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Structured fiber supports for gas phase biocatalysis
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Abstract

Pseudomonas cepaciaelipase adsorbed onto non-porous structured fiber supports in the form of woven fabrics, was used to catalyze
hydrolysis and transesterification reactions in the gas phase. The enzyme adsorbed onto carbon fiber support exhibited much higher catalytic
activity compared to the enzyme immobilized onto glass fiber carrier. The effect of temperature and relative humidity on reactions catalyzed by
P. cepaciaelipase adsorbed onto structured fiber carbon support was studied in the gas system. Under the conditions investigated (up to 60◦C
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nd 80% relative humidity), the immobilized enzyme showed a high thermostability and could be efficiently used to catalyze hydr
ransesterification reactions in continuous mode. Structured fiber supports, with a high specific surface area and a high mechanica
howed a low-pressure drop during the passage of reactants through a reactor. The approach proposed in this study could be
mmobilization of a wide variety of enzymes.
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. Introduction

Most of the “natural” flavor compounds used by the food
nd fragrance industry are obtained by extraction from natu-
al sources, e.g. plants. However, low yields, decreasing and
ariable availability of certain natural sources due to climatic
nstability have stimulated large investigations to produce fla-
ors in controlled biotechnological processes. Among these
iotechnologies, solid–gas biocatalysis has been identified
s one of the most promising approach to synthesize aroma
olatile compounds[1]. The bioprocess is characterized by
he fact that enzymes or intact cells are in a solid form (totally
r partially dehydrated) and the reactants are in the gaseous
tate[2,3].

Solid–gas biocatalysis has been shown to offer the fol-
owing advantages over solid-liquid systems: (1) immo-
ilization of the biocatalyst is more simple; and (2) its
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thermo-denaturation is limited since it is (partially) de
drated; (3) mass transfer is more efficient in the gas p
and therefore; (4) production of by-products is reduce
avoided; (5) products and unconverted substrates can b
ily recovered by condensation. Furthermore, (6) the
of microbial contamination is much lower[4]. Significan
progress has been achieved during the last few yea
the understanding of the mechanisms of solid–gas bioc
ysis and a pilot-scale process has been recently rep
[5].

Solid–gas biocatalysis can be carried out by either
supported or immobilized biocatalysts. Non-supported
zymes display stability and activity optima when they h
a complete first hydration layer. At higher water activit
denaturation and aggregation of the catalyst might occu
order to minimize aggregation of the enzyme that can le
a loss of activity and a decreased stability, adsorption
niques have been carried out[6]. Immobilization by physica
adsorption is easy and cheap, and it is a very convenien
tocol for gas phase biocatalysis since there is no desor
of the protein from the carrier. Porous supports are the
141-0229/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
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widely used because they allow the binding of high protein
amounts. But enzyme adsorbed in the pores of a support may
exhibit a lower catalytic activity as compared to free enzyme
due to a disruption of the protein conformation[7]. The tex-
ture of the carrier also influences the biocatalytic reaction:
non-porous materials limit the diffusion constraints[8], while
fibrous carriers provide easy passage of gas through the bio-
catalytic bed[9]. The hydrophilic/hydrophobic character of
the support is also an important parameter to consider. Hy-
drophobic supports are preferred in solid-gas bioprocesses
because their interaction with water remains very low even
at high water activities. Many hydrophobic materials have
been used to immobilize lipases since the large hydrophobic
pocket surrounding the catalytic site of lipases can easily in-
teract with hydrophobic solid supports[10]. Such adsorbed
lipases have been shown to display a hyperactivation due to
interfacial activation promoted by the hydrophobic surface
of the support[11].

Structured fiber supports in the form of fabrics offer many
advantages compared to classical catalytic beds: their opened
macrostructure allows high flow rates with low-pressure
drop, mass transfer is more efficient, they have a high sur-
face/volume ratio, and the scale-up is facilitated. In our view,
such carriers may be useful to develop bioprocesses in liquid-
organic and solid-gas phases. Most of the studies aiming at
comparing the effect of the support on enzyme immobiliza-
t ials,
e
w -
b red
s are
d
t mical
c

e ef-
f ber
s –gas
r
P sults,
w lative
h

2

2

o
( ur-
c high
p

2

bric
m S.A.

Fig. 1. Characterization of carbon fiber textile: (a) general view; (b) scanning
electron micrograph showing elemental fibers.

(Saint-Gobin, France). It is an aluminoborosilicate material
with a specific surface area of about 2 m2 g−1. The GFS was
chosen because glass in the form of beads is commonly used
to immobilize proteins.

A carbon woven fabric with polyurethane sizing (HTS
5631 from Tenax Fiber GmbH, Germany) was also used
(Fig. 1). The CFS was chosen because it is resistant to me-
chanical and heat stress.

Both GFS and CFS were cut into pieces (circles, 15 mm
diameter) and packed into the reactor.

2.3. Adsorption of lipases onto structured supports

The lipase PS used in this study contained Celite® that
needed to be removed. The Celite® was extracted from the
commercial enzyme preparations as follows: 3.5 g of the
commercial powder were dissolved in 50 ml milli-Q water.
The solution was then stirred for 60 min at 4◦C and cen-
trifuged (5 min, 3500 rpm). The pellet was re-suspended in
50 ml of sodium phosphate buffer (50 mM, pH 7) and the op-
eration was repeated. The two supernatants were pooled and
filtered (0.20�m filter) and the volume was completed to
150 ml with sodium phosphate buffer (50 mM, pH 7). Lipase
adsorption onto selected supports was carried out overnight
by incubating 1 g support (several circular pieces of sup-
p
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ion and activity were achieved with non-woven mater
.g. powders[12], glass beads[13], glass fibers[9], glass
ool [14], nylon fibers[15], and polymeric materials in mem
rane form[10]. Limited studies report the use of structu
upports for enzyme immobilization and very few works
ealing with the effect of the texture of the support[7]. Struc-

ured fiber supports have been recently proposed as che
atalysts[16].

To overcome these shortcomings, we investigated th
ect of two different structured fiber supports, a glass fi
upport (GFS) and a carbon fiber support (CFS), on solid
eactions catalyzed byPseudomonas cepaciaelipase (lipase
S). The carbon fiber support, which gave the better re
as then used to study the effects of temperature and re
umidity on lipase activity in the gas phase.

. Materials and methods

.1. Chemicals and enzymes

Lipase PS (fromP. cepaciae) was purchased from Aman
Chipping Norton, England). All the chemicals were p
hased from Fluka (Buchs, Switzerland) and were of
urity (99%).

.2. Structured fiber supports

The glass support used in this work was a woven fa
ade of glass fibers (type-E), obtained from Vetrotex
ort, 15 mm diameter) with 50 ml of supernatant at 4◦C
ith gentle stirring. The supports were then washed
illi-Q water and air dried overnight at room temperat
he immobilized enzymes were stored at 4◦C in a desicca

or over silica gel. The total protein content of the differ
ractions were measured using Lowry’s procedure[17]. The
mount of protein adsorbed onto the support was calcu

rom the difference in protein concentrations of the or
al solution and of the wash solution. This amount va

n the range of 1–20 mg protein per gram of fabric dep
ng on its nature. After drying, the pieces of support w
he chosen quantities of lipase were packed into the
or.
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Fig. 2. Schematic diagram of the laboratory scale solid–gas bioreactor.

2.4. Enzymatic assay

Enzymatic activity of lipase PS solutions (before and after
adsorption onto the supports) was determined using a colori-
metric assay based on the hydrolysis ofp-nitrophenyl ac-
etate (pNPA), and the amount of lipase units adsorbed onto
the carriers was estimated by subtraction. The lipase activity
was determined using a modification of the method described
by O’Connell and Varley[18]. One international unit of en-
zyme (IU) was defined as the amount of enzyme that liberated
1�mol of pNP per minute.

2.5. Laboratory scale setup for solid–gas catalysis

A continuous solid–gas bioprocess functioning under at-
mospheric pressure was developed at a laboratory scale
(Fig. 2). The reactor was a cylindrical glass column (working
volume 20 ml) filled with the immobilized enzymes. Nitro-
gen was used as the carrier gas and relative humidity in the
system was controlled by the use of saturated salt-solutions.
Nitrogen flow rate through the flasks containing the substrates
was set at 80 ml/min with a flowmeter. A mean residence time
of 15 s was calculated for standard temperature and pressure.
The reaction products were trapped into an ice-cold solution
of dichloromethane containing an internal standard (valeric
a ed by
g cov-
e ature
a aflu-
o
a g and
l
r hro-

matography. Relative humidity (HR) of the gas mixture before
and after the reactor was measured using a humidity sensor
(Hygroclip SC04, Rotronic AG, Switzerland). The solutions
used to control relative humidity consisted of water saturated
with LiCl, Mg(NO3)2, NaCl and KNO3, which provided rel-
ative humidities at 60◦C of 11, 42, 74 and 80%, respectively.
All the reaction rates were measured in steady state condi-
tions. Mass balances were checked for each reaction run.

2.6. Chromatographic analysis

Gas chromatography (GC) analyses were performed using
an Agilent 6890 Series GC equipped with a Splitless injector
and a flame ionization detector (FID). Separation of volatiles
was achieved on a DB-Wax column (30 m× 0.25 mm, film
thickness 0.25 mm, J&W Scientific) using helium as carrier
gas (1.5 ml/min in the column). Hydrogen and air were sup-
plied to the FID at 40 and 400 ml/min respectively. The tem-
perature program was as follows: 10 min isothermal at 15◦C,
then raised to 220◦C at 5◦C/min. The injector and the detec-
tor were kept at 220 and 250◦C, respectively. For samples in
dichloromethane, valeric acid was used as internal standard.
For vapor phase analysis, samples in the Gastight® syringe
were manually injected in the split injector.

3

3

was
s en-
z ure
cid). Samples were taken at regular intervals and analyz
as chromatography. The whole installation except the re
ry flask was placed in an incubator to control the temper
nd to avoid condensation. All the lines were made of tetr
roethylene (TFE) tubing (3.18 mm× 2.54 mm, o.d.× i.d.)
nd all the flasks were in glass. The gas phase enterin

eaving the reactor was withdrawn by a 5 ml Gastight® sy-
inge (Hamilton, Switzerland) and analyzed by gas c
. Results and discussion

.1. Adsorption of lipase PS onto solid fibrous supports

Immobilization of lipase PS onto both GFS and CFS
hown to follow a first order kinetic, with more than 90%
yme immobilized after 6 h. This mild adsorption proced
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has permitted to obtain a supported biocatalyst that showed
no significant loss of activity after at least 5 successive runs
(data not shown). Furthermore, the enzyme could be easily
desorbed in aqueous media and recovered from the two types
of supports tested, and the structured supports could be reused
because of their high mechanical, thermal and chemical sta-
bility.

3.2. Mass transfer limitations

Mass transfer in the gas phase is more efficient than in
solution since gases are characterized by low viscosities and
high diffusion coefficients. Internal transfer limitations were
assessed by investigating the effect of the amount of lipase
PS adsorbed onto glass support on the rate of ethyl acetate
hydrolysis at 60◦C and at 74% relative humidity. Our re-
sults showed that the reaction rates were proportional to the
enzymatic activity (enzymatic activity ranged from 1000 to
4800 IU, as determined with the pNPA assay). Thus the reac-
tion rate was shown not to be limited by internal mass transfer
limitations.

No external substrate diffusional limitations occurred
since the reaction rate remained constant over the range of
flow rate from 40 to 80 ml/min.

3.3. Effect of support properties on ethyl acetate
h
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have close specific surface area (2 m2 g−1) but differ in their
hydrophilic/hydrophobic properties. The glass fibers being
highly hydrophilic while the carbon fibers are hydrophobic.
Our results could be explained by the fact that adsorption
onto the CFS involved the hydrophobic pocket around the
active site, leaving the catalytic center free. Furthermore, pre-
vious works have shown that immobilization of lipases onto
hydrophobic supports lead to hyperactivation via interfacial
adsorption[11,19,20]. Another explanation could be a more
favorable adsorption of ethyl acetate by carbon fibers as com-
pared to glass fibers. Measurements of equilibrium constants
of the reaction for the two supports and isotherm sorption
curves with ethyl acetate would be needed to confirm this
hypothesis.

3.4. Effect of temperature and relative humidity on ethyl
acetate hydrolysis catalyzed by lipase PS adsorbed onto
carbon fiber support

In the gas phase reactor, the streams were controlled for
HR rather than organic vapor concentrations. Therefore, ini-
tial substrate concentrations varied when changing the tem-
perature orHR and comparison on the basis of initial rates
was not possible[21]. As a result, all reaction rates were
measured under steady-state conditions.
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ydrolysis catalyzed by adsorbed lipase PS

As can be seen onFig. 3, the reactor needed betwee
nd 5 h to be stabilized, depending on the workingHR and
n the type of support. This stabilization phase was du

he equilibration of the temperature and the relative hum
n the reactor, as well as to the equilibration of the hydra
tate of the biocatalyst. Transient phases varying from
3 h have been reported depending on the bioprocess

2,3].
Fig. 3shows that the reaction rate of ethyl acetate hyd

sis was about 10 times higher when the lipase PS wa
orbed onto CFS compared to GFS. Both structured sup

ig. 3. Effect of the support type on the hydrolysis of ethyl acetate i
as phase. Hydrolysis of ethyl acetate was performed by immobilized
S (2200 IU onto 1.5 g of support). Reactions were carried out at 60◦C at
4%HR. Reaction rate is expressed in�g of acetic acid produced per ho
nd per IU of enzyme.
Fig. 4 shows that at 74%HR, maximal ethyl acetate h
rolysis occurred at 60◦C. In terms of thermostability, th

ipase did not show any loss of activity at both 30 and 4◦C
fter 33 h continuous work at 74%HR. In contrast, the rea

ion rate at 60◦C decreased by 20% after 33 h. These re
re in line with the assumption that dry enzymes are m

hermostable[4].
The effect of water content on enzyme stability is p

ented onFig. 5. It was shown that for a constant temperat
cetic acid production increased with an increase in rel
umidity. However, for the highest humidity, the product
as decreased by 14% after 33 h reaction time. Thus,

ig. 4. Effect of temperature on the hydrolysis of ethyl acetate in th
hase. Reaction rate is expressed in�g of acetic acid produced per hour a
er IU of enzyme. Reactions were carried out at 74% relative humidity
500 IU of lipase PS immobilized onto 1.5 g of carbon fiber support.
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Fig. 5. Effect of relative humidity on the hydrolysis of ethyl acetate in the
gas phase. Reactions were carried out at 45◦C, with 4500 IU of lipase PS
immobilized onto 1.5 g of carbon fiber support. Relative humidity of the gas
phase was controlled by saturated salt-solutions as described in Section2.

has been shown in previous reports dealing with gas phase
biocatalysis, water has a negative effect on lipase stability but
a positive effect on activity[2,4]. Furthermore, in the case of
hydrolysis, the reaction rate is favored at highHR.

3.5. Transesterification between vinyl acetate and
n-propanol catalyzed by lipase PS adsorbed onto carbon
fiber support

Transesterification was catalyzed by lipase PS in the gas
phase. The advantage of this reaction is that water does not
participate in the reaction. Furthermore, the transesterifica-
tion is irreversible because of the tautomerisation of vinyl
alcohol into acetaldehyde. This reaction was carried out at
low HR in order to avoid vinyl acetate hydrolysis. Two sep-
arated flasks containing vinyl acetate andn-propanol were
used. The two vapor streams mixed into one stream and
passed through the flask containing a saturated salt solution
before entering the reactor containing the immobilized en-
zyme.

As can be seen fromFig. 6, relative humidity had low
effect on the reaction yield at both 30 and 45◦C. In con-
trast, the reaction yield of the transesterification carried out
at 60◦C was higher at 0%HR as compared to 11%HR. This
can be easily explained by a greater thermo-denaturation of
t ex-
p pro-
d acid
r wly
f was
c the
r ac-
c tra-
t e re-
p tion
[

Fig. 6. Effect of temperature and relative humidity on the transesterifica-
tion between vinyl acetate andn-propanol in the gas phase. Molar yield is
expressed as propyl acetate production in percentage of the initial concen-
tration ofn-propanol. The water content of the gas phase was controlled by
saturated salt-solutions as described in Section2. Experimental conditions:
24 h reaction time, 7000 IU of lipase PS adsorbed onto 1.5 g of CFS at 0%
HR and 11,000 IU of lipase PS adsorbed onto 1.5 g of CFS at 11%HR.

4. Conclusion

This study reports for the first time the use of enzymes im-
mobilized onto structured fiber supports to carry out gas phase
biocatalysis. Two structured fiber supports offering different
hydrophilic/hydrophobic characteristics, combined with high
mechanical resistance and low-pressure drop, were used as
carrier for the immobilization ofP.cepaciaelipase. The lipase
immobilized onto carbon fiber support exhibited the highest
activity as compared to its immobilization onto glass fiber
carrier. This result confirms that immobilization of lipases
onto solid hydrophobic surfaces promotes interfacial activa-
tion. Structured fiber supports in the form of woven fabrics
are promising materials for immobilization of enzymes to
perform solid-liquid and solid–gas biocatalysis.
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