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Abstract

The quality of multivariate calibration (MVC) models obtained de-
pends on the effective treatment of errors in spectral data. If errors in
different absorbance measurements are correlated and have different vari-
ances (heteroscedastic), then the Maximum Likelihood Principal Compo-
nent Regression (MLPCR) method developed by Wentzell et al. [1] is an
optimal approach which gives a more accurate MVC model. However,
this approach requires either complete knowledge of the error covariances
or replicated measurements of all spectra from which an estimate of er-
ror covariances can be obtained. We propose a method for developing
MVC models from non-replicated measurements when errors in different
absorbances are independent, but can have different unknown variances.
The core of the proposed approach is an Iterative Principal Component
Analysis method which simultaneously estimates the lower dimensional
spectral subspace and all the error variances. Application of this ap-
proach to simulated and experimental data sets demonstrates that the
quality of the model obtained using the proposed method is better than
that obtained using PCR, and is comparable to the accuracy of the model
obtained using MLPCR.

Keywords: Multivariate Calibration, Principal Component Re-

gression, Maximum Likelihood Principal Component Regres-

sion, Heteroscedastic Errors, Errors-in-Variables Regression
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1 Introduction

Multivariate calibration (MVC) methods are routinely used for analysis of chem-

ical mixtures. One of the important applications of MVC in chemometrics is the

development of a model relating properties of a chemical mixture, such as its com-

position, to its spectroscopic measurements (absorbances). A variety of methods

have been proposed for this purpose. Among them, Principal Components Re-

gression (PCR) is one of the oldest and widely used method.

The development of a multivariate calibration model using PCR is a two-

step process. In the first step, Principal Components Analysis (PCA) is used

to estimate a lower dimension subspace from the measured absorbance spectra

of a set of mixtures. The measured absorbance spectra are projected on to this

subspace and their scores are obtained, where the scores are the weights used

to represent the projections in terms of the basis chosen for the subspace. In

the second step a multivariate linear regression model is developed between the

concentrations of the calibration mixtures and their scores. Using this model, the

concentration of any new mixture can be estimated from its measured absorbance

spectra.

The quality of a MVC model depends on how well the errors in both the

spectral and concentration measurements are modelled and taken into account.

It is well known that if the errors in different absorbances are assumed to be inde-

pendent and normally distributed with identical variances (homoscedastic), then
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the maximum likelihood estimate of the true subspace is obtained using PCA

[2]. Furthermore, in the second step of PCR, the regression model is a maxi-

mum likelihood estimate under the assumption that the scores are free of errors

and only the concentration measurements contain errors. If errors in different

absorbance measurements have different variances and are correlated, then by

taking them into account, Wentzell et al. [3] demonstrated that a more accurate

estimate of the true subspace can be obtained. The method they developed for

this purpose was called Maximum Likelihood PCA (MLPCA). Wentzell et al. [1]

used MLPCA as the first step of the PCR algorithm and developed the Maximum

Likelihood PCR (MLPCR) method, and showed that significant improvement in

the predictive ability of the resulting regression model is obtained.

MLPCA, and consequently MLPCR, requires all error variances and their

correlations to be known a priori. Typically, this requires replicate measure-

ments of all spectra to be made. From these replicates, an estimate of the error

variances and correlations can be directly obtained. In many applications, such

replicate measurements may not be available or it may require significant amount

of time and resources to perform replicate measurements. It would be advan-

tageous if the error variances and correlations can be estimated simultaneously

along with the true subspace from a data set, which does not contain replicate

measurements. Recently, Narasimhan and Shah [4] developed a new variant of

PCA, known as Iterative Principal Component Analysis (IPCA) which can es-
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timate the error covariance matrix and the true data subspace simultaneously.

It may be noted, that in the simple case when all errors are independent and

have identical variances, then the subspace can be estimated using PCA and the

error variance can be estimated from the residuals, without the need for replicate

measurements. The IPCA method, on the other hand, can be used to obtain

an optimal estimate of the subspace and the error variances, even if the errors

are heteroscedastic. IPCA also possesses the following two important theoretical

properties.

• It is invariant to any scaling of the data.

• If the dimension of true data subspace is unknown, then it can be exactly

estimated by examining the eigenvalues obtained at convergence of the

method.

The purpose of this paper is to evaluate the use of IPCA method in de-

veloping multivariate calibration models, when errors are heteroscedastic and

replicate measurements are unavailable. In particular, we focus on the develop-

ment of multivariate calibration models for relating concentrations of chemical

mixtures with their spectra. The quality of the model developed is evaluated

by benchmarking it with the model developed using MLPCR on simulated as

well as on an available experimental data set which contains replicated measure-

ments. The results clearly demonstrate, that when replicate measurements are

unavailable, then the proposed method can be used to develop a high fidelity
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MVC model, which is almost as good as the model developed using MLPCR.

The results also clearly show that it is more important to take the variation of

error variances along wavelength direction, rather than along mixture direction.

Lastly, it is also demonstrated that when replicate measurements are available,

the simple technique of using the average of the replicates to develop the MVC

model can itself lead to a significant improvement in the quality of the model.

2 Theory

2.1 Problem Formulation

We focus initially on the first step in the development of a multivariate calibration

model using PCR, which is concerned with estimating the true data subspace

from noisy measurements. Let yt(j) : m × 1 represent the true values of m

variables at the sampling index j. Let these variables be linearly related by p

independent equations given by

Ayt(j) = 0 (1)

where A: p × m is a constraint matrix. The rows of A form a basis for a p

dimensional subspace of Rn. Equation 1 implies that the true data vectors yt(j)

lie in a (m − p) dimensional subspace of Rn, orthogonal to the row space of A.

At each sampling index j, measurements y(j) of all the variables corrupted

by random noises are available which can be written as:

y(j) = yt(j) + ε(j) (2)
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If we have n such measurement vectors, then we can construct a m × n matrix

Y as

Y = [y(1), y(2), . . . , y(m)] (3)

In the case of spectroscopic data, either the rows or columns of Y can represent

the spectra of a mixture. For the sake of definiteness, we take each row i of

the data matrix to be the absorbance spectra of a mixture i measured at n

wavelengths. Then, each column of the data matrix represents the absorbances

of m mixtures at a particular wavelength. Typically, the number of mixtures used

in developing the calibration model is much less than the number of wavelengths

at which the absorbances are measured, and thus the rank of the data matrix is

m.

We assume that the random error vectors, ε(j), are mutually independent and

follow a multivariate normal distribution with mean zero and covariance matrix

Σε, that is,

E[ε(j)εT (k)] = 0 ∀ j 6= k (4)

ε(j) ∼ N (0, Σε) (5)

The random errors are also assumed to be independent of true values of measure-

ments. Properties 4 and 5 imply that the errors can be correlated and can have

different variances either along the mixture direction or along the wavelength

direction (depending on the interpretation of the measurement vectors) but not

both. Such a condition on the error covariance structure is also referred to as
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variation along one mode [5]

Given the measured data matrix, the objective is to estimate the (m − p)

dimensional subspace of Rn in which the true data vectors lie, and an estimate

of the p dimensional subspace of Rn orthogonal to it which corresponds to an

estimate of the row space of A. It may also be noted, that regardless of the

method used, we will only be able to estimate an arbitrary basis for each of these

subspaces. In the following subsections we review how PCA is used to estimate

a basis for the true data subspace and use this to motivate the development of

our proposed approach.

2.2 Principal Component Analysis

In PCA, an orthonormal basis for the true data subspace is estimated from the

orthonormal eigenvectors of the covariance matrix of Y . These orthonormal

eigenvectors can be obtained using the truncated singular value decomposition

(svd) of the data matrix Y , which is given by.

svd(Y,m) = USV T (6)

where U : m × n and V : n × m are orthonormal matrices, and S : m × m is a

diagonal matrix containing the non-zero singular values. It can be shown that

the columns of U are normalized eigenvectors of Y Y T , the diagonal elements of

S are the square root of the eigenvalues, and the columns of V are normalized

eigenvectors of Y T Y . Since the rank of Y is m, the number of non-zero singular
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values will also be m. Generally, the elements of S are arranged in decreasing

order of singular values. Equation 6 can also be written as

svd(Y ) = U1S1V
T
1 + U2S2V

T
2 (7)

where U1, S1 and V1 correspond to the first (m−p) largest singular values, while

U2, S2, and V2 correspond to the smallest p singular values. Then, the columns

of U1 is a basis for the (m − p) dimensional estimated mixture subspace, the

columns of V1 is a basis for the estimated spectral subspace, and the columns

of U2 is a basis for the row space of A, which is orthogonal to the true mixture

subspace.

It can be shown that the above estimate is also the solution of the following

minimization problem [2].

min
A, ŷ(j)

n
∑

j=1

(y(j) − ŷ(j))2

st Aŷ(j) = 0

AT A = I

In the above procedure, it has been tacitly assumed that we know the dimension

of the true data subspace. This assumption may be justified for the specific prob-

lem we are dealing with. The spectra of a mixture is usually a linear combination

of pure component spectra. Therefore, the dimension of the true data subspace,

(m−p), will be equal to the number of species s in the mixture, which is known.

However, if a common baseline spectra correction (offset) has to be applied to
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all mixture spectra, then the dimension of the true spectral subspace will be one

more than the number of species. Henceforth, we assume the dimension of the

true data subspace to be s.

2.3 Maximum Likelihood Principal Component Analysis

The least squares objective function minimized by PCA is optimal, if the mea-

surement errors in all spectra are normally distributed, independent, and have

identical variance. But in practice this assumption may not be valid due to

variations in source intensity or variations in detector noise characteristics, etc.

Wentzell et al. [3] have developed a new method called maximum likelihood

principal component analysis (MLPCA) for estimation of true data subspace,

that can take into account measurement errors which are correlated and whose

standard deviations vary with from mixture to mixture as well as from wave-

length to wavelength. We are, however, only restricting our considerations to

the case when the error covariance structure varies along only one mode (either

mixture or wavelength direction). Under this restriction, it can be shown that

the objective function which is minimized in MLPCA is a weighted sum square

of residuals given by

S2 =
n

∑

j=1

(y(j) − ŷ(j))Σ−1
ε (y(j) − ŷ(j)) (8)

The estimate vector ŷ(j) must also satisfy Eq. 1. Minimizing the above objec-

tive can be shown to be identical to maximizing the likelihood function of the
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measurements.

If the covariance matrix Σε is known, then the optimal estimate of the true

data subspace can be obtained by applying PCA to transformed measurements

as follows [4, 5]. Let the cholesky factorization of the covariance matrix be given

by

Σε = LLT (9)

The transformed data matrix is defined by

Ys = L−1Y (10)

The truncated svd of the transformed data matrix Ys can be written as

svd(Ys,m) = U1sS1sV1s + U2sS2sV2s (11)

where U1s, S1s, V1s corresponds to the first (m − p) largest singular values. The

columns of U1s represents a basis for the subspace of transformed true data

vectors. A basis for the true data subspace can now be obtained as

B̂ = LU1s (12)

and a basis for the row space of constraints is estimated as

Â = UT
2sL

−1 (13)

It may be noted that the estimated bases (columns of B and rows of Â) are not

orthonormal. An interesting property of the above procedure is that the expected
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value of the largest (m− p) singular values are strictly greater than unity, while

the expected value of the remaining singular values are exactly equal to unity

[6]. This property can be used to choose the correct dimension of the true data

subspace, in case it is not known a priori [4].

Wentzell et al. [3] proposed iterative algorithms which embed PCA in an

alternative regression technique to obtain the true data subspace. These methods

are also applicable to general noise covariance structures. However, like the above

approach complete information regarding the error covariances must be known

a priori in order to apply them.

An estimate of the error covariances can be obtained by replicate measure-

ments. If such replicates are available and can be obtained without expending

too much effort or resources, then these methods are very useful and can lead to

significant improvement in the predictive abilities of the multivariate calibration

models. However, where such replicate measurements are unavailable and are

expensive to obtain, it would be advantageous to develop a method that can

simultaneously obtain both an estimate of the true data subspace and error co-

variances from non-replicated measurements. Such a method referred to as the

iterative PCA (IPCA) method has been recently developed by Narasimhan and

Shah [4] under some additional restrictions. In the following section we provide

a brief description of this method.
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2.4 Iterative Principal Component Analysis

The IPCA method is applicable only to the special error covariance structures

that obey the properties given by Eqs. 4 and 5. In other words, the error

covariance can vary along only one mode (either mixture or wavelength direction,

but not both). Furthermore, it is assumed that the positions of the zero and

non-zero elements of the error covariance matrix Σε are known, even though

their values are not known a priori.

IPCA estimates the non-zero elements of the error covariance matrix and a

basis for true data subspace simultaneously, using the following procedure.

• STEP 1. Assume that an initial estimate Â0 of the constraint matrix A is

available (such an initial estimate can be obtained using PCA). Using the

initial estimate, the constraint residuals for each sample j can be computed

as

r(j) = Â0y(j) (14)

Under the assumption made for the measurement error vectors, these con-

straint residual vectors can be shown to be independently and identi-

cally distributed Gaussian variables with zero mean and covariance matrix

Σr = Â0Σε(Â0)T . The joint distribution of the residual vectors can thus be

obtained and an estimate of the non-zero elements of Σε can be obtained

by maximizing, the logarithmic likelihood function of these residuals. The
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resulting optimization problem is formulated as :

min
Σε

n log |Â0Σε(Â0)T | +
n

∑

j=1

rT (j)(Â0Σε(Â0)T )−1r(j) (15)

The above optimization function is used to get an estimate of error covari-

ance matrix. The optimization of 15 can be carried out using a nonlinear

optimization technique. Constraints can be imposed to ensure that the

estimated error covariance matrix is positive definite.

• STEP 2. Let the estimate of Σε obtained in STEP 1 be denoted as Σ̂1
ε . If

we denote the cholesky factor of the estimated error covariance matrix as

L1, then

Σ̂1
ε = L1(L1)T (16)

It was pointed out in the preceding subsection that if the error covariance

matrix is known, then the true data subspace can be estimated by applying

PCA to the transformed data matrix. Following 10, the cholesky factor of

the estimated error covariance matrix is used. The transformed data matrix

Y k
w at iteration k is given by

Y k
w = (Lk)−1Y (17)

The above transformation is equivalent to scaling the data using standard

deviations of the corresponding measurement errors in the special case of

a diagonal error covariance matrix. By performing an svd of the weighted
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data matrix we get a new estimate of the constraint matrix

svd(Y k
w ,m) = Uk

1wSk
1wV kT

1w + Uk
2wSk

2wV kT
2w (18)

where as before U k
1w, Sk

1w, and V k
1w correspond to the first (m − p) largest

singular values of the transformed data matrix Y k
w . The estimated con-

straint matrix in the transformed domain Âk
w is given by the transpose of

Uk
2w. From this the estimated constraint matrix in the original variable

space can be obtained as

Âk = Âk
w(Lk)−1 (19)

Using the estimated constraint matrix Âk at iteration k, the estimate of

Σ̂k+1
ε is obtained by performing the minimization as in Step 1 described

above.

The two steps of the above procedure are repeated until the estimates of Σ̂k
ε and

Âk converge. A simple test of convergence is to check that the singular values

obtained using PCA do not change significantly from one iteration to the next.

It should be noted, that since the non-zero elements of Σε are estimated using

the covariance information of the constraint residuals, the number of elements

of the error covariance matrix that can be estimated depends on the rank of the

sample covariance matrix of constraints residuals, AY Y T AT . In the case when

the measurement error covariance matrix is constant with respect to wavelengths,

then the rank of the Y Y T is m and rank of A is p = m − s. Thus the rank of
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the sample AY Y T AT is (m− s). On the other hand, if we assume that the error

variances vary with respect to wavelengths and constant for all mixtures, then

we have to transpose matrix Y and apply PCA, MLPCA or IPCA to estimate

the true data subspace. In this case, the rank of Y T Y is still m, while the rank

of A is p = n − s. The rank of AY T Y AT is the minimum of m and (n − s).

Since n is usually much greater than m, the rank of AY T Y AT is m. For general-

ity, we denote the rank of the sample covariance matrix of constraints residuals

by rV . The maximum number of diagonal and non-zero off-diagonal elements

of Σε that can be estimated is rV (rV + 1)/2. This condition is not a limita-

tion of the IPCA method but a necessary condition for simultaneous estimation

of error covariances and a basis for the true data subspace from non-replicate

measurements. In fact, the problem we are considering here is identical to the

functional regression problem for errors-in-variables model that is well studied

in statistics literature [7], and the above restriction corresponds to the identifi-

ability condition imposed for solving this problem. It should also be noted that

the estimates of Σε and the basis for the true data subspace are not maximum

likelihood estimates of the measured data. It has been proved that even for the

simple bivariate case, maximum likelihood estimation procedure breaks down

for simultaneous estimation of error variances and regression parameter for the

errors-in-variables functional regression problem [8].

The above procedure can be applied for estimating the error covariance matrix
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for mixtures assuming that it is constant for all wavelengths, or for estimating

the error covariance matrix for wavelengths assuming that it is constant for all

mixtures, subject to the identifiability condition being satisfied.

As pointed out in the preceding subsection, if the dimension of the true

data subspace is chosen correctly and the estimated error covariance matrix

converges to the true covariance matrix, then only the first s singular values

of the transformed data will be greater than unity, while the remaining non-

zero singular values will all be equal to unity. This feature can be exploited to

precisely estimate or check the dimension of the data subspace chosen [4].

2.5 Development of MVC model

Once a basis for the true data subspace is estimated, the second step is to ob-

tain the regression model relating concentration of the mixtures to their true

absorbance spectra. An estimate of the true absorbance spectra of mixtures can

be obtained by projecting all the measured absorbances on to the estimated spec-

tral subspace. These projected vectors can be represented in terms of the basis

for the spectral subspace. The coefficients of this representation are also known

as scores. A linear regression model relating measured concentrations and the

scores of the calibration mixtures is the desired MVC model.

In the case of PCA, orthogonal projections give the best estimates of the true

data vectors corresponding to each measured spectra. The corresponding scores
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matrix is given by

TPCA = Y V1 (20)

In the case of MLPCA, we first need to obtain the maximum likelihood projec-

tions (estimates) of the measured spectra and then represent them in terms of

the basis for the spectral subspace in order to obtain the scores. The maximum

likelihood estimates (ŶMLE) of the measured data are obtained as part of the

alternating regression algorithm developed by Wentzell et al. [3].

If it is assumed that the error variances vary only with respect to mixtures,

then the maximum likelihood estimates of the measured data can be obtained in

IPCA as

ŶMLE = Y [I − Σ̂εÂ
T (AΣεA

T )−1Â]Y (21)

where Σ̂ε and Â are the converged estimates obtained.

From the svd of ŶMLE an orthonormal basis for the estimated mixture and

spectral subspaces can be obtained.

svd(ŶMLE, s) = U1S1V
T
1 (22)

The scores are computed as in 20 by

TMLE = ŶMLEV1 (23)

The linear regression model relating concentrations to the scores can be writ-

ten as

C = TM (24)
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where C : m × s is the matrix of measured concentrations of s species in the m

calibration mixtures. Then the ordinary least squares solution for the regression

matrix M is given by

M = (T T T )−1T T C (25)

A further point has to be noted when IPCA is applied to data under the

assumption that error variances vary with respect to wavelengths and not with

respect to mixtures. In this case, if the data matrix is defined as in Eq. 3, then it

has to be transposed before applying the IPCA algorithm to estimate the error

covariance matrix as well as the true data subspace. The maximum likelihood

estimates obtained using Eq. 21, has to be transposed before determining its

singular value decomposition.

The names PCR, MLPCR, and IPCR are used to denote the methods in

which PCA, MLPCA, and IPCA are, respectively, used as the first step of the

MVC model development.

2.6 Prediction using MVC model

For predicting the concentrations of a new mixture given its absorbance spectra

ynew : 1 × n, the approach used in PCR is to obtain the scores for the new

mixture by orthogonal projection followed by the use of the regression matrix.

The equation for this purpose is given by

tnew = ynewV1 (26)
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and the concentrations are predicted as

cnew = tnewM (27)

If the error variances do not vary with respect to wavelength, then the above

equations can be used to predict the concentrations of the new sample in the

case of MLPCR or IPCR, with the understanding that the orthonormal basis

matrix V1 is obtained using Eq. 22.

However, if the error variances are assumed to vary with respect to wave-

length, then the scores for the new sample in the case of MLPCR have to be

obtained using the maximum likelihood projection.

tnew = ynewΣ−1
newU1(U

T
1 Σ−1

newU1)
−1 (28)

where Σnew is the specified error covariance matrix for the new mixture. The

concentrations are predicted using Eq. 27. Similarly in IPCR, the scores for

the new sample are obtained using MLE projection, except that the estimated

covariance matrix Σ̂ε is used instead of Σnew in Eq. 28, since it is assumed that

the error covariance matrix of the mixture is unknown, but is identical for all

mixtures.

3 Description of data sets

3.1 Simulated data sets:

The quality of MVC models developed using the proposed IPCR method is eval-

uated by applying it to simulated absorbance data as well as to an available
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experimental UV data set of mixtures of three species. Both PCR and MLPCR

were also applied to the same data sets for comparative evaluation.

Simulated absorbance data for mixtures of three hypothetical species were

generated following the procedure described by [3] as follows:

1. The spectral profiles of the three species were taken to be Gaussian distri-

butions, with a peak absorbance of unity at 480nm, 500nm, and 520nm,

respectively, and a standard deviation of 20nm. Pure component spectral

vectors were generated between 400 nm and 600 nm at intervals of 5 nm

to obtain a 3 × 41 pure component spectral matrix.

2. Concentrations of twenty mixtures (assumed to be in millimolar units)

of the above three species were generated by choosing random numbers

between 0 and 1 from a uniform distribution for each species. We thus

obtain a 20 × 3 three-species mixture concentration matrix.

3. The true (or noise free) data matrix of 20×41 was calculated by multiplying

the mixture concentration matrix by pure component spectra matrix.

In order to simulate noisy measurements, random errors were added to the

above true absorbance matrix according to the specification of the error co-

variances. Three different data sets corresponding to different error covariance

structures are used to obtain a fair comparison between the different methods.

In data set 1, the error covariance matrix corresponding to all wavelengths was
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assumed to be diagonal, with different variances for different wavelengths. This

covariance matrix is assumed to be the same for all mixtures. This case corre-

sponds to variation of error variances along wavelength direction only. Data set

2, was generated by assuming the errors in different absorbance measurements to

be mutually independent, but having different variances. This corresponds to the

case when the error variances vary along both wavelength and mixture directions.

However, the error covariance structure in either of these directions is a diagonal

matrix. The third data set was generated by assuming the errors in different

absorbances to be correlated and having different variances. This corresponds

to the case when the error variances vary along both directions. Moreover, the

error covariance structure in either of these directions is non-diagonal. for all

three data sets, the measurement errors are generated in two steps. All three

measured data sets are of size 20 × 41.

For data set 1, the standard deviation of the error in absorbance at a par-

ticular wavelength was taken to be 5% of the maximum of the true absorbances

among all mixtures at the corresponding wavelength. A 20 × 1 random vec-

tor is generated from a N(0, 1) distribution and multiplied with this standard

deviation. This is repeated for all wavelengths and the data arranged to get

the 20 × 41 error matrix, which is added to the true data matrix to obtain the

measured absorbances.

The standard deviation of error in measurement of absorbance of a mixture
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at a particular wavelength is taken to be equal to 5 percent of corresponding true

absorbance, for generating data set 2. A random number from an N(0, 1) distri-

bution is multiplied with this standard deviation to obtain the error and added

to the true absorbance to obtain the measured absorbance. This is repeated for

all mixtures and absorbances.

Data set 3 contains measured absorbances containing errors which are corre-

lated and whose variances also vary both with respect to wavelength and mix-

ture. For simplicity, the error in the absorbance of a mixture at a particular

wavelength is correlated only with a few of the other errors and not with all the

rest. The procedure we used is identical to that used by Wentzell et al., (1997a)

for generating their simulated data set 7. For this purpose, first an uncorrelated

error matrix E (20 × 41) was generated as in the case of data set 2. In order to

generate the error in the first mixture at the first wavelength, ε11, we use a filter

matrix Φ11 of size 20 × 41 with non-zero elements as indicated below.

Φ11 =











• • •
• • •

• • •











(29)

The non-zero elements of the filter matrix are all taken to be equal to 1/9. The

error ε11 is obtained as

ε11 = vec(Φ11)
T vec(E) (30)

where vec(.) is a vector obtained by stacking the columns of a matrix one below

the other. The filter matrix Φij for generating the error in the absorbance of
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mixture i and wavelength j is obtained by shifting the rows Φ11 down by i − 1

rows and columns of Φ11 to the right by j − 1 columns with wraparound. The

errors generated using Eq. 30 in this manner is added to the true absorbances

to get the noisy data matrix.

Data set 4 contain absorbances of mixtures of three metal ions (Co(II),

Cr(III), and Ni(II)) prepared in 4 per cent HNO3 solution, obtained through

carefully designed experiments by Wentzell et al. (1997a). The data set contains

absorbance measurements for 26 mixtures between the range of 300nm-650nm at

intervals of 2 nm. Corresponding to each mixture, five replicate measurements

of its absorbance spectra have been made, each of which have been given as a

separate spectra in the data set. Near the ends of the wavelength range, the

noise levels were increased by using a band-pass filter and thus, the variance

of the noise varies with wavelength for this data set. The standard deviations

of errors at different wavelengths can be estimated directly using the five repli-

cates. The spectra and standard deviations directly estimated from the replicate

experiments for this data set are shown in figures 1 and 2.

4 Results and Discussion

4.1 Comparison Methodology

The predictive ability of the calibration models constructed by different methods

were validated using the leave one score out cross-validation approach described

in [1]. In this approach, the true data subspace is estimated using all the mix-
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Figure 1: Spectra for metal ion mixtures (UV data set)
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Figure 2: Standard deviations of measurement errors for experimental data set
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tures, but the calibration model is developed by excluding the scores of one of the

mixtures. The MVC model is used to predict the concentration of the mixture

whose scores were excluded. This process is repeated such that each sample is

excluded once, and the root-mean square error (RMSE) between predicted and

actual concentrations is calculated by

RMSE =

√

√

√

√

m
∑

i=1

(cpred
i − cref

i )2/m (31)

where cpred
i and cref

i are the predicted and reference concentrations, respectively,

of the species in the excluded mixture. An overall or total root-mean square error

total (RMSET) can be calculated as square root of the sum of square of RMSE

for all the substances present in the mixture. These values give an indication of

the predictive ability of the model.

4.2 Performance Comparison on Simulated Data Sets

We first present the performance of PCR, IPCR and MLPCR on simulated data

sets. The RMSE results for data set 1 are presented in Table 1. Since the number

of species in the mixtures is three, the dimension of the true data subspace is also

three. Nevertheless, we present the results obtained by assuming different values

for the dimension of the true data subspace. It is observed from Table 1, the

lowest RMSET values for all methods are obtained when the dimension of the

true data subspace is chosen correctly equal to three (for IPCR there is a marginal

reduction in RMSET values when the dimension of the data subspace is taken
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to be four, which may be attributed to numerical errors since error variances are

being estimated in this method). It may be noted that in the IPCR method, 41

error variances are being estimated (assuming that the error covariance matrix

along wavelengths is diagonal). The maximum number of error variances that

can be estimated is equal to (20 × 21)/2 = 210 for this data set. The results

in Table 1 shows that the performance of proposed method IPCR is better than

PCR, if the dimension of the data subspace is chosen to be three or more, even

though both methods use the same information. MLPCR performs better than

both PCR and IPCR, but it should be noted that this method requires knowledge

of all the error variances, whereas IPCR estimates them from the same data set.

A comparison of the standard deviations estimated using IPCR method with

the true variances used in simulating data set 1, are shown in figure 3. From

Fig. 3, it is observed that the estimated standard deviations are comparable to

the true values and the Gaussian profile of the error variances is also estimated

effectively.

The results of applying the three methods for data set 2 are shown in table

2. The minimum RMSET values for all three methods are obtained when the di-

mension of the data subspace is correctly taken to be three. Again it is observed

that the performance of IPCR is better than PCR, but worse than MLPCR.

For this data set, IPCR has been applied by assuming that the error variances

vary only along the wavelength direction. It should be noted, however, that
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Number of Species PCR IPCR MLPCR
latent

variables
A 0.208 0.198 0.159
B 0.227 0.244 0.271

1 C 0.203 0.190 0.182
RMSET 0.213 0.212 0.210

A 0.138 0.185 0.077
B 0.236 0.226 0.283

2 C 0.152 0.163 0.086
RMSET 0.181 0.193 0.176

A 0.042 0.026 0.018
B 0.076 0.062 0.046

3 C 0.047 0.025 0.017
RMSET 0.057 0.041 0.030

A 0.045 0.028 0.018
B 0.080 0.051 0.048

4 C 0.049 0.024 0.017
RMSET 0.060 0.036 0.031

A 0.049 0.032 0.018
B 0.083 0.058 0.051

5 C 0.051 0.025 0.019
RMSET 0.063 0.041 0.033

Table 1: Comparison of different MVC models for simulated data set 1
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for this data set the error variances vary with respect to wavelength as well as

with respect to mixtures, which violates the assumptions of IPCR. Despite this,

IPCR is able to provide better performance than PCR. The standard deviations

estimated using IPCR are compared with the true standard deviations (averaged

over all mixtures) in figure 4 when the dimension of the data subspace is cor-

rectly taken to be equal to three. The figure shows that the estimated standard

deviations are comparable to the actual values, though the estimates are poorer

in comparison to data set 1, due to violation of the assumption on the error

covariance structure.

Table 3 contains results for data set 3 in which errors are correlated with

each other. Although, Wentzell et al. (1997a) have developed a MLPCA method

for correlated errors, we have applied the algorithm which is applicable for uncor-

related errors to investigate the effect of modelling assumptions on performance.

The results show that all three methods have identical performance. This is due

to the fact that the method that we have used for generating correlated errors

tend to equalize the variances of errors in all measurements. The effect of corre-

lation among different errors by itself does not appear to have an adverse impact

on the performance of the methods.

4.3 Performance comparison on Experimental Data

We now present and discuss the results of applying PCR, IPCR, and MLPCR

on the experimental data set 4 described in preceding section. This data set con-
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Figure 3: STD of errors at different wavelengths estimated using IPCA for data
set 1
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Figure 4: STD of errors at different wavelengths estimated using IPCA for data
set 2
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Number of Species PCR IPCR MLPCR
latent

variables
A 0.204 0.194 0.168
B 0.227 0.230 0.297

1 C 0.206 0.210 0.188
RMSET 0.212 0.212 0.225

A 0.140 0.137 0.070
B 0.237 0.234 0.295

2 C 0.143 0.163 0.065
RMSET 0.179 0.183 0.179

A 0.026 0.016 0.012
B 0.039 0.031 0.022

3 C 0.022 0.013 0.006
RMSET 0.030 0.022 0.015

A 0.022 0.017 0.011
B 0.039 0.031 0.023

4 C 0.025 0.018 0.006
RMSET 0.030 0.023 0.015

A 0.026 0.016 0.009
B 0.041 0.029 0.024

5 C 0.027 0.016 0.006
RMSET 0.032 0.021 0.016

Table 2: Comparison of different MVC models for simulated data set 2
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Number of Species PCR IPCR MLPCR
latent

variables
A 0.229 0.230
B 0.186 0.186

1 C 0.161 0.161
RMSET 0.194 0.195

A 0.154 0.170 0.114
B 0.194 0.198 0.184

2 C 0.069 0.044 0.118
RMSET 0.148 0.153 0.142

A 0.63 ×10−3 0.001 0.001
B 0.85 × 10−3 0.001 0.001

3 C 0.97 × 10−3 0.001 0.001
RMSET 0.83 × 10−3 0.001 0.001

A 0.65 × 10−3 0.001 0.65 × 10−3

B 0.91 × 10−3 0.001 1.0 × 10−3

4 C 0.96 × 10−3 0.001 0.65 × 10−3

RMSET 0.85 × 10−3 0.001 0.88 × 10−3

Table 3: Comparison of different MVC models for simulated data set 3

tains 26 distinct mixtures whose absorbance spectra have each been measured

five times. Wentzell et al. (1997b) applied different MVC methods including

PCR and MLPCR on this data set. In their approach, they treated all the

130 samples as distinct samples. This results in five different estimates of con-

centrations for each of the 26 mixtures. A more correct approach would be to

first obtain the average of the five replicate spectra for each mixture and ap-

ply the MVC methods to the average spectra. As a first step, we apply PCR,

and MLPCR, to the averaged spectra and compare it with the results obtained

without averaging, to demonstrate the need for averaging when replicates are

available. It should be noted that the size of the data matrix corresponding to
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the use of averaged data is 26×176, and non-averaged case is 130×176. MLPCR

is applied using the variances estimated directly from the five different replicates.

The variance of the average spectra is computed by dividing this by the number

of replicates. The results of applying the two methods are presented in Table

4. The results show that for MLPCR, the RMSET values do not change sig-

nificantly beyond three factors (true subspace dimension), whereas for PCR the

RMSET values decrease slowly after three factors. These results are consistent

with those obtained by Wentzell et al. (1997b). The results also bring out a new

and important feature. By comparing the RMSET values obtained for averaged

data (26 spectra) with those for non-averaged data (130 spectra) we observe that

a significant improvement in PCR performance is obtained by averaging. In the

case of MLPCR, the improvement is marginal. The improvement occurs only

when the number of latent factors is three or more. The reason for this can be

attributed to the fact that by averaging, the error variances are reduced (by a

factor equal to the number of replicates) and therefore, the adverse impact of

heteroscedastic errors on PCA performance is reduced considerably. Thus when,

replicates measurements are available, a simple approach of averaging can itself

give significant improvement. The use of MLPCR method gives an additional

improvement over that obtained due to averaging.

In this work, our focus is on situations when replicate measurements are not

available. Therefore, all further comparisons are made on a data set consisting

32

Rep
ort

 on
 M

VC fu
ll v

ers
ion

 C
he

mo l
nt 

lab
 20

07



Number of Species PCR PCR MLPCR MLPCR
Latent (130 (26 samples (130 (26 samples
factors samples) average) samples) average)

Co 11.73 12.09 10.94 11.28
Cr 3.50 3.60 3.06 3.15

1 Ni 20.61 21.21 24.26 25.00
Total 13.84 14.25 15.46 15.94
Co 8.45 8.82 7.14 7.53
Cr 3.16 3.33 3.05 3.22

2 Ni 11.75 12.29 16.90 17.86
Total 8.56 8.95 10.74 11.34
Co 8.32 0.77 0.48 0.28
Cr 3.17 0.40 0.13 0.09

3 Ni 11.84 1.55 0.63 0.34
Total 8.55 1.03 0.46 0.26
Co 8.35 0.79 0.48 0.28
Cr 3.19 0.28 0.13 0.09

4 Ni 11.91 1.24 0.61 0.33
Total 8.60 0.87 0.45 0.26
Co 5.55 0.83 0.26 0.28
Cr 2.35 0.27 0.09 0.09

5 Ni 7.75 1.29 0.44 0.35
Total 5.67 0.90 0.30 0.27
Co 2.35 0.87 0.23 0.14
Cr 0.75 0.27 0.08 0.06

6 Ni 3.12 1.26 0.43 0.29
Total 2.30 0.90 0.28 0.19

Table 4: Comparison of PCR and MLPCR on averaged and non-averaged data
for experimental data set
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of non-replicated measurements of spectra of 26 mixtures. This data set is con-

structed by randomly picking one mixture spectra from each of the five replicates

of the original data set.

Table 5 shows the results of applying PCR, MLPCR and IPCR on two differ-

ent random sets of 26 mixtures drawn from the experimental data set. IPCR is

applied under the assumption that the error variances vary with respect to mix-

tures, but are constant with respect to wavelengths. Thus, 26 different variances

have to be estimated in this method. The results of Table 5 show that the perfor-

mance of PCR and IPCR are comparable, while the MVC model developed using

MLPCR has much better predictive capability (if the number of latent factors

are chosen to be three or more). The utilization of error variances has resulted in

better performance of MLPCR. However, although IPCR attempts to take into

account differences in error variances across mixtures by estimating these along

with the subspace, no improvement in performance over PCR is obtained. This

could be due to the fact that the predominant variation of error variation for

this data set is along wavelength direction and not along mixture direction.

In order to verify the above hypothesis, we apply IPCR to the same two

random data sets, by assuming that the error variances vary along wavelength

direction, but are constant along mixture direction. In this case, it is necessary

to estimate 176 error variances simultaneously along with the data subspace in

the first step of MVC model development, by using the transpose of the 26×176
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Number of Species PCR PCR IPCR IPCR MLPCR MLPCR
Latent Set1 Set2 Set1 Set2 Set1 Set2
factors

Co 12.30 12.01 12.30 12.03 11.43 11.22
Cr 3.58 3.68 3.59 3.68 3.12 3.18

1 Ni 21.15 21.06 21.14 21.02 24.95 24.95
Total 14.28 14.16 14.27 14.14 15.95 15.90
Co 9.45 8.84 9.51 6.93 7.67 7.46
Cr 3.30 3.49 3.30 3.83 3.19 3.26

2 Ni 13.97 13.77 14.49 18.12 17.96 17.70
Total 9.92 9.66 10.19 11.42 11.43 11.25
Co 10.07 8.60 8.83 7.04 0.66 0.70
Cr 3.27 3.61 2.71 3.04 0.19 0.15

3 Ni 13.56 14.08 12.70 15.12 0.70 1.06
Total 9.93 9.75 9.07 9.79 0.56 0.74
Co 8.75 8.65 6.93 7.95 0.68 0.70
Cr 3.27 3.61 2.71 3.04 0.19 0.15

4 Ni 13.56 14.08 12.70 15.12 0.70 1.06
Total 9.93 9.75 9.07 9.79 0.56 0.74
Co 6.22 6.86 7.36 5.34 0.32 0.68
Cr 2.46 1.84 2.75 3.20 0.10 0.15

5 Ni 9.86 6.28 13.32 15.20 0.45 1.13
Total 6.88 5.48 8.93 9.48 0.33 0.77
Co 5.56 3.24 0.67 0.68
Cr 1.89 1.28 0.19 0.15

6 Ni 6.73 4.33 0.67 1.10
Total 5.16 3.21 0.56 0.75

Table 5: Comparison of MVC models on two random subsets of experimental
data
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data matrix. It was found that the optimization algorithm did not converge due

to the large number of optimization variables. A sub-optimal approach we have

developed to resolve this problem is as follows. We first divide the 176 × 26

data matrix into sub-matrices of dimensions not exceeding 50 rows each. By

treating each sub-matrix separately, we are required to estimate only 50 error

variances simultaneously. Since, the subspace estimated for each sub-matrix will

not be identical, we need to estimate a unique subspace. For this purpose, once

we estimate all of the error variances (corresponding to different wavelengths)

by above sub-optimal approach, we collate all of them to construct the error

covariance matrix and use it to transform the entire 176 × 50 data matrix as in

Eq. 10. A singular value decomposition of this transformed data can be used to

estimate the true data subspace as described in subsection 2.3. It should be noted

that this last step is similar to applying MLPCA using known error covariance

matrix, with the difference that this error covariance matrix is estimated by

applying the IPCR method to each sub-matrix separately. The sub-optimal

IPCR approach described here is a general strategy that can be used for all data

sets where it s required to estimate a large number of error variances. The results

of applying this method to the random data sets drawn from the experimental

data set are presented in Table 6. The results clearly show that the MVC model

developed using IPCR has as good predictive capabilities as the MLPCR model

(compare with last two columns of Table 5), if we choose the number of factors
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Number of Species IPCR IPCR
latent factors Set 1 Set 2

Co 0.68 0.76
Cr 0.16 0.13

3 Ni 1.67 2.59
Total 1.04 1.56
Co 0.13 0.18
Cr 0.09 0.11

4 Ni 0.47 0.51
Total 0.29 0.32
Co 0.14 0.19
Cr 0.08 0.12

5 Ni 0.46 0.46
Total 0.28 0.30
Co 0.17 0.17
Cr 0.09 0.10

6 Ni 0.55 0.39
Total 0.34 0.24

Table 6: Performance of IPCR on experimental data assuming error std varies
with wavelength

equal to four or more. It can be noted that the best performance is obtained

if we choose the number of factors to be one more than the actual number of

species in the mixture. The extra factor could be due to the differences in error

variances along sample direction (which has not been accounted for in the model)

being artificially modelled as an additional factor.

The estimated values of standard deviations using the above sub-optimal

approach when the number of latent factors are chosen to be three, is shown in

figure ??.

As shown in the graph, the estimated error standard deviations using the

IPCR method follows the boat shaped trend in the ’true’ standard deviations es-
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timated from the replicate measurements. These results show that the proposed

method is able to perform almost as well as the MLPCR method without the

need for replicate measurements. The results also confirm that the differences in

error variances in the wavelength direction are more dominant than those along

the mixture direction.

5 Summary

We have proposed a new approach for developing multivariate calibration models

from non-replicated measurements when the error variances in absorbance mea-

surements vary along one mode. In particular, we note that the dominant mode

of variation of error variances is usually along wavelength direction. The MVC

model developed using the proposed approach has better prediction accuracies

than that obtained using PCR, and approaches the accuracy of the MVC model

developed using maximum likelihood PCR method which requires replicate mea-

surements. For applying the proposed method to data sets which require a large

number of error variances to be estimated, an approach has been developed,

based on dividing the data set into manageable subsets.
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