs of the erasure-
correcting code on the same partner (e.g.,F holds all the
first redundancy blocks in Figure 1) to make reconfigu-
ration easier (see Section 2.6).

Each computer decides for itself how to tradeoff relia-
bility against overhead by choosing values fork andm;
these choices in turn determine the number of partners
n = k+m it needs. To get a feel for how these tradeoffs
work in practice, see Figures 2 and 3. Figure 2 shows
how reliability rapidly and overhead slowly increase as
the number of redundancy blocks (m) is increased while
holding the number of data blocks (k) constant. Figure 3
shows that the overhead can be decreased for a given
level of reliability by increasing the number of partners
(n=k+m). (Unlike traditional RAID systems, we can
use high values ofm andn because backup and restora-
tion are relatively insensitive to latency.)

These figures were calculated via the binomial distri-
bution assuming that individual Internet computers fail
independently and are 90% reliable. More precisely,
they assume that when a computer tries to restore its
data, the probability that a particular one of its partners
still has its data, uncorrupted, and is sufficiently avail-

k m n Reliability Overhead
6 6 12 99.995% 100%
8 7 15 99.997% 88%
10 8 18 99.998% 80%
12 9 21 99.999% 75%
14 9 23 99.997% 64%
16 10 26 99.999% 63%
18 10 28 99.996% 56%

Figure 3: Reliability and overhead for increasing values
of k, using the minimum value ofm necessary to get a
reliability of at least 99.995% and assuming an individ-
ual computer reliability of 90%.

able during a limited restoration time window to supply
that data is 90%.

This number is meant to be conservative; we expect
from our personal experience that the real number will
be considerably higher. Indeed, the only empirical study
we know of on PC availability, Boloskyet al. [3], found
that over half of all Microsoft’s corporate desktops were
up over 95% of the time when pinged hourly. As that
study included some PCs that are shut down at night or
over the weekend and a reasonable restoration window
would probably be at least 24 hours, their numbers un-
derestimate restoration availability for machines promis-
ing 24-hour availability. Nonetheless, even when using
our conservative number, our calculations show that high
reliability can be achieved with low overhead.

We expect randomly-chosen Internet PCs to fail inde-
pendently except in cases of widespread virus damage,
sustained loss of Internet connectivity, and (in the case
of uncooperative environments) coordinated attacks in-
volving multiple computers. See Section 3.3 for discus-
sion of why we believe the later is unlikely to be a prob-
lem in practice.

2.3 Backing up data
Each computer backs up its data on the reliable logical
disk it has constructed from its partners’ disks. Exactly
how this is done—e.g., incrementals vs. full backups,
compression, ignoring caches and application binaries,
etc.—is orthogonal to our scheme; we assume here only
that backups occur at most daily. Because our backup
space is of limited size and somewhat expensive com-
pared to removable media, it may be useful to conserve
space. In particular, one may not want to require backup
space for two full snapshots so that a crash while writ-
ing a new snapshot does not leave the system without a
viable backup. We demonstrate one way of doing this in
Section 4.1.

The following procedure can be used to stream a snap-
shot to logical disk starting on a block stripe boundary:
For eachk data blocks of the stream, perform the follow-



ing operations in turn: use the erasure-correcting code to
generate them redundancy blocks from the data blocks,
generate and attach a checksum and the same new ver-
sion number to each of thek+m blocks, send a request
to write each block to the appropriate partner in the ap-
propriate place, and, finally wait for acknowledgments
from at leastw ≥ max(k, m + 1) partners. It is impor-
tant that we write at leastk blocks to the current block
stripe before starting to write the next one to ensure that
a crash while writing will leave at most one block stripe
unreadable; we need to write at leastm+1 blocks to en-
sure that the old version is overwritten.

The parameterw here represents a tradeoff. Smaller
values ofw allow the backup to proceed faster because it
is not necessary to wait for as many partners to be up, but
the resulting written data has lower reliability than nor-
mal because some of the blocks are missing: onlyw−k
failures can be tolerated before some of the written data
is unrecoverable.w should be chosen based on empirical
data and the uptime-level agreements being used. Note
that if more thann−w partners fail, it will no longer be
possible to make new backups with this procedure until
some of the failing partners have been replaced. Alter-
natively, w could be updated based on the number of
partners scheduled to be replaced.

We run acleaner in the background on each computer
to help limit how long recently written data has less than
the maximum redundancy available. The cleaner scans
its logical disk looking for incompletely-written block
stripes. Each time it finds such a block stripe, it reads
as many blocks as it can from it and tries to decode the
stripe. If it succeeds, it generates the missing blocks and
writes them to the appropriate partners, thus increasing
the stripe’s redundancy. Note that both the cleaner and
streaming procedure use only a block stripe worth of ex-
tra local storage, avoiding the need for an extra snapshot
worth of temporary disk space during backing up.

2.4 Restoring data

Restoration can be done from any computer in the
event of the backed-up machine’s total destruction. The
backed-up computer’s logical disk can be recovered to
the new computer’s local disk given a list of the origi-
nal computer’s current partners by using the following
procedure: Contact each partner and ask for all of the
backed-up computer’s data. For each block stripe, at-
tempt to decode using the erasure-correcting code the
blocks with valid checksums and the highest version
number in that stripe. If you succeed, write the resulting
data blocks to local disk in the appropriate places. Keep
repeating this process, retrying partners that were down,
until additional blocks cannot result in more stripes be-
ing successfully decoded or time runs out.

It is the responsibility of the backed-up–computer
maintainer to keep one or more copies of the list of cur-
rent partners off-site in a security box or the like. This
list is generated shortly after joining once the initial set
of partners has been determined and updated occasion-
ally as partners change.

To limit how often this list must be updated, we store
the list of current partners in a special block (themas-
ter block) that is replicated on each partner and not part
of any block stripe. This means that the list can be re-
trieved from any current partner so that the off-site list
actually needs to be updated only everyk−1 partner
changes under the assumption that we must toleratem
partners failing. If this is still too frequent, it is possi-
ble to add many additional partners that we only swap
master blocks with.

2.5 Handling downtime
In the real world computers are often unavailable: they
may be connected via a dialup line or suffer from fre-
quent soft failures (e.g., Windows crashes). Partners
must agree on a level of required uptime (e.g., “up 90%
of the time” or “up during California business hours”).

Lower levels of partner uptime decrease performance:
backups and restores take longer because the computer
must wait for partners to become available. For exam-
ple, if a machine’s partners are up only during business
hours and it crashes during the weekend, no restore will
be available until Monday morning. Efficient backups
require most partners to be up simultaneously during
some period of the day. This limits the ability of com-
puters with low and unpredictable uptime to participate
in our scheme.

Agreements are subject to being broken. For the sim-
plified scheme, we assume that owners are not out to
take advantage of or hurt others. We do not, however, as-
sume that owners are reliable about maintaining uptime
agreements. Owners might forget to leave their com-
puter on as much as planned, underestimate how often
their machine crashes, or change their computer-usage
policy without remembering to tell the backup-system
software.

To guard against this, each computer keeps track of its
uptime and warns its owner when it is failing to live up
to its end of its agreement. For the simplified scheme,
we assume this reminder is sufficient to make the owner
take any needed steps to correct the problem. In the full
scheme (see Section 3), we actively police agreements
(both uptime and storage swapping) and abandon part-
ners who fail to live up to their end of an agreement.

2.6 Resizing the amount of backup space
Consider a computer currently swappings blocks with
each ofn = k+m partners. In return forn×s blocks



of local disk, it has access to a logical disk of size
k×s blocks. If it needs additional logical-disk space,
it can either add more partners swappings blocks each
(presumedly maintaining a similar ratio ofk andm) or
switch ton new partners willing to swaps′ > s blocks
each. Adding partners increases the amount of overhead
due to per-partner costs (especially under the full scheme
where we must periodically check on each partner), but
requires issuing a new current partner list less often.

The same methods run in reverse can be used to shrink
the logical disk. Partners holding redundancy blocks can
also be added or removed to adjust the reliability level.
Most of these changes require moving data around to
maintain a sequential image (i.e., adding partners adds
blocks to every stripe row, rather than just adding a
bunch of blocks at the end of the disk). By using the
master block and version numbers, this can be done us-
ing no extra space in a restartable way with restoration
always possible.

3 Security
In the previous section, we described a simplified
scheme that assumes system members can be relied
on to cooperate with each other, either because of
substantially-similar interests or some external enforce-
ment regime. We believe this assumption is likely to
hold for systems deployed within a single company.
Care should be taken, however, if our scheme is used
within a single company to ensure sufficient site diver-
sity so that all partnerships can be between sites.

In this section we describe how to extend the simpli-
fied scheme so that it can function in an environment
such as the Internet where cooperation cannot be as-
sumed because computer owners have different and pos-
sibly conflicting interests. Systems operating in such en-
vironments must be able to defend against members at-
tempting to read or alter other members’ data, to unfairly
take advantage of other members, and to shut down or
impair the system.

3.1 Confidentiality and integrity
To ensure the confidentiality of its backup data, each
computer should encrypt its data before sending it to its
partners using symmetric cryptography with a secret key
known only to it. Because this and the other keys de-
scribed below are needed for restoration, they should be
added to the current-partners list that is manually taken
off-site.

Ensuring backup integrity requires three steps. First,
third parties must be prevented from impersonating a
computer to one of its partners so that they can overwrite
that computer’s data. This requires pairwise authentica-
tion. At partnership formation time, the two partners
can use Diffie-Hellman to establish a shared secret key,

which they can then use later to authenticate write mes-
sages by attaching a sequence number and keyed cryp-
tographic hash to each message.

Second, partners must be stopped from modifying a
computer’s data by altering a block’s data then fixing up
its checksum. This can be prevented by substituting a
keyed cryptographic hash for the simple checksum used
by the simplified scheme. So long as a computer keeps
this hash key (anintegrity key) secret, no other party will
be able to modify or generate new valid blocks. Like
with the encryption key, there is no need to have separate
integrity keys for each partner.

Third, the ability of a computer’s partners to conspire
to replace one valid block with another must be limited.
Computing a block’s cryptographic hash over the partner
ID and block offset where that block is stored in addition
to its portion of the backup data and version number will
prevent all substitutions except those involving an earlier
version of the same logical-disk block. By storing the
date and version number of each snapshot in the master
block and refusing to accept earlier versions at restora-
tion time, a computer can ensure that conspirators can
not selectively revert parts of a snapshot. A conspiracy
of at leastk partners can still revert the entire snapshot to
a previous version; the only possible defense is to print
the date of the actual snapshot being restored in the hope
that the owner will notice the reversion.

The order in which encryption and checksum attach-
ment are done matters. The correct order is to (1) gen-
erate the redundancy blocks, (2) encrypt each block, (3)
attach the version number, (4) compute a cryptographic
hash for each block (over the encrypted data, version
number, partner ID, and block offset), and (5) attach the
appropriate cryptographic hash to each block. This order
allows a block’s validity to be checked without having to
decrypt it. More importantly, it ensures that there is no
exploitable redundancy available to attackers: if encryp-
tion was done before generating redundancy blocks, a
partner could save space by using the erasure-correcting
code to reconstruct the data he was supposed to store
from the data stored at the other partners. While good
for him, that leaves the backup with lower redundancy.

3.2 Free-rider attacks
Peer-to-peer systems, including ours, are potentially vul-
nerable tofree-rider attacks. A free-rider attack is one
where an attacker, called a free rider, benefits from the
system without contributing their fair share. The classic
example of a free rider is a person who watches the US
Public Television System (PBS) without donating any
money. (PBS is supported largely by viewer donations.)
Systems vulnerable to free-rider attacks either run at re-
duced capacity or collapse entirely because, as more and
more users free ride, the costs of the system weigh more



and more heavily on the remaining honest users, encour-
aging them to either quit or free ride themselves.

3.2.1 Agreement violations
The most basic free-rider attack against our scheme is
for an attacker to intentionally fail to uphold his end
of his agreements. For example, under our simplified
scheme a computer could free ride by letting its partners
backup its data but refuse to hold their data in turn; this
would give the computer backup service at essentially
no cost to itself.

To prevent such attacks, participating computers
should police their agreements by verifying whether or
not their partners are honoring their promises. Each
computer can periodically challenge each of their part-
ners to make sure that the partner in question is up when
promised and continuing to hold the data it agreed to
hold.

Such a challenge might consist of a request for the
block of the challenger’s data stored at a challenger-
chosen random offset; the answer would then be checked
to make sure it is a valid block that belongs on that part-
ner at that offset. Optionally, the block’s version number
could also be checked to make sure it is the most recent
version. Because a partner who holds only fractiond of
the challenger’s data will passc challenges with prob-
ability dc, by challenging frequently enough, the chal-
lenger can be assured with high probably that its partner
is still holding almost all of its data.

While a challenge remains pending (i.e., not yet an-
swered correctly), the challenger should keep retrying it
until either it is answered correctly or the partner claims
data loss (aka, needs restoration). After a computer
has restored its data, it signals its partners, who then
reload their data (empty blocks until their cleaners have
a chance to run) on it and resume challenging it. The
time the challenger spends waiting for an answer should
be counted as downtime for that partner. Partners who
are down too often (relative to their uptime-level agree-
ment) or need restoration too often should be forever
abandoned in favor of a new partner.

Unfortunately, a crashed computer looks just like a
cheating one that is trying to dodge a challenge it cannot
answer—both do not respond to requests. If computers
using our scheme abandoned partners (discarding their
backup data) as soon as they were clearly down more
than their uptime agreements allow (say, 8 hours for a
strict 100% agreement), our backup service would not be
very useful because backups would likely be discarded
before computer owners realized they were needed.

Accordingly, we suggest allowing agrace period of
two weeks: partners should not be abandoned until two
weeks have passed since they first went down exces-
sively. We recommend two weeks to cover the case

where a machine crashes, losing data, just after the
owner leaves on a two week vacation.

3.2.2 Exploiting the grace period
A more sophisticated free-rider attack involves taking
advantage of the grace period to obtain backup service
for free. The attacker joins the system, forming partner-
ships and exchanging data as normal. He then pretends
to crash, throwing away all the data he has been given.
For the next 2 weeks, he has free backup service because
of the grace period. Just before the end of the grace pe-
riod, when his partners will stop giving him backup ser-
vice, he switches to a new set of unsuspecting partners
and starts again. So long as he can find new partners
(peer-to-peer systems can have millions of members), he
can continue to receive backup service without cost.

Another free-rider attack involving the grace period
has the attacker refusing to wait out the grace period
before abandoning partners that are excessively down.
This hurts his partners because they are left with a less
redundant backup, or even no backup at all if enough of
their partners free ride this way; however, the attacker
benefits because his backup has better redundancy for
the next two weeks because of the additional new part-
ner.

The only way to deter these attacks is to make them
unprofitable: we need to arrange things so that the at-
tacker pays more for the privilege of using the grace pe-
riod than it is worth to him and so that the attacker saves
money by waiting out the grace period without abandon-
ing his partners. (Free riders are motivated by the chance
to save money, not the opportunity to hurt others.)

Payment If our scheme was modified to use a hybrid
peer-to-peer model where a company charged money to
use the software, collecting payment would be easy: just
add an extra amount to the monthly bill. Likewise, if
low-cost electronic financial transactions were available
(e.g., digital cash), payment could consist of a straight-
forward transfer of money between the attacker and the
hurt parties or a suitable charity.

Because we wish to allow for a decentralized peer-to-
peer system with almost no administration beyond keep-
ing the matching server running and do not believe low-
cost transactions are likely to become available anytime
soon, we consider here a different way to make attackers
pay: disk-space wasting.

The idea behind disk-space wasting is that we need to
impose a cost that balances out the benefit the attacker
stands to gain, in this case 2 weeks of a partner holding
s blocks of his data. How much is this benefit worth?
Clearly, no more than it would cost to obtain it from the
next cheapest source, namely our scheme used honestly:
the effort required to hosts blocks for 2 weeks. Thus
forcing someone to wastes blocks of disk space for 2



weeks cancels any benefit they might receive from abus-
ing the grace period.

Assuming computersA andB are already swapping
s blocks,A can pay such a cost toB by holding an ad-
ditional s blocks forB for two weeks, by holding an
additional2×s blocks for one week, or by allowingB
to holds fewer ofA’s blocks for two weeks. The previ-
ously described protocols are used to allowB to read,
write, and check on her additional blocks. Note that
in the fewer blocks case thatB is no longer holding
A’s backup data for the duration, leavingA with one
fewer effective backup partner. Also notice that unlike
the monetary-payment cases, disk-space payments take
time to make—one or two weeks in the examples here.

Such payments may benefitB because she has more
storage available to her, and thus represent a transfer of
value fromA to B. A different kind of payment is a
commitment-cost payment whereB ensures thatA ei-
ther pays an unrelated third party (e.g., a charity in the
monetary-payment case) or else simply wastes resources
(the disk-space–wasting case). We can convert the pre-
vious transfer examples into commitment-cost payments
by usinglow-utility blocks.

A low-utility block is a normal block whose access
has been sufficiently restricted so that it is of little or
no utility to its lessee. For example, the lessee might
be allowed to write any time, but be able to read only
an occasional random one of its low-utility blocks for
checking purposes. More draconian would be allowing
only reads of randomwords. A transfer can be turned
into a commitment-cost payment by either making the
additional blocks held be low-utility blocks or by instead
of having the partner holds fewer normal blocks, have
her convert thoses normal blocks to low-utility blocks
for the duration. The low-utility–block lessee stores un-
compressible (i.e., encrypted) data in those blocks and
checks a random block (or word) periodically to ensure
that the data is being kept. The parties must mutually
agree on the random block (or word) to be read—see
Section 3.3.1 for a protocol to do this—to guard against
the lessor always presenting the same block for inspec-
tion.

Because we believe that most PCs will not have
enough space to hold a large number of extra blocks be-
yond the ones already needed for backup space, we will
assume for the rest of this paper that the “allow your
partner to holds less normal blocks” cases are used for
disk-space wasting. While this requires no extra space, it
does have the drawback of leaving a PC with no backup
while it is paying multiple partners. As an optimization,
PCs paying commitment costs may continue to backup
their data onto their (temporarily) low-utility blocks so
that it is immediately accessible once payment is com-
plete and the access restrictions are removed; this opti-

mization is incompatible with restricting access to ran-
dom words because only entire backup blocks are veri-
fiable.

Prepayment We can make these free-rider attacks un-
profitable by requiring prepayment for the right to abuse
the grace period: each time a computer gets a new part-
ner, it pays a commitment cost of “3 weeks” to it and
after being restored afterd days of downtime, it must
pay “d+1 days” to its partners to keep them. Here, a
cost of “1 day” is shorthand for disk-wasting for 1 day
with the same amount of storage swapped or the equiva-
lent via monetary transfers to a clarity or central billing
authority. Note that if we do not use commitment-cost
payments here, the payments between two new partners
would cancel out.

This scheme clearly makes the backup-service-for-
free attack unprofitable. The case for the refusing-to-
wait-out-the-grace-period attack is more subtle: If the
attacker switches immediately, he pays “3 weeks” for the
new partner. If he waits instead, he might have to pay up
to “2 weeks” for the grace period plus a possible addi-
tional “3 weeks” if the partner does not resume swapping
data with him after restoration. So long as the probabil-
ity of his partner resuming swapping is more than2/3,
it will be cheaper for him to wait. Should the probability
(q) turn out in practice to be less than this (unlikely), a
larger new-partner fee of “2 weeks”/q will still make the
attack unprofitable.

The prepayment scheme has the advantages of being
very simple and robust, requiring no assistance from the
central server or any assumptions about the difficulties
of changing computer identities. Its main disadvantage
is that when disk-space wasting is used it interferes with
backup service: backup service is not available for the
first 3 weeks after joining the system, for up to 2 weeks
after a restoration, and additional backup space takes 3
weeks to become available (new partners are needed).
While growth in the backup space needed can usually be
anticipated, the growth-speed limitation may be prob-
lematical in some cases.

Post-payment An alternative scheme is based on re-
quiring paymentafter using the grace period (with or
without a restoration). Here the central computer keeps
track of each computer’s partners. Each computer is sup-
posed to honor the grace period and pay “d+1 days” to
its partners after being restored afterd days of down-
time. If it does not, its partners will complain to the cen-
tral server, causing the server to sever those partnerships
and impose a fine of “3 weeks” on all of the parties.

The fine must be imposed on everyone because, in
general, there is no way for the central server to know
who is truly at fault. This is unfortunate because it intro-
duces a new free-rider attack: don’t bother to complain,



letting others shoulder the burden of deterring attackers
alone. We believe that this last attack will not be serious
because it is only really tempting when there are a lot of
attackers exploiting the grace period, which should not
happen if most computers act to deter them by complain-
ing.

The central server must impose the fine (e.g., it sup-
plies the data and does the challenging) because an at-
tacker’s partners (new or old) may be accomplices that
will not fine it. Should a computer refuse or try to cheat
the fine, it is exiled by the central server from the system:
the central server tells the machine’s partners to aban-
don it and refuses to authorize any new partnerships for
it ever again.

In order for the threat of exile to be an effective de-
terrent, rejoining the system under a new name must
cost more than “3 weeks” times the maximum number
of partners. A possible way to do this in a decentral-
ized manner is by requiring joining computers to pos-
sess a class 2 personal digital certificate that has never
been seen by the server before. Such certificates can
currently be purchased from companies like GlobalSign
(www.globalsign.net) for 16 Euros.

When disk-space wasting is used, this scheme pro-
vides better backup service availability than the prepay-
ment one because it limits backup service only imme-
diately after a restoration. It may, however, require the
user to pay for membership somehow and requires much
more effort from the central server per system member.

3.2.3 Bandwidth theft
Another free-rider attack involves attackers using partic-
ipating computers to broadcast information. For exam-
ple, a cracker might wish to make his pirated-software
collection available to his friends but lacks the band-
width to do this from his home PC. He can join our sys-
tem and place the data to be broadcast on each of his
partners in the clear; he then gives out his partners’ IP
addresses via email to his friends, who then download
the data from the partners, subjecting them to unfair high
traffic.

This attack is easily thwarted, however, by imposing a
quota on how many reads or writes a partner can do per
day, say three times the number needed for daily backup.
A somewhat larger quota may be needed during restora-
tions.

3.3 Disrupter attacks
Another kind of attack that we must guard against isdis-
rupter attacks. A disrupter is an attacker motivated to
disrupt, impair, or destroy a system or particular user.
They might want to do this for prestige (any system
whose disruption would make the front page is a target
for some attackers) or to hurt a hated company or person.

1. A chooses a random numberr1
2. A sendsCommit(A, r1) toB
3. B chooses a random numberr2
4. B sendsr2 toA
5. A sends opening information toB
6. B sendsblock[r1 ⊕ r2] to A

Figure 4: The random-read protocol whereA is reading
a block fromB. Commit(-) generates a nonmalleable
commitment that is revealed in step 5; it hidesr1 fromB
until step 5 while preventingA from changing her mind
after seeingr2.

Unlike free riders, disrupters cannot be deterred simply
by making such attacks unprofitable; the attacks must be
made ineffective or beyond the attackers’ budget.

3.3.1 Blocking restoration systemwide
The basic disrupter attack against our scheme is to at-
tempt to block restoration of as many machines as possi-
ble by controlling enough of their partners: any machine
which has more thanm attacker machines as partners
will believe its backups succeed, but come restoration
time will find that it is unable to recover its data because
the attacker machines refuse to cooperate.

In order to attack a large number of machines (pre-
sumedly for publicity) this way, the attacker will have to
swap disk space with thousands of machines. The disk
storage to do this directly, however, is beyond the budget
of any likely attacker. However, by using a man-in-the-
middle attack, a smart attacker can appear to be storing
data for thousands of machines without using any local
disk space. He simply steps between pairs of partners
(see Section 2.1) and passes blocks back and forth, leav-
ing each original partner to believe the attacker is back-
ing up its data, when in fact they are still storing each
other’s data. If the attacker encrypts data going one way
and decrypts data going the other way, he can ensure that
when he bows out the stored data will be useless to the
original partners.

We can prevent such man-in-the-middle attacks by
changing our block-access protocols slightly. Intuitively,
the idea is to provide only the following read operation:
read a completely-random block. Unlike the normal
read-specified-block operation, this operation cannot be
passed through: ifA does a random read (say blockr is
chosen) ofB, there is no way forB to read blockr from
C efficiently because each random read he does has only
a 1/s chance of returning blockr. On averageB must
reads/2 blocks to fulfill each random-read request ofA.
This means that a small number of challenges byA will
quickly forceB to exhaust his read quota withC (see
Section 3.2.3), leaving him unable to answer all of the
challenges.



This restriction, of course, must be lifted while a
restoration is in progress and may be lifted systemwide
periodically so that cleaners can run efficiently. Figure 4
shows one way to formalize the random-read operation
into a protocol. Steps 1–5 here, modulo the inclusion of
A’s name in the commitment, are a standard variant of
the flipping-coins-by-telephone protocol [2]; step 6 re-
turns the resulting chosen block, the one at offsetr1 xor
r2.

We includeA’s name—eitherA’s current IP address,
or if that is spoofable, a public key—in the commitment
in step 2 to prevent the random-number-choosing proto-
col itself from being passed through: IfB simply passes
the commitment along toC, he will be caught after he re-
veals the commitment in step 5 andC sees that it does not
haveB’s name in it. He is prevented from fixing up the
commitment to have his name while still containingr1
by the non-malleability of the commitment scheme [9].
Because he is unable to pass through the choice ofr1,
he is unable to trickA andC into agreeing on the same
random number.

3.3.2 Blocking one machine’s restoration

The preceding defense prevents attackers from disrupt-
ing a large portion of our system; it does nothing, how-
ever, to prevent attackers from targeting one or two hated
machines. It is not clear that much can be done to de-
fend against such a focused attack. By requiring that all
a computer’s partners be located on different IP subnets,
forcing partners to be chosen randomly from the eligi-
ble subset, and charging a fee for (excessive) switching
the cost of such an attack could be raised somewhat, but
probably not enough to deter determined attackers.

The attack is unlikely to be used, however, because
it is not very effective at damaging the target machine
compared to alternative attacks such as targeted viruses
and denial-of-service attacks: it only blocks restoration;
actual data loss requires an independent event that might
take years to happen, if it happens at all. There is lit-
tle point in combining this attack with a method for de-
stroying a computer’s data because it is usually easier to
modify such methods to destroy any backup directly by
corrupting the backup software.

4 The Prototype

We are building a prototype using our scheme, but it is
not yet fully operational. Enough functionality is work-
ing, however, to allow measurement of the prototype’s
backup performance, which we report on here along
with some interesting aspects of the prototype’s data-
layout choices.

hash b. ID IV data

~~

~~

ver.

16 4 4 8

64 KB

65,504

Figure 5: The format for blocks stored at partners, which
includes a 16-byte HMAC-MD5 cryptographic hash,
a block ID, a version number, an initialization vector
(encryption-added random padding), and 65,504 bytes
of backup data.

A B C E F

B’C’ A’D’ E F

Figure 6: Sample partial overwrite of old snapshot (light
grey) by new one (dark grey). Files A, B, and C are
overwritten with new versions (A’, B’, C’) and a new
file D’ is written. Only part of the new E is written, but
it and F have old versions that are not yet overwritten.

4.1 Data layout

The prototype divides the logical disk into 64 KB blocks.
Figure 5 shows the format used for these blocks. The
necessary header fields use 32 bytes, leaving 65,504
bytes free for data, an overhead of only 0.05%. The pro-
totype uses the IDEA block cipher for encrypting the
data and the cryptographic-hash HMAC MD5 to gener-
ate checksums in the order described in Section 3.1.

The prototype treats the logical disk as if it were a
large circular tape: each snapshot is written starting just
after the last one, using ascending block offsets (with
wrap around at the end of the disk). Snapshots use a for-
mat similar to archival file formats (e.g., tar), which store
a sequence of files by writing, for each file, a file header
followed by that file’s data. The file header contains a
synchronizing sequence, the file name, date stamp, file
length, and a checksum. Because of the synchronizing
sequence, it is possible to start reading a snapshot in the
middle and still extract all the files whose headers come
after that point.

This property of the snapshot format can be useful
when backup space is limited, and as a result the next
snapshot necessarily overwrites the last full snapshot:
Should the computer crash while writing the new snap-
shot, it will be left with two incomplete snapshots at
restoration time, the beginning of the new one and the
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Figure 7: Breakdown of backup time.

end of the old one. The start-in-the-middle property al-
lows reading and recovering all the complete files in both
partial snapshots. If there is extra space available be-
yond that needed to hold a full snapshot and the set of
files being backed up has not changed greatly, then most
files should be recoverable, although some of them may
be restored to the version saved in the old snapshot; see
Figure 6 for an example.

4.2 Performance

To measure the prototype’s backup performance, we
used five personal computers running Microsoft Win-
dows NT, each with a 200 Mhz Pentium Pro processor,
64 MB of RAM, and a 10 Mbps Ethernet card. The com-
puters were connected via a 10 Mbps Ethernet hub. We
used the (8,2)-Reed-Solomon erasure-correcting code,
which tolerates the failure of any 2 of 8 partners at the
cost of using 2/6 = 33% extra space, and simulated 10
participating computers by running two instances of the
prototype software on each PC. Each instance was part-
nered with the eight instances located on different PCs
from it, so that all communication between partners went
through the network.

We instructed one partner to write either 100 MB or
1 GB of test data stored on its local disk to its logical
disk to simulate saving a snapshot; during this time, the
other partners were idle except for processing write re-
quests. The prototype uses the procedure described in
Section 2.3 with w=7 to write snapshots: writes to part-
ners occur in parallel, but are not pipelined with the read-
ing and preparing of the blocks to be written, and at most
one write is in progress at each partner at a time.

Using this unoptimised procedure, the prototype is
able to write 100 MB in 12 minutes and 1 GB in 2 hours.
This corresponds to a backup rate of 1.0 Mbps and a
write rate of 1.3 Mbps (larger because of the redundancy
blocks that must be written). Optimization would im-
prove these rates, but since they are already larger than
the bandwidth many Internet connections provide, it is
not clear how useful this would be.

space 100 MB 1 GB 10 GB 100 GB
mean $16.46 $53.84 $232.28 $1773.33
min $4.50 $12.71 $72.21 $720.00

Figure 8: Monthly fees in US dollars required by ex-
isting Internet Backup services to store a given amount
of data; excludes one-time startup fees but includes dis-
counts for annual contract.

Figure 7 breaks down the contributions to the backup
time made by the local disk (mostly reads), the remote-
writing step (mostly network and partner delays), and
the various CPU-intensive tasks. The remote-writing
step consumes the largest portion (44%) of the total time,
presumedly due to our allowing only one outstanding
write to a given partner at a time. Hashing requires
more time (8%) than encryption (6%) because it must be
done twice for each block: once to generate the stored-
block checksum and once to authenticate the write re-
quest containing that block to the partner. (Separate
keys, and hence hashes, are required because the in-
tegrity key must be kept secret from the partner.)

5 Comparison with existing services

5.1 Cost
We did a survey of Internet backup sites on October
28, 2002. Figure 8 shows the average and minimum
monthly fees for various amounts of storage for the 15
sites (out of 28 surveyed) that list prices on the web
for given amounts of data to be stored (as opposed to
the amount to be backed up, which differs due to as-
sumptions about compression and how much data actu-
ally needs to be backed up). The cheapest marginal cost
found was US $7.20 per gigabyte.

In estimating the cost of using our scheme, we assume
that the user’s computer hardware, base power, and any
needed bandwidth are already paid for by existing uses.
This seems reasonable for a home PC that is already on
enough for reasonable predictable uptime and that has an
Internet connection with flat-rate bandwidth pricing. We
furthermore assume no cost for the software or central-
server operation based on an open-source model and the
extremely low overhead on the central server per par-
ticipating computer; if a commercial model of software
development was used instead, a small one-time fee for
the software might be also be required. Under these as-
sumptions, the cost of our scheme is determined by the
marginal cost of storage for a PC and the marginal cost
of the extra power needed to operate a disk drive to an-
swer challenges and backup data.

Based on the cost of a 60 GB internal IDE hard
drive as of October 2002—US $75 according to
www.pricewatch.com—depreciated over 2 years,
we conservatively estimate the marginal cost of storage



at no more than 5.2 US cents per gigabyte per month.
The cost of the extra power required is much harder to
estimate. One conservative approach is to assume that
the disk is turned on 1.5 extra hours per day per giga-
byte to be backed up, on the assumption that the average
backup takes 25% of the time of a full one (2 hours/GB
for the prototype in each direction) and that challenges
take half an hour of disk time total per day. Desktop disk
drives appear to consume about 10 watts extra power
when active [11] so at a conservative electricity cost of
15 cents per kilowatt hour, our scheme should use 7.5
US cents of power per GB backed up per month.

If we assume 100% storage overhead for redundancy
(e.g., k=m) and room for 2 full snapshots on the logi-
cal disk (a factor of 2.2 should suffice), we will need to
trade 4.4 GB of local disk in order to back up 1 GB of
data, resulting in our scheme costing no more than 26
US cents per gigabyte per month. A less conservative
estimate (3 years, 50% overhead) gives a figure of 18.6
US cents/GB/month.

Thus, our scheme appears to be 30 to 100 times
cheaper than existing Internet backup services. We do
not fully understand why this is, but believe it largely
stems from our scheme’s lack of administrative costs and
use of marginal resources (e.g., most of the resources we
use are already paid for by other uses). A small part of
the difference may be due to limitations of our scheme
as compared to existing Internet backup services (see be-
low).

Traditional backup methods can be comparable in cost
to our scheme, but are inconvenient for users: if a home-
computer user weekly writes a snapshot to 700 MB CD-
Rs (6 US cents each in quantities of 100) then takes them
to work and leaves them there, he will incur a cost of
35.1 US cents/GB/month ignoring the cost of the CD
burner.

5.2 Limitations
Our scheme does have some limitations as compared to
existing Internet backup services. Perhaps the biggest
limitations are the limited grace period (2 weeks) and
the need for sizable amounts of predictable Internet con-
nectivity. Unlike the existing services, which provide
long grace periods (months if not years) and only re-
quire a computer to be connected to the Internet when a
snapshot needs to be saved, our scheme leaves comput-
ers with no backup at all in case of excessive downtime.
Unlike schemes based on off-line media, our scheme
offers little protection against catastrophic viruses that
suddenly erase most PCs’ hard drives.

Also, our scheme is somewhat less convenient than
the best Internet backup services: we provide no tech
support line to hold users hands and will not Fed Ex a
CD copy of a user’s data to them so they don’ t have to

wait for a restore over a slow Internet connection. De-
pending on the uptime-level agreement, restoration may
take longer in our scheme than with the existing services.
In theory, Internet backup sites could offer insurance (“ if
we lose your data, we’ ll pay you a million dollars” ). In-
suring users in our system seems problematic due to pos-
sible fraud using the disrupter attack of Section 3.3.2.

If disk-space wasting is used, there are the additional
limitations that backup service will not be available for
2 weeks after a crash, and if prepayment is used, backup
service will not be available for the first 3 weeks and
growing backup-storage space will take 3 weeks.

5.3 A hybrid model

It is possible to remove most of these limitations by com-
bining our scheme with the existing Internet-backup-
service model: A company would run the central server
and bill users periodically. Backup would be done as
per our scheme except that before abandoning a partner,
a computer would upload the partner’s data to the cen-
tral site, where it would be stored temporarily. When
the abandoned computer found a new partner, it would
move its data from the central server to the new partner.

This model allows preserving backups even in the
presence of excessive downtime. Members would be
billed at a basic rate similar to our scheme but with sur-
charges for centrally storing data (charged presumedly at
the existing Internet-backup-services rate) and for abus-
ing partners. In essence, customers with good uptime
would pay our cheap rates while still being guaranteed a
backup even if they exceed the 2 week grace period or
are down excessively, albeit at a slightly higher price.

6 Related work

The first wave of peer-to-peer systems included sev-
eral systems (The Eternity Service [1], Archival Inter-
memory [4], Free Net [5], and Free Haven [7]) de-
signed to provide uncensorable storage: documents
once deposited in these systems cannot be altered or de-
stroyed by attackers, even national governments. Like
ours, these systems use cryptography and redundancy
(Archival Intermemory uses erasure-correcting codes) to
protect data. It was soon suggested that one of these
systems would make a good base on which to build a
backup system.

Unfortunately, however, these systems do not have
working defenses against free riders when used in this
way: Freenet keeps only the most popularly requested
documents, Archival Intermemory simply assumes co-
operation (it is intended for research libraries, which are
believed to have substantially similar interests), and the
Eternity Service paper only suggests a possible line of
direction for a defense.



The Free Haven project has proposed an elaborate
scheme based on trading storage, where nodes are al-
lowed to insert only as many shares (the unit of trade
in Free Haven) as they hold for others. However, un-
like in our system, these shares are constantly traded be-
tween nodes, leading to effectively non-symmetric part-
nerships. This prevents a node A from directly punish-
ing a node B that drops one of A’s shares by dropping
one of B’s shares that A holds in return. Instead an
elaborate reputation system is needed to punish nodes
that are complained against too many times because they
drop data. Unfortunately, building a working reputation
system is very hard and it is far from clear if their system
works [8].

More recent peer-to-peer storage systems include
PAST [10, 14] and OceanStore [12, 15]. These systems
do not attempt to provide uncensorability, and are thus
simpler than the previous systems.

PAST relies on trusted third parties and smartcards
to broker requests between clients so that clients can-
not use more remote storage than they are providing
locally. Unfortunately, insufficient details are provided
about PAST’s defenses to properly evaluate PAST’s re-
sistance to free-rider attacks—e.g., nodes are supposed
to be randomly audited, but no details of how or with
what consequences are provided. PAST appears to en-
crypt data before replicating, which may allow a free-
rider attack where malicious nodes obtain data from the
redundant data that their peers store, rather than storing
it themselves (see Section 3.1).

OceanStore is a federated system where utility com-
panies pool their resources to provide storage to users.
Each user contracts with a single company, the responsi-
ble party, to receive storage for a fee. That company then
exchanges storage with the other companies for greater
reliability and geographic range. Because of the com-
panies’ large size and deep pockets, legal contracts and
enforcement can be used to punish companies that do not
keep their end of the bargain, based on planned billing
and auditing systems. OceanStore, because of its need
to support concurrent updates, is very complicated (e.g.,
it uses Byzantine agreement) and requires a great deal of
central resources, making it likely more expensive than
our scheme if only simple backup service is needed.

The only other peer-to-peer system we know of
whose primary purpose is backup service is Pastiche [6].
Like in our scheme, Pastiche nodes form partnerships
with other nodes. However, rather than using erasure-
correcting codes, each Pastiche node stores a copy of
all of its data on each of its partners. By sacrificing
a fair amount of privacy (observers can tell if a node’s
filesystem includes a given large byte sequence), this
backup data can be greatly compressed: by choosing
partners with similar software installations, most files

being backed up will be already present on the part-
ner, thus requiring no extra storage. No data is avail-
able yet about whether this savings compensates for the
greater overhead of using full replication rather than
erasure-correcting codes in practice. Pastiche has not yet
adopted defenses against free-rider attacks; the authors
merely sketch, in a paragraph each, three approaches
that they are considering.

7 Conclusions
In this paper, we have described a scheme for a peer-
to-peer Internet backup system that appears to be one
to two orders of magnitude cheaper than existing Inter-
net backup services. We believe the cost savings stem
largely from savings on administrative expenses and the
use of cheaper resources, much of whose operating cost
is paid for by other uses. Preliminary experiments with
a prototype show that the scheme’s performance is ac-
ceptable in practice.

The most difficult part of the scheme design was
guarding against the inevitable free rider and disrupter
attacks to which a cooperative system is vulnerable.
We came up with several novel mechanisms—periodic
random-block challenges, disk-space wasting, and lim-
iting reads to mutually-chosen random blocks—to ad-
dress these attacks.
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Notes
1. Increased convenience encourages more frequent off-
site backups.

2. This assumes all blocks (of a block stripe) are writ-
ten as a unit; we do not discuss the more complicated
partial-write case in this paper.
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