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MODELING AND MOTION PLANNING FOR -
A CLASS OF WEIGHT HANDLING EQUIPMENT***

- A unified framework for the modeling of a class of weight handling equipment (WHE) is pre-
sented. The dynamic equations are obtained using Lagrange multipiers associated to geometric con-
straints between generalized coordinates. This approach provides a simple way to show differential

 flatness for all WHEs of the class. The flatness property can then be exploited for motion planning.

1. INTRODUCTION

Many different types of weight handling equipment (WHE), and in_particular
cranes, are used in various industries including construction and naval transport [14].
The aim of their control {13, [5]-{8], [10], [12] is to increase productivity and opera-
tional security by assisting the human crane operator.

Such devices can be decomposed into a fully actuated, articulated mechanical
structure with in general one or two degrees of freedom (e.g., a crane with a rotating
platform and a boom or a gantry crane with moving bridge), and a hoisting system
composed of ropes, winches and pulleys. _

During opertion, a duty cycle of a WHE consists in moving the load from its initial
position to its desired final destination in its working space along a trajectory, avoid-
ing obstacles and sway [9], [13]. This requires motion planning for the position of the
load.
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"Our goal is to give a systematic way to obtain dynamic models of a class of WHEs
and to show how to find trajectories corresponding to a duty cycle exploiting the flat-
ness property [21-{4] of the dynamic model.” -+~

To this aim, the derived model of the class of WHEs involves Lagrange multipli-
ers associated to geometric constraints on the generalized coordinates. This contrasts
with choosing a minimal number of coordinates and eliminating the constraints.

The form of the deduced model shows that each member of the class is differen-
tially flat and the coordinates of the load constitute all or part of the components ofa
fiat output, depending on the number of motors. Thus the solution of the motion plan- -
ning problem becomes an interpolation problem using sufficiently smooth functions
(e.g., polynomials). S .

The remaining part of the paper is organized as follows. The next section gives
three examples of WHEs. Section 3 describes the general model for two and three
dimensional WHEs. Flatness of the models is proven in Section 4. Then the solution
of the motion planning problem is provided in Section 5. The example of the 3D US-
Navy crane is studied in detail in Section 6 and some simulation results on its real
reduced size model are presented in Section 7.

2. INTRODUCTORY EXAMPLES

We will present three examples of WHEs and describe some of their common
points. This will then lead to general systematic modeling procedure to be introduced
in the next section. ' : ' o

Figures 1 and 2 represent a 2D overhead crane, a 3D cantilever crane and a 3D
US-Navy crane. The following characteristics are noteworthy: '

—The load moves in a working space of either dimension p = 2, such as the over-
head crane of Fig.1, or p = 3 as portrayed in Fig. 2. ' - '

_ All WHEs considered comprise the following elements:

o A working load of mass m whose coordinates are x;, i = 1, ..., P _

o A hoisting system composed of motors winding ropes and pulleys. The motors
are supposed to be torque controlled and each one delivers a torque noted T} where j
numbers the actuator. The different rope lengths are denoted by L;.

o A fully articulated structure on which there are attached the motors winching the
ropes. For the overhead crane depicted in Fig. 1 it is a rail structure without articula-
tion and for the 3D cranes of Fig. 2 it corresponds to a pole that can rotate under mo-
tor actuation (the mechanical structure has one articulation).

e A mobile or main pulley whose coordinates are xg; i = 1, ..., P _

o A rail constraining the movement of the mobile pulley might (see the overhead
crane and the cantilever crane in Figs. 1 and 2, respectively) or might not be present
(see the US-Navy crane in Fig. 2). R Lo
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Fig. 2. 3D cranes: (i) Cantilever crane; (ii) US-Navy crane

3. GENERAL FORMULATION FOR 2D AND 3D WHEs

3.1. WHE DESCRIPTION
Let p be the dimension of the working space with p € {2, 3}.
DEFINITION 1 (WHE)

A WHE is constituted by the foilowing elements: (i) a rigid articulated actuated
‘mechanical structure with d e {0, 1} degrees of freedom, (ii) motors, (iii) ropes, (iv)
pulleys, (v) a load, and enjoys the following topographic properties:
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I. There is at least one motor fixed on the articulated structure. Let 5 + 1 be the
number of such motors, s = 0.

2. There are as many ropes as motors.

3. One motor is linked to a pulley or to the load with a rope.

4, 5 ropes end on a unique pulley, called the mobile pulley. If s = 0 there is no mo-
bile pultey. All pulleys but the mobile pulley are fixed to the structure.

5. There is a unique rope going through the mobile pulley and ending on the load.

6. Between the load and the mobile pulley there is no other pulley.

Moreover, the following physical property is assumed. The mobile pulley moves
in a manifold of dimension # € ( p — 1, p). This manifold is determined thanks to the
constraints imposed by the ropes and by possibly restricting the mobile pulley to
move along a rail. If # = p — | the manifold is transversal to the gravitational field.

Fa——

Let us enumerate and order the fixed pulleys on the structure along each rope
starting from the motor winding the rope to the mobile pulley or to the load. This is
possible due to the previous definition. Denote by #; the number of fixed puileys along
the i-thrope(i=1, ...,s + 1).

3.2. WHE MODELING

We present here a Lagrangian approach to the WHE modeling. Hence, we start
with the choice of generalized coordinates, then express the Lagrangian and the geo-
metric constraints. The model is given in Theorem 1 below.

Consider an inertial base frame such that its p-th axis is pointed in the direction
. opposite to g, the gravity acceleration. We introduce the followmg coordinates:

1. position of the working load: (xi, ..., xp),

2. position of the mobile pulley (if it exnsts) (%015 - Xoph

3. position of the motors: (x;1, ..., xp) fori=1,...,s+1,

4. positions of the fixed pulleys: (wy, ..., wy)fori=1,...,s+landj=1, .., 1, :

5.rope lengths: L, fori=1, ...,s + 1, '

6. rope length L, between the mobile pulley (if it exists) and the motor winching
the working load.

The load mass is # and the mobile pulley mass is mg. To each motor fixed on the
structure there is a corresponding equivalent mass m;, i = 1, ..., s + 1. The coordinate
Ly is not associated to any mass. We assume that the moving part of the rigid articu-
lated mechanical structure with at most one degree of freedom has an equivalent mass
M (including the mass of the motors and pulleys fixed to it) and its position is given
by the coordinates of the motor winching the load, namely by (X 11, ..., X+ 1p)-

The reader can easily check that all fixed puileys along each rope can be virtually
eliminated by placing the corresponding motor at the position of the last fixed pulley
with an equivalent mass obtained by adding to its own equivalent mass the sum of
equivalent masses of all the pulleys removed. Each rope length is then reduced by the
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sum of the constant rope distances between the pulleys removed along that rope. For
notational convenience, L;’s stand for these new lengths. Let us make the following
assumptions which are satisfied by most of the WHEs used in practice. These assump-
tions also allow further notational simplification which do not impart on generality.

" Assumptions ‘ ' '

(A1) The mobile pulley is present. Consequently, s 2 1.

(A2) The angular velocities of the fixed pulleys are small enough to neglect their
quadratic effects (if any) w.r.t. the motions of the mechanical structure. Note that in
all of our three examples no such quadratic effect appears. _ _

(A3) We suppose that all the motors are located on the structure along a line de-
termined by the origin of the base frame and by the position of the motor winching the
load: x;; = appre+ g forj=1,..,sandi=1, .., p. ‘ ‘ '

(A4) If the mobile pulley moves along a rail, the rail coincides with the above line.
Let us introduce a parameter ¢ such that ¢ = 1 if the rail is present and ¢ = 0 otherwise.

(A5) The crane has no redundant actuator or motor: s = p -d~c.

(A6) If 4= 1 the origin of the base frame is on the joint axis of the articulated me-
chanical structure. The articulated mechanical structure consists of either a rotational
joint, in which case the joint axis is collinear with g, or a prismatic joint, in which
case the joint axis is orthogonal to g. This assumption eliminates the variable X1y
(The vertical position of the motor winching the load remains constant.)

Table 1

Parameter values compatible with the assumptions

p d c s d+s+1
2 4] 0 2 3
2 0 1 1 2
3 1 0 2 4
3 i 1 i 3

The number of actuators (i.e., the actuator of the articulated structure and the mo-
tors winding ropes taken together) equals d + s + 1. Table 1 gives the possible values
of the parameters p (dimension of the working space), d (number of articulations of
the mechanical structure), ¢ {number of constraints for the mobile pulley), and s
(number of ropes attached to the mobile pulley) compatible with the assumptions.

The Lagrangian reads

p-1 s+l

1 z .2 £ .2 £ 2 1
L =-2-[mz x; + mOZxO,- + sz(s+1)i + m,ZLf - g(mxp + meOP) )
i=t i=l i=1

i=l

Constraints on the rope lengths are present eithe_:r_'due to ropes terminating at the
mobile pulley
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C 1 (Xo1s s Xops Xeanys -+ Xeanp-10 L) =0 F=1,.. (1)

or due to the rope terminating at the working load. Two constraints are obtained for the
latter rope, one for the total length between the mobile pulley and the corresponding motor
fixed to the structure and one for the length between the load and the mobile pulley

C i1 (X5 ees Xops Fsunyts ooos Fatypts Lo =90, (2)
Craz (pps s Xgps Xys s X s Loy Ly ) =0 (3)

An additional constraint is imposed by the motion compatible with the degree of free-
dom of the structure if d > 0. In view of the above assumptions, this constraint exists
only if p = 3 (see Table 1), '

Cois (-"(s+|)1 2 +res X(sal)p-l )=0. o _ (€]
The motion of the mobile pulley along the rail (if it is present) is of the form
C.v+p+k (xok» Xop Xsel)k )=0 k=l.,p-1. (5}

Denote by / the total number of constraints. If (5) is present,/ =s + 2p—-land/=s5+p
otherwise. _

Here, the functions C), ..., C; are quadratic functions of all their arguments,
Moreover, Cy, ..., Cw contain no product involving L, forj =0, ..., s + 1. Their exact
form is not needed in the sequel (see Remark 2 below).

In place of obtaining an explicit differential model, we prefer an implicit formula-
tion with additional variables, known as Lagrange multipliers.

THEOREM 1

Assume that the constraints are independent in an open subset of the generalized
coordinate space. The dynamical model associated to a WHE corresponding to Defi- «
nition 1 reads:

aC.r+2

mx; = A, or, -6,mg 1'=1,...,p,. (6}
moy; = 2,1 =8,mg  i=l.,p, ™
J=1 i
!
0=% 1,2~ ®)
,Z i
ac,
mL, = ZAJE—%-T i=l.,s+1, (9)
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! ac '
My =Y Ay —2—+ F(T, +2) i=l,.,p-1, (10)
je=l -

(s+1)i

subject to Constraints (1)(5), where 8, =1 ifi=p and 8p =0 otherwise. T, ..., Ts)
are the torques produced by the motors on the structure and Ty the one produced by
the structure actuator. F\, ..., F, are the generalized external forces depending on
the torque delivered by the structure actuator.

Proof: We compute EB—L ~—§£- F,+7, where g = (x1, ..., Xp, Xo1, «- .5 Xop» Lo, Lo,

os Lst1s X(stD)s s x(m)(Pal))T, 7, are the constraint forces. We have

Fq=(0,...,0,1}, s Toars FY(Tiz )y oo (p-l)( +2))
2p+l

Taking total differential of the constraints leads to Z';Z dinng ZC‘ dg, =0, i=1,..,1,
9;
expressing that virtual displacements are in ker dC, where dC is the matrix whose

. ac, .. . . . . .
entries are a—-—‘~ Since the constraint forces compatible with the virtual displacements
7, 7 . .

are workless we have Z8"97,dg, =0. Therefore 7= (7, ..., Tumy).is a linear combi-
nation of the lines of dC

!
Zﬂ. i=1,..,dimg (11)
=1 aq.

and the theorem is proved. o

Remark 1: Note that the left hand side %%{'— of the mode! (6)-(10) is independ-
q
ent of the specific topography of the WHE, whereas the right hand side consists of the

exterior forces F, plus gravity terms -gi and the terms given by (11} whlch sum up
q

the tbpographic specificity. -
Remark 2: The exact form of the constraints C,j =1, ..., { are

- , L

CJ =§Z(.x0‘- -—thx(“l),-) “?=0 j=1,...,S, (12)
, L

Cou = Z(xo, Xary) ——==0, (13)

2

J—l
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1 L
Ciia ='52(xi "xm)z__(

i=l

L)’

sl T

=0, 14
. . 2 (14)

1 p=l 2 2 . .
Z _ M T =0 for rotational joint,

Con={2 20 ionai o a9
OX a2 — Xtz =0 for prismatic joint,
Cs+p+k = XokXs+np — sk Xop =0 k=L.,p-1, (16)

where t= (1, ..., tp)T is the vector of joint axis of the articulated structure and # is the con-
stant distance between the joint axis and the motor winching the load in the case of rota-
tional joint. Note that these formulas are not needed to state and prove our main results.

4. FLATNESS

DEFINITION 2 (ﬂatn_ess)
The system

fGxu)=0 B an

with x € R” and # € R" is differentially flat if one can find a set of variables, called
flat output, '

y=hx,u,i,i,.,u"), yeR" (18)
with r finite integer, such that

2=0(Y, 3 Jroon ) i
(19

u=ﬁ(y9j"!j}a'"sy(q+!)) - i

with ¢ a finite integer, and such that the system equations

da - - , -
Ozf(:}-t"(y! Vs y!"'sy(qﬂ))}a(ys Vs Vsiens y(q)), ﬂ(ys Vs Vsns y(q”))J

are identically satisfied. :
Assume that we exclude free fall trajectories of the load, namely such that :

N 6C.s 2
¥, =—g, an such that 3 220,

*p

THEOREM 2
WHESs defined by Definition 1 and satisfying (A1)-(A6) are differentially flat. The

Slat output, denoted by x in the sequel, can be chosen as (x, ..., X,), the coordinates of
the load, and s + d + 1 — p coordinates of the mobile pulley.
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Proof: In view of the assumptions we need to distinguish the four cases of Table 1.
We provide the proof for p = 3, the simplest cases with p = 2 are left to the reader.
(Recall that p = 2 implies d = 0). o

Assume first that s = 2 = p — 1 and consider x = (xy, +.es Xp, Xop) as a candidate flat
output. Combining the p-th equation of (6) and (3) and the fact that the C;’s contain no
cross-terms involving Ly, Ly, by assumption, one obtains Aq2 as a function of x,, ¥,

s+2

and xg, since # 0. Next, as long as A2 # 0 which is guaranteed by the assump-
P

tion that X, = — g, the p — 1 first equaﬁons of (6) express the remaining coordinates
Xo1, --+» Xogp-1y 88 functions of x;, X,,j = 1, ..., D, and xqp. Next, we use the 2p + 1

equations (2)—(4), (7) and (8) to express the 2p + 1 variables Lo, L1, X(et1)15 <205 X(ri)p-
1y Aty +-., Ap as functions of Xy, ..., Xop, X1, ++0s Xps Aea and derivatives up to'order 2, which
in turn can be expressed as functions of x and derivatives up to order 4. Now, by (1), one
can express Ly, ..., L as functions of the previous ones. By (9), Tt -.., T, are also obtained
as functions of the previous ones and derivatives up to order 6, and finally, T and Ags are
obtained in a similar way by (10), which proves that X =(xy, ..., X, Xgp) is & flat output.
Consider now the case with s = ¢ = 1 (i.e., the rail constrains (5) are present) and
let x = (xy, ..., %) be the candidate flat output. First, we use the 2p equations (4)~(5)
and (6) to express 2p variables Xoi, ..., Xop Ass2, Xsi)ls -+ Xr1ypt in function of x;, ¥,

j=1, ..., p. We proceed using equations (2), (1), (3} and (8) to express the rope
lengths Ly, Ly, L and A,y in function of x, X. Next, we use equation (7) to obtain 4,
Astpris Aeepr2 a8 functionsof x = (xy, ..., x,) and their derivatives up to order 4. Finally,
we use equations (9) and (10) to express 71, ..., Tz and Ay in function of x and their
derivatives up to order 6 which proves thatx=(x, ..., x,) isa flat output. C

5. MOTION PLANNING

Assume that the position, velocity, acceleration, jerk and all derivatives up to 6-th
order of the flat output (including the position of the load) at the start time #; are given

by (x,,%;,%,,.. xP,x{

() x{") and the desired final configuration of the flat output at

time zris (Xp, X5, Xpy s x@, xi®,
The flatness property implies that for any trajectory connecting the initial and final
points, the motor torques can be calculated without integration of the model equa-

tions. Tt is enough to follow the steps of the proof of Theorem 2. Such trajectory can
be obtained for example using polynomial interpolation.
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To see this, suppose that the motion planning has to be done between two different

equilibria of the load such that x; = %, x,= %, = ... = x{) =x{” =0 and xp=%;, xr

=X,=. x¥ =x® =0, Then we can construct a 13-th degree polynomial, |
13 i

X (=%, +(%s — 2, )Z"f{: "_‘;,] e

where X;; are the reference trajectories of the variables of the flat output x. This poly-
nomial satisfies all initial conditions and the coefficients @, are computed by solving
linear equations, whose entries are combinations of the fi nal conditions.

6. EXAMPLE

Let us illustrate our approach by giving the resulting equatlons for the US-Navy
crane. The constraints can be easily obtained using equations (12)(16) and the nota-
tions of Fig. 2.

EXAMPLE: 3D US-Navy crane

The parameters are: p=3,d=1,c= 0, s =2 and the vector of generalized coordl- _
nates is g = {x1, X3, X3, X31, X32, Xo1, X0z, Xu3, Lo, L1, L3, L3}. Note that by Assumptlon A3,
=gayforj=1,...,2andi=1,...,3.
The kinetic energy reads

w, ——Z(mx +myxd)+— ZMx3, +— Zm I Q1)
J-[ ' ;
and the potential energy is given by
Wy = mgxs + mogxos . 22)
Define the Lagrangian by £ = ¥, — W,. The constraints read

(Z(x —x0,) ~ (L —LO)ZJ=

i=t

(Z(xm aler L%}'EO’

=]

3 .
[Z (xUJ o, x3r L2 J =0 H

i=]




Modeling and motion planning ... 89

i=l

1(3
E(Z(xm -xy)* -—Lf,)=0,

1 2 .2
_(x3zl +xp —r7)=0,

which are indeed all quadratic in the generallzed coordinates. The model is given by
Theorem 1, -

mxl =4 (x, xm),
miy =2 (x; = - Xg2)
mis =/'L,(x3 —Xg3) - mg,
moXgy = ~A (%) — %) + ;;2 (o = @) + A3 (g = &% ) + Ay (row = %31) »
Modigy = =M (Xy = Xgp) + Ay (g ~ ¥y X30) + A3 (Xgp ~ Xy X3 ) + Ay (Xgp — X32)
Mooy == Ay (X3 = Xo3) + Ay (os =@y X33) + A (g — @ps3) + Ay (g3 = X33) — Mg
0=A4;(Ls — Ly) - A4 Ly,
mL =-2,L +T,,
myL, =-2,L, + T,
myLy =—4(Ly ~Lo) + T,
Mty =—Aya, (X — 1 X31) = Ay (X — QX)) — Ag(xgy = %31) + Asxy = Tyxy,,
Mgy = =Aya)(Xg; = Oy X3} — A3y (Xgp — Op X5y} — Ay (%gy = %33) + Asxyy ~ T3,

One can prove, using Theorem 2 that the coordinates of the load and the height of
the mobile pulley, x = (x;, X3, X3, X03), form a flat output (see also [10], [11] for the
special case with massless mobile pulley). '

7. SIMULATION RESULTS

We illustrate the solution of the motion planning problem for the US-Navy crane mod-
elled in the previous section. The parameters used are those of a reduced size model (1:30)
realized in the authors’ laboratory, depicted in Fig: 3. The mass.of the load is 250 g.

Suppose that we wish to find an idle to idle trajectory for the load implying that the refer-
ence trajectory will have no sway. This makes the implementation of a closed-loop control
law easy (not presented here), aiming to attenuate and damp the unmodeled perturbations [9].
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Fig. 3. Reduced size model of the US-Navy crane
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The trajectory depicted in Fig. 4 is a horizontal idle to idle displacement of the
load obtained using polynomial interpolation as in Section 5. Some of the corre-
sponding motor torques are given in Fig. 5.« .-

motion in the horizontal blane Xy 2 guardinate o lr_le Iogd .

14
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Fig. 6. Parabolic displacement of the load
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Fig. 7. Motor torques generating the parabolic trajectory

The second trajectory is again an idle to idle displacement between the same
points but along a parabolic trajectory avoiding an obstacle placed between the initial
and final load positions. The trajectory and the generating motor torques are depicted
in Figs. 6 and 7.
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