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Abstract. In this paper, we investigate by means of statistical and information-theoretic
measures, to what extent sensory-motor coordinated activity can generate and struc-
ture information in the sensory channels of a simulated agent interacting with its sur-
rounding environment. We show how the usage of correlation, entropy, and mutual
information can be employed (a) to segment an observed behavior into distinct be-
havioral states, (b) to quantify (fingerprint) the agent-environment interaction, and
(c) to analyze the informational relationship between the different components of the
sensory-motor apparatus. We hypothesize that a deeper understanding of the information-
theoretic implications of sensory-motor coordination can help us endow our robots
with better sensory morphologies, and with better strategies for exploring their sur-
rounding environment.

1 Introduction

Manual haptic perception is the ability to gather information about objects by using the hands.
Haptic exploration is a task-dependent activity, and when people seek information about a
particular object property, such as size, temperature, hardness, or texture, they perform stereo-
typed exploratory hand movements. In fact, spontaneously executed hand movements are the
best ones to use, in the sense that they maximize the availability of relevant sensory informa-
tion gained by haptic exploration [3]. The same holds for visual exploration. Eye movements,
for instance, depend on the perceptual judgement that people are asked to make, and the eyes
are typically directed to areas of a visual scene or an image that deliver useful and essential
perceptual information [14]. To reason about the organization of saccadic eye movements,
Lee and Yu [4] proposed a theoretical framework based on information maximization. The
basic assumption of their theory is that due to the small size of our foveas (high resolution
part of the eye), our eyes have to continuously move to maximize the information intake from
the world. Differences between tasks obviously influence the statistics of visual and tactile
inputs, as well as the way people acquire information for object discrimination, recognition,
and categorization.

Underlying these perceptual abilities there is a process of sensory-motor coordination that
couples action and perception. Thus, coordinated movements must be considered part of the
perceptual system [13], and whether the sensory stimulation is visual, tactile, or auditory,
perception always includes associated movements of eyes, hands, arms, head and neck [1, 2].
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Sensory-motor coordination is important, because (a) it induces correlations between various
sensory modalities (such as vision and haptics) that can be exploited to form cross-modal
associations, and (b) it generates structure in the sensory data that facilitates the subsequent
processing of those data [5, 10]. Exploratory activity of hands and eyes is a particular in-
stance of coordinated motor activity that extracts different kinds of information through in-
teraction with the environment. In other words, robots and other agents are not passively
exposed to sensory information, but they can actively shape that information. Our long-term
goal is to quantitatively understand what sort of coordinated motor activities lead to what
sort of information. We also aim at identifying “fingerprints” (or patterns) characterizing the
agent-environment interaction. Our approach builds on top of previous work on category
learning [6, 8], as well as on information-theoretic and statistical analysis of sensory-motor
data [5, 10, 12].

In this paper, we simulated a robotic agent whose task was to search its surrounding en-
vironment for red objects, approach them, and explore them for a while. The analysis of
the recorded sensory-motor data showed that different types of sensory-motor activities dis-
played distinct fingerprints reproducible across many experimental runs. In the two following
sections, we give an overview of our experimental setup, and describe the actual experiments.
In Section 5, we present our results and discuss them. Eventually, we conclude and point to
some future research directions.

2 Experimental Setup

We conducted our study in simulation. The experimental setup consisted of a two-wheeled
robot and of a closed environment cluttered with randomly distributed, colored cylindrical
objects. A bird’s eye view on the robot and its ecological niche is shown in Fig.1 (left). The
robot was equipped with 11 proximity (distance) sensors (d0−10) and a pan-controlled camera
unit (image sensor) – see Fig.1 (center). The proximity sensors had a position-dependent
range, that is, the sensors in the front and the back had a short range, whereas the ones on
the sides had a longer range (see caption of Fig.1). The output of each sensor was affected by
additive white noise, and was partitioned into a space having 32 discrete states (5 bit sensor
resolution). To reduce the dimensionality of the input data, we divided the camera image into
24 vertical rectangular slices with widths decreasing toward the center. Then we computed
the amount of “effective” red color in each slice as R=r-(b+g)/2, where r, g and b are the
red, green and blue components of the color associated with each pixel of the slice. Negative
values of R were set to zero. This operation guaranteed a maximum in the response of the red
channel for fully saturated red color, i.e., for r=31, g=b=0. The red color slices will also be
referred to as red channels or red receptors.

For the control of the robot, we opted for the Extended Braitenberg Architecture [7]. In
this architecture, each of the robot’s sensors is connected to a number of processes which
run in parallel and continuously influence the agent’s internal state, as well as its behavior.
Because our goal is to illustrate how standard statistical and information-theoretic measures
can be employed to quantify (and fingerprint) the agent-environment interaction, we started
by decomposing the robot’s behavior into three distinct behavioral states: (a) “explore the
environment” and “find red objects”, (b) “track red objects”, and (c) “circle around red ob-
jects.” It is important to note that three behavioral states display coordinated motor activity,
and are characterized by a tight coupling between sensing and acting. We advance that the
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Figure 1: (Left) Bird’s eye view on the robot and its ecological niche. The trace represents a typical path of
the robot during one experiment. (Center) Schematic representation of the agent. The sensors have a position-
dependent range. Being rl the length of the robot, the range of d0, d1, d9, and d10 is 1.8 rl, the one of d2 and d3

is 1.2 rl, and the one of d4, d5, d6, d7, and d8 is 0.6 rl. (Right) Extended Braitenberg Control Architecture.

segmentation of the observed behavior into distinct behavioral states is an important (maybe
even necessary) step for fingerprinting the agent-environment interaction, i.e., for identifying
stable patterns of interaction (such as stereotyped exploratory hand movements).

3 Methods

First, we introduce some notation. Correlation quantifies the amount of linear dependency
between two random variables X and Y , and is given by

∑
x∈X

∑
y∈Y p(x, y) (x−mX)(y−

mY ))/σX σY , where p(x, y) is the second order (or joint) probability density function, mX

and mY are the mean, and σX and σY are the standard deviation of x and y computed over
X and Y . The entropy of a random variable X is a measure of its uncertainty, and is de-
fined as H(X) = −

∑
x∈X p(x) log p(x), where p(x) is the first order probability density

function associated with X – in a sense entropy provides a measure for the sharpness of
p(x). Analogously, the joint entropy between variables X and Y is defined as H(X,Y ) =
−

∑
x∈X

∑
y∈Y p(x, y) log p(x, y). For entropy as well as for mutual information, we as-

sumed the binary logarithm. Both are measure in bit. The entropy of the sensory data lies
between the minimum (0 bit) and maximum entropy bound (5 bit). Using the joint entropy
H(X,Y ), we can define the mutual information between X and Y as MI(X,Y ) = H(X) +
H(Y ) − H(X,Y ). In comparison with correlation, mutual information provides a better and
more general criterion to investigate statistical dependencies between random variables [11].
Correlation, entropy and joint entropy were computed by first approximating p(x) and p(x, y).
The most straightforward approach is to use a histogram-based technique, described, for in-
stance, in [11]. Because the sensors had a resolution of 5 bit, we estimated the histogram by
setting the number of bins to 32 (equivalent to a bin-size of one). Having a unitary bin-size
allowed us to map the discretized value of the sensory stimulus directly onto the correspond-
ing bin for the estimation of p(x, y), thus speeding up the computation. As noted previously,
the distance sensors are identified by di, i ∈ [0, 10], whereas the effective red color sensors
are indexed with the numbers 1 to 24.



4 Experiments

At the outset of each experimental run, the robot’s initial position was set to the end position
of the previous experiment and the behavioral state was reset to “exploring.” In this particular
state the robot randomly explored its environment while avoiding obstacles. Concurrently,
the robot’s camera panned from side to side (by 60 degrees on each side). If the maximum
of the effective red color (summed over the entire image) passed a given (fixed) threshold,
it was assumed that the robot had successfully identified a red object. The camera stopped
rotating from side to side, and the robot started moving in the direction identified by the
camera orientation, trying to keep the object in the camera’s center of view. Once close to
the red object, the robot started circling around it (while keeping it in its center of view by
adjusting the camera’s pan-angle). At the same time, a “boredom” signal started increasing.
The robot kept circling around the object, until the boredom signal crossed an upper threshold.
In that instant, the robot stopped circling, and started backing away from the red object,
while avoiding other objects. Concurrently, the boredom signal began to decrease. When the
boredom signal finally dropped below a lower threshold, the robot resumed the exploration of
the surrounding environment. A top view of a typical experiment is shown in Fig.1 (left). We
conducted 16 experiments. Each experiment consisted of approximately 1400 data samples,
which were stored into a time series file for subsequent analysis.

5 Data Analysis and Results

We analyzed the collected datasets by means of three measures: correlation, mutual informa-
tion, and entropy (a particular instance of mutual information). In this section we describe,
and in part discuss, the results of our analyses.

5.1 Correlation

In the first behavioral state (“exploring”), the robot moves around avoiding obstacles and
“searching” for red objects. In all performed experiments, there were either no or only weak
correlations between the proximity sensors, that is, the correlations were small and their ab-
solute value close to zero. In Fig.2 (left), for instance, the average correlation is 0.011. The
intrinsic noise of the sensors, as well as the unpredictability of the sensory activations while
the robot is exploring its ecological niche, make the identification of statistical dependencies
between the sensory activations by means of linear correlation difficult. Similarly, the output
of the red channels do not lead to a “stable” correlation matrix, that is, the pair-wise corre-
lations between the sensory channels varies significantly between the different experimental
runs. The average correlation in the case of Fig.3 (left) is 0.053 (again a low value), and the
standard deviation is 0.023. The reason is that in this state, the oscillatory movement of the
robot’s camera induces a rapidly changing stream of sensory data, and consequently leads to
small correlations between the red channels.

In the second behavioral state (“tracking”), the robot moves toward the previously identi-
fied red object (see Fig.2 center). In this case, the correlations between the activity of the red
receptors in and close to the center of the image are high (see Fig.3 center). A possible ex-
planation is that the robot keeps correcting the direction of its movements so that the tracked
object remains in the center of its visual field. Moreover, because this state is characterized by



a goal-directed movement of the robot toward the red object, the number of red pixels present
in the image increases, leading to an increase of the stimulation of the red receptors located
in the center (the activation of the red receptors is an average computed over a vertical slice),
and to a corresponding increase of the correlation between those receptors.

In the third behavioral state (“circling”), we observed negative correlations (−0.442) be-
tween the pairs of proximity sensors located on the ipsi-lateral (same) side of the robot, such
as (d2, d9) or (d3, d10) (see Fig.2 right). Due the non-linearities of the data and the noise-
induced correlations, however, these correlations are not immediately evident from the plot.
In this state, we observed in all performed experimental runs, strong correlations between the
output of the red channels located in (and close to) the central image area (see Fig.3 right).
The correlation was 0.92 for receptors in the center, with an overall average of 0.1658. The
standard deviation of the correlation computed over all experiments was 0.0412. While cir-
cling around the object, the robot kept foveating on it. Due to the limitations of the camera
angle, however, the object appears on the side and not in the center of the field of view.
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Figure 2: Correlation matrix obtained from the pair-wise correlation of the distance sensors for one particular
experimental run. From left to right the behavioral states are: “exploring”, “tracking” and “circling.” The higher
the correlation, the larger the size of the square.
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Figure 3: Correlation matrix obtained from the pair-wise correlation of the red channels for one particular
experiment. From left to right the behavioral states are: “exploring”, “tracking” and “circling.” The higher the
correlation, the larger the size of the square.



5.2 Entropy and mutual information

The pair-wise mutual information between the 11 proximity sensors is shown in Fig.4. The
diagonal of the same plot gives the entropy of the sensory stimulation (remember the expres-
sion H(X) = MI(X,X)). Because the individual sensors are affected by uniform white
noise, even sensors that are never active (see graph of cumulated activation during an experi-
mental run Fig.6), can be characterized by a potentially large entropy.

In the first and second behavioral states, the results of the analysis for the data gathered
in a particular experiment cannot be generalized to all experiments. The reason is that in
experiments in which the robot avoids obstacles, the average mutual information between
sensors, as well as the entropy of the individual sensors, is larger compared to experimental
runs in which the robot does not encounter any object. In the third behavioral state “circling”,
the entropy of the activation of the sensors on both sides of the robot is large: H(d3) =
2.83 bit and H(d10) = 2.75 bit (see Fig.4 (right)). In the same figure, the mutual information
between these sensors is also high: MI(d2, d9) = 0.62 bit.

Figure 5 shows the mutual information matrices obtained from the estimation of the mu-
tual information for pairs of red channels. In the behavioral state “exploring”, the average
mutual information computed over all experiments is 0.123 bit, and the standard deviation is
0.020 bit (Fig.5 (left) shows the result for one particular experiment). The reason for the low
values of mutual information is that the camera oscillates from side to side, thus leading to
a rapidly changing camera image, and hence to a drop of the statistical dependence between
red channels. In the second behavioral state ”tracking”, the entropy for the red receptors in
and around the center is high in comparison with the one of the first behavioral state (mean:
2.674 bit, standard deviation: 0.362 bit). The same holds for the mutual information between
the red receptors (mean: 0.604 bit, standard deviation: 0.160 bit) (see Fig.5 center). In the
third behavioral state, the entropy of the red channels at the periphery, as well as the mutual
information between them, is large (see Fig.5 right). Across all experiments, for both sides
of the image sensor, the standard deviation of the mutual information assumes high values
(e.g., the standard deviation of the receptor on the far left of the image sensor is 0.461 bit). In
contrast, the standard deviation for the red channels close to the center is low (e.g., 0.244 bit),
and largely independent from the direction in which the robot is moving around the object.
The standard deviation in the mutual information between red receptors across all the exper-
iments was low (0.102 bit). We conclude that mutual information may provide a good and
stable measure for identifying and characterizing agent-environment interaction.

5.3 Cumulated sensor activation

The amount of variability (information) should not be confused with the cumulated amount
of sensory activation (total stimulation) of a particular sensor. The total sensory stimulation
for both sensory modalities was computed by integrating – separately for each behavioral
state – the activation of the individual sensors during an experiment. We then normalized the
activation as a percentage (see Fig.6). In the “exploring” and “tracking” behavioral states the
cumulated sensor activation does not show any stable patterns across multiple experiments,
in the sense that the positions of the peaks change from experiment to experiment and depend
on the number of objects encountered. In the third behavioral state, however, the activation
levels of the sensors d2 and d3 are high and stable across all experimental runs (see Fig.6
left). These sensors are used when the robot moves toward the red object. The same graph
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Figure 4: Mutual information matrix obtained by estimating the mutual information between pairs of proximity
sensors in one particular experimental run. From left to right the behavioral states are: ”exploring”, ”tracking”,
and ”circling”. The higher the mutual information, the larger the size of the square.
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Figure 5: Mutual information matrix obtained by estimating the mutual information between pairs of red chan-
nels in one particular experimental run. From left to right the behavioral states are: ”exploring”, ”tracking”, and
”circling”. The higher the mutual information, the larger the size of the square.

shows that the activation levels of the sensors d9 or d10 are characterized by large values.
These particular sensors are used to prevent the robot from colliding with the object (while
circling around it). As for the distance sensors, we also computed the activation levels of
the 24 red receptors (see Fig.6 center). The total stimulation of the red channels in the first
behavioral state displays no stability across all experiments. In the second behavioral state
the activation levels for the red receptors close to the center are high. The activation levels,
however, gradually decrease toward the periphery. The decrease is a result of the continuous
adjustments of the camera pan-angle in order to keep the red object in the center of its visual
field. Thus, the peripheral red receptors are not stimulated. The behavioral state “circling”
shows high activation levels for the image sensors on both sides of the robot.

5.4 Pre-processed image entropy

The change over time of the total image entropy (computed as the average of the entropies
of the individual vertical slices) is displayed in Fig.6 (right). While the robot is exploring its
ecological niche, the image entropy is low and constant (phase P1), that is, there is not much
variability in the sensory channel. When the robot starts approaching the red object (second
behavioral state), the image entropy begins to increase (phase P2). The image entropy reaches



its maximum in the third behavioral state, and stays high as long as the robot keeps circling
around the red object (phase P3).
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Figure 6: (Left) Plot of activation levels for the proximity sensors for the three behavioral states. (Center) Plot of
activation levels for the image sensors (1 to 24) for the three behavioral states. (Right) Entropy of the effective
red color averaged over all vertical slices. Dashed line or P1: exploring; dotted line or P2: tracking; solid line or
P3: circling.

6 Further Discussion and Conclusion

To summarize, coordinated motor activity leads to correlations in the sensory data that can be
used to characterize the robot-environment interaction. Statistical measures, such as correla-
tion and mutual information, can be employed to extract fingerprints of the robot-environment
interaction. In the “circling” behavioral state, for instance, the average correlation (evaluated
over 16 experimental runs) divided by the number of distance sensors (11) or red receptors
(24) is 0.083 ± 0.0412 for the sensors and 0.1658 ± 0.031 for the receptors (where ± indi-
cates the standard deviation). Mean and standard deviation clearly show that the fingerprint
(extracted by means of correlation analysis) is stable across multiple experimental runs. Sim-
ilarly, in the “tracking” behavioral state, the average correlation is 0.097 ± 0.012 (for the
distance sensors) and 0.309 ± 0.042 (for the red receptors). These results hold also for the
mutual information.

Although correlation and mutual information both provide appropriate statistical mea-
sures for fingerprinting interaction, they differ in at least one important aspect. Whereas
correlation can be used to identify fingerprints of robot-environment interaction only if the
sensory activations between different sensors happen to be temporally contiguous, mutual
information reveals nonlinear dependencies between the sensory stimulations that correla-
tion cannot capture. This difference seems to be less of a problem if the interaction between
the agent and its local environment is sensory-motor coordinated. Hence our hypothesis that
temporal contiguity and stability in the raw sensory data are the result of coordinated motor
activity (exploration strategy). In other words, sensory motor coordination actively generates
input data containing high amounts of informational structure. Our analyses demonstrate that
even if the sensory channels are affected by additive white noise, a proper sensory-motor
coordinated interaction can indeed lead to stable fingerprints. High entropy could be the
consequence of a “complex” robot behavior. The high entropy values correspond to more
uncertainty and therefore more interesting behaviors. This would explain the high entropy
values of the image sensors in the behavioral states “tracking” and “circling” as compared
to the behavioral state “exploring”. The mutual information gives the amount of information



shared by different sensors. Sensors coordinating with the motor in a particular behavioral
state exhibit high mutual information. We conclude that the information shared by sensors
and motors provides a fingerprint for the corresponding behavior.
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the Japanese government. For Gabriel Gómez funding has been provided by grant number
11.65310.01 of the Swiss National Science Foundation and the EU-Project ADAPT (IST-
2001-37173).

References

[1] Ballard, D. Animate vision. Artificial Intelligence, 48(1), p. 57–86, 1991.

[2] Gibson, E.J. Exploratory behavior in the development of perceiving, acting, and the acquiring of knowl-
edge. Annual Review of Psychology, 39, p.1-41, 1988.

[3] Lederman, S.J. and Klatzky, R.L. Haptic exploration and object representation. In M. Goodale (ed.),
Vision and Action: The Control of Grasping, p.98-109, NJ: Ablex, 1990.

[4] Lee, T.S. and Yu, S.X., An information-theoretic framework for understanding saccadic behaviors. In
Proc. of the 1st Int. Conf. on Neural Information Processing, 1999.

[5] Lungarella, M. and Pfeifer, R. Robots as cognitive tools: Information-theoretic analysis of sensory-motor
data. In Proc. of the 2nd Int. IEEE/RSJ Conf. on Humanoid Robotics, p.245-252, 2001.

[6] Pfeifer, R and Scheier, C. Sensory-motor coordination: The metaphor and beyond. Robotics and Au-
tonomous Systems, 20, p.157-178, 1997.

[7] Pfeifer, R. and Scheier, C. Understanding Intelligence. Cambridge, MA: MIT Press, 1999.

[8] Scheier, C. and Pfeifer, R. Information-theoretic implications of embodiment for neural network learning.
In Proc. of Int. Conf. on Artificial Neural Networks, p.691-696, 1997.

[9] Shannon, C. A mathematical theory of communication. In Bell System Tech. Journal, 27, 1948.

[10] Sporns, O. and Pegors, T. Generating structure in sensory data through coordinated motor activity. In
Proc. of Int. Joint Conf. on Neural Networks, p.2796, 2003.

[11] Steuer, R., Kurths, J., Daub, C.O., Weise, J. and Selbig, J. The mutual information: detecting and evaluat-
ing dependencies between variables. Bioinformatics, 18, Suppl.2, p.231-240, 2002.

[12] Te Boekhorst, R., Lungarella, M. and Pfeifer, R. Dimensionality reduction through sensory-motor coordi-
nation. In Proc. of the Joint Int. Conf. ICANN/ICONIP, LNCS 2714, p.496-503, 2003.

[13] Thelen, E. and Smith, L. A Dynamic Systems Approach to the Development of Cognition and Action.
Cambridge, MA: MIT Press. A Bradford Book, 1994.

[14] Yarbus, A.L. Eye Movements and Vision. Plenum Press, 1967.


