
What we do: ScalaDALL
An extension of the Scala language
that adds for-comprehension querying.
By mixing a rich querying paradigm
with a modern general-purpose pro-
gramming language, we hope to signif-
icantly simplify the integration of data-
access and calculation.

What we have: SLinks
Based on Kleisli but new, it improves
on the data-structures and type-check-
ing. Records and variants are extensible
which allows SLinks to be used in more
situations than only for querying. This is
a first step in the direction of using for-
comprehensions in a general-purpose
programming language.

Yes, but developers don’t need to know
For-comprehensions can be compiled into equivalent SQL
statements (query shipping). The developer gets a better way
to access relational data, the type-checker gets something to
chew on, the DBMS gets SQL … everyone is happy!

But SQL is a must, isn’t it?

The New Way: For-comprehensions
A very simple construct found in modern programming lan-
guages is equivalent to a SQL relational query: for-compre-
hensions. This is equivalent to the JDBC example next door:
for (p <- persons) ...

It also works for conditions and joins:
for (p <- persons; p.age > 18) ...
for (p <- persons;
 s <- students;
 p.name = s.name) ...

The Old Way: Oil and Water and SQL
Oil and water don’t mix, that is a well-known fact of phys-
ics. This is also true for SQL and its various host languages. SQL
usually is embedded in the host language as strings — in the
same container but not mixing. The neat features of the host
language, such as type checking, are not available to SQL.
query = “select * from persons“;
statement.executeQuery(query);

JDBC ODBC Embedded SQL

Better Relational Queries
using For-comprehensions

SQL is a must when accessing relational database

Compatibility: SQL is the standard lan-
guage to access relational DBMS.

Speed: Relational queries in SQL can be
optimized very aggressively by DBMS.

Expressivity: Simpler paradigms do not
allow complex access patterns.

What about relational-object mapping?
The strength of relational databases is the capability to create
new relations by applying operators to existing relations.
Consider the tables “products (pid, pname)”, “suppliers (sid,
sname)” and “order (pid, sid, quantity)”. With a relational-object
mapping, finding all supplier’s names for a given product
name will requires multiple queries. In SQL it is “select * from
products natural join suppliers natural join order“. Simple enough!

Previous related work
Kleisli (by L. Wong) is a querying system
using optimized for-comprehensions.
It is functional and data is represented
using records and variants. It was de-
veloped as a way to solve large data-
base integration problems, particularly
for bio-computing.

Accessing database tables
table “t“ from db

A table is always read entirely. Filtering is
done with comprehensions.
table “t“ with {#name:string, #age:int}
from db

The type of tables (a named record) can
be declared: the program is type-safe and

the table type is validated at run-time.
SQL tables are bags by default, but can be
coerced to sets (no duplicates) or lists:

table “t“ unique set
table “t“ order [#name] list

Comprehensions
[x | x <set aSet, x > 4]

Syntax uses no “for”, but meaning is the
same: “x“ is the body that is evaluated for

every element, “x <set aSet“ is a generator
that binds “x” successively to each element
of aSet, “x > 4” is a filter.
[{x,y} | x <set [set 1 2],
 y <set [set 3 4]]

Multiple generators are equivalent to
joins. The result for the last example is:
[set {1,3} {1,4} {2,3} {2,4}]

For-comprehensions in a general-purpose programming language (June 2005 version)

Shipping comprehensions
Requires to extract the largest SQL query
possible. If too small, the DBMS’s optimiz-
er won’t be able to rearrange much. Large
ones are difficult to extract because of the

limited expressiveness of SQL.
For example: the following expression …
[... | x <set table “X” from db,
 y <set table “Y” from db]

… becomes after shipping:
for (select * from X) do {
 for (select * from Y) do {...}}

for (select * from X join Y) do {...}

Gilles Dubochet, Programming Methods Laboratory (LAMP1 IIF IC EPFL);
part ot this work done at the LFCS (University of Edinburgh) under the supervision of P. Wadler.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147916683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

