SQL is a must when accessing relational database

Compatibility: SQL is the standard lan- Speed: Relational queries in SQL can be Expressivity: Simpler paradigms do not
guage to access relational DBMS. optimized very aggressively by DBMS. allow complex access patterns.

The Old Way: Oil and Water and SQL

Oil and water don't mix, that is a well-known fact of phys-

ics. This is also true for SQL and its various host languages. SQL
usually is embedded in the host language as strings — in the
same container but not mixing. The neat features of the host for (p <- persons) ..
language, such as type checking, are not available to SQL.

query ="select * from persons”;

statement.executeQuery(query); for (p <- persons; p.age > 18) ...

for (p <- persons;
JDBC ODBC Embedded SOL s <- students;
p.Nname = s.name) ...

What about relational-object mapping?

The strength of relational databases is the capability to create
new relations by applying operators to existing relations.

n i

Consider the tables “products (pid, pname)”,“suppliers (sid,
sname)” and “order (pid, sid, guantity)”. With a relational-object
mapping, finding all supplier’s names for a given product
name will requires multiple queries. In SQL it is “select * from
products natural join suppliers natural join order”. Simple enough!

Better Relational Queries

using For-comprehensions

: : :)
Gilles Dubochet, Programming Methods Laboratory (LAMP1 IIF IC EPFL); .(l ﬂ-

part ot this work done at the LFCS (University of Edinburgh) under the supervision of P. Wadler. FCOLE POLYTECHNIQUE

Previous related work What we have: SLinks What we do: ScalaDALL

Kleisli (by L. Wong) is a querying system Based on Kleisli but new, it improves An extension of the Scala language
using optimized for-comprehensions. on the data-structures and type-check- that adds for-comprehension querying.
It is functional and data is represented ing. Records and variants are extensible By mixing a rich querying paradigm
using records and variants. It was de- which allows SLinks to be used in more with a modern general-purpose pro-
veloped as a way to solve large data- situations than only for querying. This is gramming language, we hope to signif-
base integration problems, particularly a first step in the direction of using for- icantly simplify the integration of data-
for bio-computing. comprehensions in a general-purpose access and calculation.

programming language.

Accessing database tables the table type is validated at run-time. every element, “x <set aSet” is a generator
" SQL tables are bags by default, but can be that binds “x” successively to each element
table"t" from db coerced to sets (no duplicates) or lists: of aSet, “x > 4" is a filter.
A table is always read entirely. Filteringis tablet" unique set [y} | x <set [set 1 2],
done with comprehensions. table"t" order [#name] list y <set [set 3 4]]
table “t" with {#name:string, #age:int} Comprehensions Multiple generators are equivalent to

from db

The type of tables (a named record) can L
b () Syntax uses no “for’, but meaning is the

be declared: the program is type-safe and same: “x” is the body that is evaluated for

joins. The result for the last example is:

[X ‘ X <set aSet, X > 4] [Set {1 ,3} {] ’4} {2’3} {2,4}]

Shipping comprehensions limited expressiveness of SQL. ... becomes after shipping:
Requires to extract the largest SQL query For example: the following expression ... for (sefect * fro o
possible. If too small, the DBMS's optimiz- L - | x <set table "X"from db, for (select * fr 0 {..}}
er won't be able to rearrange much. Large y <set table"Y"from db]

. for (select * from X join Y) do {...}
ones are difficult to extract because of the

For-comprehensions in a general-purpose programming language (June 2005 version)

https://core.ac.uk/display/147916683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

