
An Opportunistic Reconfiguration Strategy for
Environmentally Powered Devices

Igino Folcarelli, Alex Susu, Ties Kluter,
Giovanni De Micheli

LSI - EPFL, Lausanne - Switzerland
{igino.folcarelli,alex.susu,ties.kluter,

giovanni.demicheli}@epfl.ch

Andrea Acquaviva
STI - Urbino University, Urbino - Italy

acquaviva@sti.uniurb.it

ABSTRACT
Environmental energy is becoming a feasible alternative to
traditional energy sources for ultra low-power devices such
as sensor nodes and smart watches. Moreover, the increas-
ing need for flexibility and reconfigurability of such devices
makes its energy management even more challenging. As a
result, to efficiently exploit the potentially unlimited envi-
ronmental energy, new adaptation strategies are required. In
this paper we present a novel system reconfiguration strat-
egy that exploits the intrinsic unpredictability of environ-
mental energy to opportunistically reconfigure the device.
To assess the effectiveness of the proposed reconfiguration
strategy we first perform a theoretical evaluation using sta-
tistical energy profile distribution and then we evaluate its
energy efficiency on a prototype device in the presence of
bursty energy profiles that we emulated using a programmable
energy source.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems

General Terms
experimentation

Keywords
reconfiguration, scavenging, sensor network

1. INTRODUCTION
The new frontier of ultra low-power computing is repre-

sented by highly reconfigurable devices providing adaptabil-
ity to changing requirements to the physical and applicative
context. Wireless sensor nodes, for instance, can be used in
many heterogeneous domains such as environmental moni-
toring as well as Ambient Intelligence applications [1]. Per-
sonal devices like Personal Digital Assistants (PDAs) and
palmtops are going to integrate even more functionalities

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’06,May 3–5, 2006, Ischia, Italy.
Copyright 2006 ACM 1-59593-302-6/06/0005...$5.00.

to increase the range of ubiquitous personal services. In
this context, the system must be able to reconfigure itself
at various levels, ranging from the hardware level (through
reprogrammable devices) to network and application level.
Quality of Service (QoS) adaptation is an example of appli-
cation level reconfiguration [7].

On the other hand, the developing technology of energy
harvesters and the improved energy efficiency of electronic
devices is reducing the gap between their requirements and
the exploitable environmental energy [10, 11]. However,
this gap is still hard to be filled because of two main rea-
sons. First, the energy level provided by scavenging devices
strongly depends on the technology used. For instance, solar
cells provide between 100mW/cm2 (directed toward bright
sun) and 100W/cm2 (illuminated office), while vibrational
microgenerators provide 4W/cm3 for human motion) [10].

This energy is not always available or effective in the con-
text in which these electronic devices have to operate. Even
where the scavenger technology can be efficiently exploited
there is still a mismatch between the energy profile of the
device and the one provided by the environment. This is
mainly due to the unpredictability of environmental energy,
which is partially modulated by using rechargeable batter-
ies and capacitors to smooth the energy profile. However, a
complete adaptation is hard to achieve because of the lim-
ited capacity of energy storage elements, coupled with the
uncertainty of the energy source. For instance, it could hap-
pen that an energy burst arrives right after the battery has
been filled-up. In this case, the additional energy (that we
call energy slack) is wasted if not used directly by the device
itself. This situation is of practical relevance with photo-
voltaic (PV) systems like solar cells, where during long pe-
riods of ”light” it becomes difficult to store all the available
energy.

In this work we propose an adaptation strategy that ex-
ploits unused energy slacks to perform system reconfigura-
tion. The main idea is to spend as much energy as possible
when there is a burst to improve the energy efficiency of the
system for later bursts. This approach is in contrast with
traditional battery aware power management where the ob-
jective is to minimize the energy consumed by the system.
In the proposed strategy, we promote an increase of the en-
ergy consumption in the presence of energy slack that cannot
be absorbed by a storage element. The overall objective is
to adapt the energy profile of the system with the energy
available from the environment.

The proposed strategy has been first analyzed through a

171

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147916737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

simple statistical model. Then, an energy-aware reconfig-
uration manager has been implemented in a reconfigurable
prototype system. Energy bursts have been provided by a
programmable power generator to perform experiments in a
controllable way and match the requirements of the proto-
type board.

2. OPPORTUNISTIC ENERGY MANAGE-
MENT CONCEPT

In this section we explain the rationale behind the pro-
posed strategy by first introducing the application and sys-
tem context and then describing the issues related to envi-
ronmentally powered devices.

2.1 Reconfigurable System Context
In this section we describe the concept of opportunistic en-

ergy management as a suitable strategy for environmentally
powered systems. The kind of system we are considering in
this work are ultra low-power reconfigurable devices. Re-
configurability is one of the most promising research topics
in the field of ultra-low power systems, since these devices
must adapt to a more and more heterogeneous application
context [8, 9, 6, 12]. These systems have to execute differ-
ent tasks depending on user requests or external events in a
context-aware system. For instance, a wireless sensor node
could be programmed to sense different external events such
as temperature or light changes. Depending on the external
event, a different task is to be executed. System reconfig-
uration can be exploited to perform the current task to be
executed in a more energy efficient way, for example through
on-board field programmable logic (FPGA). Hardware re-
configuration is to be considered one of the key features for
the development of future low-power and flexible multime-
dia applications. Low-power microcontroller used in sensor
nodes can be equipped with small on-chip FPGA aimed at
performing signal processing routines [2]. Moreover, recon-
figurable processors for low-power applications have been
recently proposed [13]. Another type of reconfiguration can
be performed to achieve a better energy/QoS trade-off by
executing a version with a different quality of the same task
(Multi-Version Scheduling [7]).

Taking the previous example, a sensor node may be asked
to take a picture of the environment when a particular event
happens (e.g., a person enters the viewer of the sensor).
Typically the image must be compressed before being sent to
a gateway node to reach the data fusion system. The trade-
off here could be between power consumption and quality of
the reconstructed image. If the system is provided with re-
configurable hardware, the same compression routine could
also be executed in hardware to save energy. In both cases
(hardware or software reconfiguration), the reconfiguration
requires additional energy.In the hardware case, it involves
the physical reprogramming of the device, while in the soft-
ware case the energy is taken by the decision and by the
loading of the new task version in the system memory.

In this paper experimental validation has been carried out
with a hardware reconfigurable platform, where the system
is provided with a library of hardware routines correspond-
ing to the software tasks. We assume that not all of the
possible tasks to be executed can be programmed in the
reconfigurable hardware at the same time, because of the
limited size of FPGAs suitable for low-power systems [2].

Figure 1: Energy wasted because of limited storage
capacity.

2.2 Environmental Energy Context
Typical scavengers provide energy in an unreliable way.

As a general case, we consider a system that has an energy
storage element with a limited capacity, either an ultraca-
pacitor [14] or a rechargeable battery. When the scavenger
generates is generating energy a certain amount of energy is
used to refill the storage elements and the remaining energy
is used to support ongoing computation. Due to the unreli-
ability of the source, it is possible that the system receives
two or more long light periods that fills-up the storage el-
ement [3]. In this case, the energy cannot be stored and
must be consumed by the device. Without any adaptation,
the amount of energy consumed by the device will proba-
bly not match the available energy that is then partially
wasted. This situation is depicted in Figure 1. The oppor-
tunistic energy management approach is aimed at reducing
the waste of energy by adapting the power consumption of
the device. The adaptation is performed by reconfiguring
the system such that the same task will be executed at a
higher efficiency in the future. In this way, the energy that
is otherwise wasted is consumed by the reconfiguration pro-
cess. By doing so, we can also increase the probability of
the successful completion of a task execution in the follow-
ing bursts - another possible extension would be to achieve
a better QoS for the same energy cost.

With respect to traditional battery-aware power manage-
ment strategies [4], the proposed approach is not simply
aimed at reducing the energy consumed by the system. It
also increases the energy consumption inside an energy burst
in order to match the energy profile provided by the environ-
ment, thus improving the energy efficiency in the following
bursts.

3. STATISTICAL ANALYSIS
In this section we provide a statistical analysis of the effec-

tiveness of opportunistic reconfiguration strategy. We sup-
pose to have a software model with two alternative tasks
to be executed depending on associated events that trigger
them. Moreover, we suppose to have a hardware version
of both routines and because of the limited capacity of the
FPGA (this is a reasonable assumption in for a FPGA in
a low-power device), only one task can be loaded into the
FPGA at any moment. Let us consider that we have at
most one execution of a certain task to perform for each
energy burst. In this case, it is of interest to compute the
probability to perform a single execution.

We distinguish two cases: (i) the reconfiguration has a
considerable cost (EREC), higher than the energy required

172

a) Erec > Esw. b) Erec < Esw.

Figure 2: Probability of one task execution as a function of the mean energy burst value.

for software execution (ESW) and hardware execution (EHW);
(ii) the reconfiguration takes lower energy compared to at
least ESW . In both cases we suppose that EHW + EREC is
greater than ESW . If this is not the case, it is always con-
venient to perform reconfiguration and hardware execution.
In the first case, the probability to perform a task execution
is given by:

P (HW) · P (E ≥ EHW) + (1)

(1− P (HW)) · (P (EREC > E ≥ ESW)

+ P (E ≥ EHW + EREC)

P (HW) is the probability that the task to be executed
is programmed into the reconfigurable hardware, which de-
pends on the status of the reconfigurable device. This means
that the probability of executing the task once in an energy
burst is given by the sum of the probability of executing the
task in hardware, if the task is loaded in the FPGA. Other-
wise, if the task is not loaded in the FPGA (1 − P (HW)),
the probability of execution is given by the probability of
executing the task in software (P (EREC > E ≥ ESW)) or
the probability of loading the task in FPGA and executing
it in the hardware (P (E ≥ EHW + EREC)).

It must be noted that if the task to be executed is not
present in the reconfigurable hardware, then the task will
be executed in software if the energy burst is larger than
software energy but lower than energy required for reconfig-
uration. In fact, we consider an aggressive policy that per-
forms reconfiguration each time the task to be executed is
not in the reconfigurable hardware and we have energy to do
it. If burst energy is larger than reconfiguration energy, we
use it for reconfiguration and we loose the opportunity of ex-
ecution, unless burst energy is larger than P (EREC +EHW .
In this case, we perform reconfiguration and hardware exe-
cution.

The second case we consider is when the reconfiguration
energy is smaller than energy for software execution. In this
case, the first part of the equation is not modified, while
in the second part the probability of execution is larger
than zero only if the energy of the burst is larger that
P (EREC + EHW . In fact, if the energy is lower than EREC

the task cannot be executed in hardware nor in software.
The probability of execution is given by:

P (HW) · P (E ≥ EHW) (2)

+ (1− P (HW)) · P (E ≥ EHW + EREC)

Since the target of the probabilistic model is to set the
bounds of the effectiveness of the opportunistic reconfigura-
tion, we suppose for the moment that the policy is imple-
mented by an oracle which always perform the best choice
in terms of reconfigurations. Between two possible recon-
figurations, the oracle always decide to reconfigure the most
frequent event. Which event is the most frequent depends on
the probabilistic distributions of execution between events.
If we express the probability of an event i as P (evi), we
can say that the probability of having in the reconfigurable
hardware the task selected for execution corresponds to:
P (HW) = max(P (ev1), P (ev2)).

Most of the environmental energy sources can be modeled
through a Gaussian density distribution [3]. If we use this
distribution for energy bursts P (E) and we use a uniform
distribution of events P (evi), we can compute the proba-
bility of one execution as a function of energy and event
distribution.

In Figure 2.a we draw the probability of one execution in
an energy burst as a function of the mean of the gaussian
distribution of energy bursts for different values of probabil-
ities of events ev1 and ev2 and in case of Erec larger than
Esw. In Figure 2.b the probability is computed for Erec

smaller than Esw.
The probability is shown in the case of ”software only exe-

cution” (P (E > ESW)) and in the case of the opportunistic
reconfiguration strategy. When EREC is large, the proba-
bility of execution is greater than ”‘software only”’ case for
values of energy burst between EHW and ESW . This is be-
cause of the contribution of the probability of having the
task in hardware. The execution probability goes to one
for both curves when there is energy enough to perform the
task in software. However, in case of opportunistic strategy,
as soon as we have enough energy to perform reconfigura-
tion (E > EREC) the aggressive policy will perform it and,
compared to the software only case, we loose opportunity
for execution if the energy is not enough for reconfiguration
and hardware execution.

When EREC is small (Figure2.b), the probability of ex-
ecution is greater than ”‘software only”’ for energy bursts
lower than ESW .

173

Figure 3: Reconfiguration policy.

The most important observation is that the probability
is that we have a clear improvement of the probability of
executing a task in a burst when we are using opportunistic
reconfiguration w.r.t. the normal ”software only” execution.
There are also cases in which the probability is lower, due to
the cost of reconfiguration and the aggressive policy. This
behavior depends also on the relationship between recon-
figuration energy and hardware/software energy. For this
reason, the presented analysis can be used to design a suit-
able reconfiguration policy.

Finally, because of the oracle, the probability of execution
in case of increased probability of event 1 increases as well
as outlined by the different curves shown in Figure 2.

4. RECONFIGURATIONMANAGERDESIGN
In the previous section, in order to achieve upper bounds

in the probability of the execution of a task within an energy
burst, we use an oracle that decides what is the most suitable
task to be loaded in the FPGA. In this section we consider
a real system that does not know in advance what the best
reconfiguration choice is. A viable solution is for the power
manager to collect statistics regarding the number of times
tasks are executed, and decide which task to load in the
FPGA based on these statistics.

The reconfiguration policy implemented by the energy
manager is represented in Figure 3. When an energy burst
arrives from the environment, the energy manager checks if
the energy slack is big enough to support the reconfigura-
tion. If this is the case, it looks at the execution statistics -
we will describe later how they can be collected - to decide
which is the best candidate for reconfiguration among the
available ones, which are stored in a hardware block library.
In the proposed strategy we always perform reconfiguration
whenever there is a slack. This is because the amount of
energy slack is not known when the burst arrives. Our op-
portunistic approach always tries to profit from the presence
of a slack. Clearly, the additional energy spent for reconfig-
uration could prevent the execution of a task that would be
otherwise executed if the whole slack was exploited. How-
ever, as pointed out in the statistical analysis, this can be
compensated by the improved energy efficiency depending
on the distribution of burst intervals. Reconfiguration is
not performed if the task that is predicted to be executed is
already loaded in the FPGA or there is no hardware version
available. Bitstreams of task candidates (hardware library)
are stored in the FLASH memory.

The policy described has been implemented in our proof-
of-concept prototype system. It is represented by a cus-

Figure 4: System architecture.

tom design board equipped by the URLAP processor [5] (a
low power ARM-based processor), two FPGAs, an external
DRAM and a FLASH. FPGAs can be configured to be either
memory mapped or to have a coprocessor interface to the
URLAP processor. We used the first configuration in our
experiments. FPGAs and URLAP communicate through
the shared memory view and interrupt lines. FPGA recon-
figuration can only be done by the URLAP. Since the board
is not optimized for being powered by a real scavenger, we
used a burst emulation system based on Labview software
and a Data AcQuisition Board (DAQ). A detailed descrip-
tion of the board and the burst emulation system is beyond
the scope of this work.

In this paper, we present a hardware implementation of
the energy-aware reconfiguration manager on top of one of
the two on-board FPGAs. However, a software implemen-
tation is also possible. One of the two on-board FPGAs has
been used for reconfigurable computation, while the other
one as a reconfiguration manager. The overall system archi-
tecture is shown in Figure 4.

The hardware reconfiguration manager is directly con-
nected to the energy source to detect supply power levels.
It has also knowledge of the status of the battery, so that it
is able to detect slacks. Since we do not know in advance
the shape of the energy burst, we start the reconfiguration
process as soon as the power level of the slack is larger than
the reconfiguration power. The block performing energy de-
tection is indicated as Energy Monitor (EM) in Figure 4.

The interface of the reconfiguration manager to the main
processor is represented by an interrupt signal (INTER-
RUPT) and a checkpoint signal (CK). The first one gives
to the reconfiguration manager the capability of issuing a
reconfigure command to the main processor in the presence
of an energy burst. The second one is used in the statis-
tic collection process. This interface is logically represented
by a dedicated shared memory location where information
about the last execution is written by the software and read
by the reconfiguration manager. After being read, this in-
formation is used to update execution counters. The reason
why the statistic signal is called checkpoint can be found
in the software implementation. Statistics are collected by
the insertion of code checkpoints that indicate how many
times a certain task is executed. Code checkpointing is a
well-known solution for designing application-aware power
management policies. In this work we exploit the same con-
cept for the implementation of the proposed environmental
energy-aware reconfiguration strategy. Execution statistics
drive reconfiguration decision. The most probable task to
be executed is estimated depending on past executions. In
this work we do not explore task prediction policies since we
focus on the opportunistic reconfiguration concept.

174

Figure 5: Event-driven application model.

5. EVENT-DRIVENAPPLICATIONMODEL
In this section we describe the software model we consider

for the study of the feasibility of the proposed strategy. Our
model is an event-driven application which is composed of
two alternative tasks that are executed depending on some
external event (i.e. a sensor outcome). This model is imple-
mented as software running on the main processor of the pro-
totype board. The external event has been emulated thanks
to a randomly generated variable, depending on which of the
two possible tasks is executed. This simple software model,
represented in Figure 5 allows us to study inherent prop-
erties of the reconfiguration strategy in a repeatable and
controlled way.

Software execution is triggered by the arrival of an energy
burst (burst = 1). The external event is then responsible for
selecting one of the two tasks. If an event of type 1 (2) is de-
tected (event = 1(2)) execution statistics are updated corre-
spondingly through code checking points (increase statistics
1 (2)). Then, the application has to select between hard-
ware and software execution. This is obtained by checking
a shared memory location (CHECK PARAM) written by
the reconfiguration manager depending on which routine has
been actually reconfigured in the FPGA. If there is still en-
ergy, another computational loop is performed.

Thanks to this implementation, the number of execution
loops becomes a metric for the energy efficiency of the recon-
figuration strategy. In fact, the lower the energy taken by
each loop, the higher the number of loops that get executed
within a single energy burst. Thus, instead of measuring the
energy consumed, we can just annotate the number of loop
iterations per burst.

The computation performed by the tasks is a 4th order
Finite Impulse Response filter (FIR). The choice of this soft-
ware routine has been motivated by the following reasons: i)
it is a signal processing algorithm suitable for typical sensor
networking application; ii) it results in a hardware imple-
mentation easy to fit in a small-sized FPGA suitable to a
low-power device; iii) it is a workload independent routine
that allows controllable experiments to be performed. In
future work we plan to perform similar experiments on a
wireless sensor node running a real-life application. In this
work we are focusing on achieving efficiency bounds for the
reconfiguration policy. The proposed benchmark turned out
to be suitable for this purpose.

Figure 6: Energy for hardware and software task
versions.

6. EXPERIMENTAL RESULTS
All the experiments have been carried out on a proto-

type board based on the URLAP processor, which is a RISC
ARM-compliant processor with 256 KB of internal SRAM.
The board has 512KB of FLASH, 8MB of DRAM, 2 FPGAs
and 2 CPLDs, that are exploited by the URLAP to perform
run-time reconfiguration of the FPGA.

First of all, we characterized hardware and software en-
ergy consumption of the FIR filter at different board clock
frequencies (Figure 6). It can be noted that the hardware
implementation is more efficient than the software one as
expected. We also plotted the hardware energy consump-
tion without static power contribution, which is dependent
on the FPGA technology. This plot outlines power con-
sumption due to the execution of the FIR filter in hardware.
Power of the whole board has been measured through the
same DAQ system used for emulating energy burst.

In Figure 6 the energy is expressed in µJ and the clock
frequency in MHz. We also measured the energy consumed
during the process of reconfiguration process. We found
a peak power of 132mW at frequency of 30 MHz of the
reprogrammation of the FPGA, with a reconfiguration time
of about 70ms.

In the second part of the experiment we exploit the met-
ric described in Section 5 to evaluate energy efficiency of
the proposed approach. In the following figures we will use
the following naming conventions: i) burst size indicates the
duration of the energy burst; ii) burstiness is the number
of consecutive loop iterations triggered by the same type of
event. For instance, burstiness 4:6 means that the software
performs 4 consecutive executions related to event 1 and
then 6 executions related to event 2.

In these experiments, we implement a simple moving aver-
age filter with history of 15 executions. Moreover, we restrict
our analysis to the case in which we always have enough en-
ergy to perform the reconfiguration process of the FPGA.

In Figure 7 the number of iterations performed in a burst
is shown as a function of the energy burst size for an event
distribution of 50%. The burst size has been selected to re-
flect typical range of a solar cell exposed to variable indoor
light conditions. This distribution is a worst case for our
execution prediction policy, and it is obtained by determin-
istically programming a sequence (burstiness) of events of
the same type.

The ”software only” line represents the number of iter-
ations obtained with no reconfiguration policy. It can be
seen that the proposed approach provides better results for

175

Figure 7: Task executions with balanced event dis-
tribution.

Figure 8: Task executions with unbalanced event
distribution.

all the burst size. A considerably larger number of iterations
is achieved that compensates for the additional energy and
time spent for reconfiguration. For larger burst size, this is
not-dependent on the burstiness. For smaller burst sizes the
reconfiguration policy is very close to the software one in
some points. This is because of the adaptation mismatches
between the prediction policy and the event sequence.

If we consider a more unbalanced situation the history-
based prediction algorithm is more effective. In Figure 8
we reported results about iterations obtained with an event
distribution of 80% for event 1 and 20% for event 2. It
can be noted how the proposed policy is more effective also
for small energy bursts, because of the reduced impact of
adaptation mismatches.

In Figure 9 we also reported the energy per iteration con-
sumed as a function of burst size. This energy takes into
account the additional energy spent for the reconfiguration
process. The plot has been performed for the worst case
of balanced event distribution. In this plot we compared
our approach with a ”no reconfiguration” case, in which the
hardware is programmed with one of the two routines and is
never reconfigured. It can be noted that the opportunistic
reconfiguration strategy provides lower energy per iteration
thus improving energy efficiency in most of the cases. Adap-
tation mismatches happen only in case of very unrealistic
burstiness conditions, with a sequence of 30 events of the
same type.

Finally, it must be noted that these results have been ob-
tained with a simple execution prediction policy. We expext
an improvement using more complex prediction algorithms
exploiting a more predictable event.

Figure 9: Energy per iteration with balanced event
distribution.

7. CONCLUSION
In this paper we present an opportunistic reconfiguration

strategy, aimed at exploiting the unused energy due to the
unpredictability of the environmental energy. It exploits en-
ergy slacks to dynamically reconfigure ultra-low power de-
vices such as sensor nodes to increase their energy efficiency.
We first performed a statistical analysis, then we tested the
reconfiguration strategy through a reconfigurable prototype
board.

8. REFERENCES
[1] L. Benini, M. Poncino, ”Ambient intelligence: a computational

platform perspective,” in Ambient intelligence: impact on
embedded system design, Kluwer Academic Publishers, pp.
31–50, 2003,

[2] ATMEL Corporation, “FPSLIC (AVR with FPGA) from Atmel
,”. www.atmel.com/products/FPSLIC/.

[3] A. Kansal, D. Potter and M.B. Srivastava, “Performance Aware
Tasking for Environmentally Powered Sensor Networks,” ACM
Joint International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 2004.

[4] J. Khan, R. Vemuri, “Battery-Efficient Task Execution on
Reconfigurable Computing Platforms with Multiple Processing
Units,” IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05), 2005.

[5] Theo Kluter, ”URLAP Processor,” EPFL LAP Technical
Report, 2004.

[6] P. J. M. Havinga, L.T. Smit, G. J. M. Smit, M. Bos, P.M.
Heysters, “Dynamic Reconfiguration in Mobile Systems,”.
Heterogeneous Computing Workshop, 2001.

[7] C. Rusu, R. Melhem, D. Mosse, “Multi-version Scheduling in
Rechargeable Energy-aware Real-Time Systems,”. Journal of
Embedded Computing, pages 2–11, June 2004.

[8] N. Ngoc, G. Lafruit, J.Y. Mignolet, S. Vernalde, G.Deconink,
R. Lauwereins, “A Framework for Mapping Scalable Networked
Multimedia Applications on Run-Time Reconfigurable
Platforms,”. Proceedings of ICME, pages 469–472, June 2003.

[9] D. Panigrahi, C. N. Taylor, S. Dey, “A Hardware/Software
Reconfigurable Architecture for Adaptive Wireless Image
Communication,”. Proceedings of ASP-DAC/VLSI Design,
pages 553–559, June 2002.

[10] J.A. Paradiso and T. Starner, “Energy Scavenging for Mobile
and Wireless Electronics,” IEEE Pervasive Computing, vol. 4,
no. 1, pp. 18–27, 2005.

[11] S. Roundy, E. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai,
B. Otis, J. Rabaey, P. Wright, V. Sundararajan, “Improving
power Output for Vibration-Based Energy Scavengers,” IEEE
Pervasive Computing, 2005.

[12] Gerard J. M. Smit, P. J. M. Havinga, L.T. Smit, P.M. Heysters,
M. A. J. Rosien, “Dynamic Reconfiguration in Mobile
Systems,”. Lecture Notes In Computer Science, Vol. 2438,
pages 171–181, 2002.

[13] Paul M. Heysters, Gerard J. M. Smit, Egbert Molenkamp,
“Energy-Efficiency of the MONTIUM Reconfigurable Tile
Processor,”. Proceedings of ERSA, pages 29–32, 2004.

[14] Maxwell technologies, “Ultracapacitors,”
www.maxwell.com/ultracapacitors/, 2005.

176

