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S

We use saddlepoint approximation to derive credible intervals for Bayesian wavelet regression
estimates. Simulations show that the resulting intervals perform better than the best existing
method.
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1. I

Nonparametric estimation of a function or signal g from a data vector y= (y1 , . . . , yn )T satisfying

y
i
=g(t

i
)+e
i

(i=1, . . . , n), (1)

where the e
i
are independent normal random variables with mean zero and variance s2, may be

based on procedures such as spline smoothers, kernel smoothers, local polynomial regression or
wavelets. In this last approach, the noisy data are expressed as a linear decomposition in a wavelet
basis, which is then usually denoised by a thresholding procedure which extracts significant

coefficients and reduces insignificant ones to zero. The choice of thresholding rule is crucial, and

among the possibilities are the minimax approach (Donoho & Johnstone, 1994, 1995), multiple

hypothesis testing (Abramovich & Benjamini, 1995) and Bayesian approaches (Abramovich et al.,

1998). Uncertainty measures for the underlying functions have been discussed by authors including

Picard & Tribouley (2000) and, from a Bayesian viewpoint, Chipman et al. (1997), in addition to

the work cited below.

In this paper, we focus on attaching credible intervals to the Bayesian point estimates proposed

by Abramovich et al. (1998). The BayesThresh method gives a posterior distribution for each
wavelet coefficient, which is then estimated by the median of its posterior distribution. The signal

is in turn estimated through the inverse discrete wavelet transform. In an unpublished University

of Bristol technical report, S. Barber uses simulation to obtain credible intervals for the underlying

signal, whilst Barber et al. (2002) approximate its posterior distribution using Johnson curves and

the first four posterior cumulants. Here we investigate the use of saddlepoint approximation to the

full posterior distribution.
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We outline relevant aspects of wavelet regression in § 2, and then in § 3 derive the saddlepoint
approximation of the posterior distribution of g(t

i
). Numerical results are given in § 4 and some

concluding remarks made in § 5.
The R code to compute our SBand posterior credible intervals may be downloaded from

http://statwww.epfl.ch.

2. B  

2·1. Wavelet regression

Wavelets provide multiple orthonormal bases of L 2 (R), the space of square integrable functions
on the real line R. Using a scaling function w(t) and an associated wavelet y(t), a function g(t)
in L 2 (R) can be represented as

g(t)= ∑
kµZ

C
j
0
,k
w
j
0
,k
(t)+ ∑

2

j=j
0

∑
kµZ

D
j
0
,k
y
j
0
,k
(t), (2)

where w
j,k

(t)=2j/2w(2jt−k) and y
j,k

(t)=2j/2y(2jt−k) are dilations at level jµZ and translations
at location kµZ of the scaling function and associated wavelet respectively. The coefficients of
the representation are C

j
0
,k
=∆w

j
0
,k
(t)g(t)dt and D

j
0
,k
=∆y

j
0
,k
(t)g(t)dt. Wavelet systems are good

expansion sets for a variety of signals, including those with jumps, high frequency events and
other nonsmooth features, and with features which change over time. Smooth portions of g(t)
are represented by a small number of coarse level coefficients, whilst inhomogeneous features are
represented by coefficients at finer scales. Daubechies (1992) and Chui (1992) give detailed
expositions of the mathematical aspects of wavelets.
The properties of the wavelet decomposition make a discrete version of (2) an attractive basis
for estimation of g(t) when only noisy observations (1) are available. In common with most other
authors, we suppose that t

i
= i/n and that g(t) is periodic at the boundaries. Let g denote the vector

(g1 , . . . , gn )T, where g
i
=g(t

i
), and write the observation vector y as g+e. The discrete wavelet

transform of y is d*=Wy=Wg+W e=d+e*, where W is a n×n orthogonal matrix determined
by the chosen functions w(t) and y(t), d*= (c*

0,0
, d*
0,0

, . . . , d*
J−1,2J−1

)T is the n×1 vector of empirical
wavelet coefficients, d=Wg is the discrete wavelet transform of g, and orthogonality of W means
that e*=W e has the same distribution as e.
The inverse discrete wavelet transform would reconstruct y by multiplying d* by W−1, though
the fast pyramid algorithm of Mallat (1989), which presupposes that n=2J for some integer J, is
much faster than matrix multiplication. Better estimates of g are obtained by threshold rules, which
extract large wavelet coefficients and set small ones to zero, and then apply the inverse wavelet
transform to the resulting modified coefficient vector, yielding an estimate g@

i
of g
i
. Perhaps the

best-known approach to this was suggested by Donoho & Johnstone (1994). Bruce & Gao (1996)
gave approximate confidence intervals for g@

i
using the asymptotic normality of g@

i
, proved by

Brillinger (1996) under certain conditions.

2·2. Bayesian procedures

Bayesian procedures for wavelet regression involve priors on the coefficients c0,0 and d
j,k
which

are updated by the observed coefficients of the discrete wavelet transform, c*
0,0
and d*

j,k
, to obtain

posterior distributions of d
j,k
and of c0,0 . Bayesian point estimates c@0,0 and d@

j,k
can then be computed

and used with the inverse discrete wavelet transform to estimate g. Some authors also place priors
on s2, but we shall suppose that this can be estimated well enough to be regarded as constant.
To incorporate the assumption that only a few coefficients contain the main part of the signal,

most Bayesian procedures use mixture distributions as priors (Chipman et al., 1997; Holmes &
Denison, 1999; Vidakovic, 1998). The thresholding method BayesThresh (Abramovich et al.,
1998) is obtained by placing a noninformative prior distribution on the scaling coefficient c0,0 and
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independent prior distributions on the wavelet coefficients,

d
j,k
~p
j
N(0, t2

j
)+ (1−p

j
)d(0) ( j=0, . . . , J−1, k=0, . . . , 2j−1), (3)

where 0∏p
j
∏1, d(0) represents a point mass at 0 and the d

j,k
are independent. This is a special

case of the normal mixture suggested by Chipman et al. (1997).
The hyperparameters of (3) are assumed to have the form t2

j
=2−ajC

1
and p

j
=min (1, 2−bjC2 ),

where C1 , C2 , a and b are nonnegative constants. The first two are chosen empirically, but a and b
should be chosen according to any prior knowledge of the smoothness of the unknown function g.
Abramovich et al. (1998) showed that the default choice a=0·5, b=1 is robust to varying degrees
of smoothness of g.
The noninformative prior placed on the scaling coefficient c0,0 leads to a N(c*

0,0
, t2
0
) posterior

distribution, where c*
0,0
is the observed coefficient. The posterior distribution of the wavelet

coefficient d
j,k
conditional on d*

j,k
is the mixture

w
j,k
N(d*
j,k

r2
j
, s2r2
j
)+ (1−w

j,k
)d(0), (4)

independent of other coefficients, where r2
j
=t2
j
/(s2+t2

j
), w
j,k
= (1+j

j,k
)−1 and

j
j,k
=

1−p
j

p
j

(s2+t2
j
)D

s
exp {−r2

j
d*2
j,k

/(2s2 )}. (5)

The posterior mean, which is the traditional Bayes rule, does not provide a thresholding rule, but
shrinkage. Instead, Abramovich et al. (1998) suggest using the posterior median of d

j,k
as the point

estimate d@
j,k
, yielding an implicit level-dependent thresholding rule.

The Waveband procedure of Barber et al. (2002) uses cumulants to derive credible intervals for
the wavelet regression estimates. They express the first four cumulants of the posterior distribution
of the estimates in terms of the observed data and integer powers of the mother wavelet functions,
and approximate these by linear combinations of wavelet scaling functions at an appropriate finer
scale. They find the posterior cumulants for any given dataset by a suitable modification of the
discrete wavelet transform, and finally use Johnson transformations to obtain the credible intervals.
The availability of the posterior cumulant generating functions of c0,0 and the d

j,k
, however, implies

that a potentially more accurate approach is available through saddlepoint approximation.

3. S 

Saddlepoint approximation enables highly accurate approximation to the density or distribution
function of a random variable X through its cumulant generating function K(u) (Daniels, 1954,
1987; Jensen, 1995; Reid, 1988; Davison, 2003, Ch. 12). Recall that K(u) is defined as logM(u),
where M(u) is the moment generating function of X, assumed to exist in an open set containing
u=0, and that the rth cumulant is defined to be the coefficient of ur/r! in the series expansion
of K(u). Elementary properties of moment generating functions imply that the cumulant generating
function of a linear combination X=Wk

l=1
c
l
X
l
of independent random variables X1 , . . . , Xk with

cumulant generating functions K1 (u), . . . , K
k
(u) is K(u)=Wk

l=1
K
l
(c
l
u).

The cumulative distribution function F(x) of X at x may be approximated by

FB (x)=WCv1 (x)+
1

v
1
(x)
logqv2 (x)

v
1
(x)rD , (6)

where W denotes the standard normal distribution function and

v
1
(x)=sign (uA )[2{uAx−K(uA )}]D, v

2
(x)=uA{K◊(uA )}D ; (7)
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the saddlepoint uA=uA (x) satisfies K∞(uA )=x, and K∞(u) and K◊(u) are the first and second derivatives
of K(u) with respect to u. Typically these formulae are used to approximate the cumulative
probability corresponding to a specified x, by solving the equation K∞(u)=x iteratively to give the
corresponding saddlepoint uA (x), and then computing (7) and (6). When the entire distribution or
its quantiles are needed, however, iterative root-finding can be avoided by noting that, if u is
specified, then K∞(u) and K◊(u) are easily obtained, giving x=K∞(u); the corresponding FB (u) is found
using (6) and (7), so no root-finding is required. This direct computation of pairs (x, FB (x)) is
performed for a grid of values u1 , . . . , uS of u, yielding values x1=K∞(u1 ), . . . , xS=K∞(u

S
) of x and

their cumulative probabilities FB (x1 ), . . . , FB (xS ). Approximate quantiles of F may be obtained by
interpolation among x1 , . . . , xS as functions of W−1{FB (x1 )}, . . . , W−1{FB (xS )}, using for example a
spline smoothing routine. In many cases it suffices to take S=20 equally-spaced values of u in the
range ±3·5K◊(0)−D, though more sophisticated adaptive strategies are possible.
We now discuss how this approach may be used to obtain approximate posterior quantiles of g

i
given the data. The first step is to obtain the posterior cumulant generating function of g

i
. Without

loss of generality, we assume that the noisy signal y has been centred to have average zero. If so,
the scaling coefficient c0,0 of the discrete wavelet transform is zero, and the wavelet representation
of g
i
=g(t

i
) is

g
i
= ∑
J−1

j=0
∑
2j−1

k=0
d
j,k
y
j,k

(t
i
) (i=1, . . . , n), (8)

where the d
j,k
are the wavelet coefficients. Equation (4) implies that these are independent

a posteriori, so the posterior cumulant generating function of g
i
is

K
g
i
|y
(u)=∑

j,k
K
d
j,k
|y
{uy
j,k

(t
i
)} (i=1, . . . , n), (9)

where

K
d
j,k
|y
(u)= log {w

j,k
exp (ud*

j,k
r2
j
+u2s2r2

j
/2)+1−w

j,k
}. (10)

The calculation of (9) requires the values of y
j,k

(t
i
) and y2

j,k
(t
i
) for all t

i
, j and k. Except for a

few special cases, wavelet functions have no analytic form, so Barber et al. (2002) approximate
powers of wavelets using weighted sums of appropriately shifted scaling functions. We avoid the
numerous approximations that this entails by the following procedure. For given jA and kA , we set all
coefficients of d= (c

0,0
, d
0,0

, . . . , d
J−1,2J−1

)T to zero, except for d
jA,kA
which is set to 1, and we then

apply the inverse discrete wavelet transform to d using the wavelets of interest. The resulting signal
is a vector of n values corresponding to the vector (y

jA,kA
(t
1
), . . . , y

jA,kA
(t
n
))T. This procedure can be

performed for all wavelet functions y
j,k
( . ), and it returns the values of these functions at each t

i
.

With these refinements, the approach described above can be applied to (9) and yields
approximations to any required posterior quantiles of g1 , . . . , gn .

4. N 

We used simulation to assess the performance of our procedure SBand and compare it with
WaveBand (Barber et al., 2002). We took the ‘Blocks’, ‘Bumps’, ‘Doppler’ and ‘Heavisine’ test
functions of Donoho & Johnstone (1994), and the piecewise polynomial ‘Poly’ of Nason &
Silverman (1994), all rescaled to have unit standard deviation. One thousand simulated data-
sets with n=1024 were created by adding noise with mean zero and root-signal-to-noise ratio
r=4; this is the ratio of the standard deviation of g(t

1
), . . . , g(t

n
) to the standard deviation of

the noise. The SBand and WaveBand credible intervals for the same 1000 noisy signals were
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evaluated at each data point for nominal coverage probabilities 0·90, 0·95 and 0·99. Both methods
used Daubechies’ least asymmetric wavelet with eight vanishing moments, and default hyper-
parameters a=0·5 and b=1. We used G. P. Nason’s WaveThresh3 software, available from
http://www.stats.bris.ac.uk/~wavethresh/, to obtain WaveBand credible intervals.
Figure 1 shows examples of SBand 95% confidence bands.
Table 1 gives simulation results. For each test function, computational problems occurred for
between 2 and 33 signals while using WaveThresh. Results for WaveBand are based on signals
that did not generate errors.
The SBand intervals have higher empirical coverage rates in every case but one, although they

remain below the nominal coverage probabilities. Average widths of SBand intervals are greater

Fig. 1. Examples of SBand 95% pointwise credible intervals, with the original signal. Dots indicate
data at n=1024 equally spaced points with addition of independent normally distributed noise with

r=4. Test functions: (a) Blocks, (b) Bumps, (c) Dopper, (d) Heavisine, (e) Ppoly.
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Table 1. Simulation results comparing mean coverage rates and widths for SBand and WaveBand
credible intervals for nominal coverage probabilities () 0·90, 0·95 and 0·99. Standard errors are in
brackets. T he five test functions were evaluated on n=1024 equally spaced points and rescaled to
have standard deviation 1, and 1000 replications of noisy signals were created by adding independent
normally distributed noise with r=4. Both methods used Daubechies’ least asymmetric wavelet with

eight vanishing moments, and default hyperparameters a=0·5 and b=1

Coverage rate Bandwidth
Signal  SBand WaveBand SBand WaveBand

Blocks 0·90 0·804 (0·030) 0·711 (0·040) 0·309 (0·008) 0·286 (0·010)
0·95 0·898 (0·020) 0·808 (0·034) 0·397 (0·010) 0·348 (0·012)
0·99 0·975 (0·008) 0·933 (0·017) 0·588 (0·015) 0·483 (0·013)

Bumps 0·90 0·832 (0·027) 0·764 (0·035) 0·319 (0·008) 0·306 (0·010)
0·95 0·914 (0·017) 0·854 (0·028) 0·409 (0·011) 0·373 (0·011)
0·99 0·978 (0·007) 0·953 (0·012) 0·606 (0·017) 0·523 (0·013)

Doppler 0·90 0·813 (0·049) 0·767 (0·065) 0·181 (0·006) 0·160 (0·007)
0·95 0·919 (0·022) 0·854 (0·048) 0·257 (0·007) 0·200 (0·008)
0·99 0·977 (0·007) 0·944 (0·017) 0·420 (0·010) 0·296 (0·009)

Heavisine 0·90 0·624 (0·075) 0·679 (0·073) 0·102 (0·010) 0·107 (0·008)
0·95 0·864 (0·049) 0·794 (0·064) 0·170 (0·010) 0·136 (0·009)
0·99 0·976 (0·013) 0·932 (0·032) 0·318 (0·010) 0·207 (0·011)

Ppoly 0·90 0·730 (0·070) 0·704 (0·080) 0·124 (0·009) 0·112 (0·008)
0·95 0·917 (0·036) 0·817 (0·065) 0·196 (0·008) 0·142 (0·008)
0·99 0·988 (0·007) 0·947 (0·027) 0·351 (0·010) 0·217 (0·009)

than those of WaveBand. The coverage of SBand approaches the nominal coverage rate as this
increases, perhaps because saddlepoint approximation can be highly accurate in the tails of a
distribution.
Figure 2 compares the empirical coverage rates of SBand and WaveBand intervals at each t

i
for nominal coverage rates 95%. Coverage varies greatly across each signal, and is much better
where the signal is smoother and less variable. This can be seen clearly in the results for the Blocks
and Bumps functions, which have excellent coverages for the long constant parts. The coverage
rates are also excellent for the low frequency portion of the Doppler function, but become less

satisfactory when the frequency increases.

5. D

The SBand procedure uses the same prior distribution (3) as WaveBand, which depends critically
on the parameters a and b. These parameters should in principle be chosen using prior knowledge
about regularity properties of the unknown function. The case b=0 corresponds to prior belief
that all coefficients on all levels have the same probability of being nonzero. This characterises

self-similar processes such as white noise or Brownian motion. The case b=1 assumes that the
expected number of nonzero wavelet coefficients is the same for each level. This is typical for

piecewise polynomial functions, for example. The parameter a is linked to the overall regularity of
the signal. Large values of a presuppose that the variablity of the wavelet coefficients around zero
decreases quickly from one level to a higher frequency one, and thus that lower levels are sufficient

to capture most of the signal’s features. We used the values a=0·5 and b=1 suggested by
Abramovich et al. (1998) because they showed that these are robust choices in the absence of prior

knowledge about the signal. However, other choices might lead to more efficient probability
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Fig. 2. Empirial coverage rates () for SBand ( lines) and WaveBand (dots) intervals for
nominal coverage 95%. The five test functions were evaluated at n=1024 equally spaced
points, and 1000 datasets with r=4 were used. Some signals were not taken into account

for WaveBand because results were unavailable.

intervals for some signals. Consider the Heavisine and Ppoly functions, which are the least irregular
functions used for our simulations. The choice b=1 seems appropriate because Heavisine is a
piecewise sine function, and Ppoly is a piecewise polynomial function. A larger value of a might
be better, however, so Fig. 3 shows the mean empirical coverage rates of SBand for values of a
between 0·2 and 10 and b=1. The intervals with nominal coverage probabilities 0·90, 0·95 and
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Fig. 3. Empirical coverage rates () for SBand intervals for values of a between
0·2 and 10, and b=1. The intervals with nominal coverage probabilities 0·90
(dotted), 0·95 (dashed) and 0·99 (solid) were computed on 200 noisy (a) Heavisine
and (b) Ppoly signals with n=1024 equally spaced points and r=4. The vertical

lines show the suggested default value, at a=0·5.

0·99 were computed on 200 Heavisine and Ppoly noisy signals with n=1024 equally spaced points
and r=4. Coverage rates for the robust choice a=0·5 are poor compared to those with a=2.
Thus careful choice of a and b can improve coverage levels.
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