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Abstract

The essential ingredients of control design procedures include the acquisi-
tion of process knowledge and its efficient integration into the controller. In

many practical control applications, a reliable mathematical description of
the plant is difficult or impossible to obtain, and the controller has to be

designed on the basis of measurements. This thesis proposes a new data-
driven method labeled Correlation-based Tuning (CbT). The underlying

idea is inspired by the well-known correlation approach in system identifi-
cation. The controller parameters are tuned iteratively either to decorre-

late the closed-loop output error between designed and achieved closed-loop
systems with the external reference signal (decorrelation procedure) or to
reduce this correlation (correlation reduction). Ideally, the resulting closed-

loop output error contains only the contribution of the noise and perfect
model-following can be achieved. By the very nature of the control design

criterion, the controller parameters are asymptotically insensitive to noise.

Both theoretical and implementation aspects of CbT are treated. For the
decorrelation procedure, a correlation equation is solved using the stochastic

approximation method. The iterative procedure converges to the solution
of the correlation equation even in the case when an approximate gradient

of the closed-loop output error with respect to controller parameters is used.
The asymptotic distribution of the resulting controller parameter estimates
is analyzed. When perfect decorrelation is not possible, the correlation

reduction method can be used. That is, instead of solving the correlation
equation, the norm of a cross-correlation function is minimized. A frequency

domain analysis of the criterion shows that the algorithm minimizes the
two-norm of the difference between the achieved and designed closed-loop

systems.With the correlation reduction method, an unbiased estimate of the
gradient of the closed-loop output error is necessary to guarantee conver-
gence of the algorithm to a local minimum of the criterion. Furthermore,
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this criterion can be generalized to allow handling the mixed sensitivity

specifications.
An extension of this method for the tuning of linear time-invariant mul-

tivariable controllers is proposed for both procedures. CbT allows tuning

some of the elements of the controller transfer function matrix to satisfy the
desired closed-loop performance, while the other elements are tuned to mu-

tually decouple the closed-loop outputs. The tuning of all decouplers and
controllers can be made by performing only one experiment per iteration

regardless of the number of inputs and outputs since all reference signals
can be excited simultaneously. However, due to the fact that decoupling

is imposed as a design criterion, simultaneous excitation of all references
brings a negative impact on the variance of the estimated controller param-
eters. In fact, one must choose between low experimental cost (simultaneous

excitation) and better accuracy of the estimated parameters (sequential ex-
citation).

The CbT algorithm has been tested on numerous simulation examples
and implemented experimentally on a magnetic suspension system and

the active suspension system benchmark problem proposed for a special
issue of European Journal of Control on the design and optimization of

restricted-complexity controllers.

Keywords: controller tuning, correlation, data-driven control.
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Version abrégée

La conception de schémes de commande performants passe par une bonne
connaisance des processus mis en jeux et l’intégration de cette connaisance

au sein des régulateurs. Dans beacoup d’applications pratiques, il est dif-
ficile, voire même impossible, de formuler un modèle mathématique suff-

isamment précis du procédé, et il devient alors nécessaire de concevoir le
régulateur en se basant sur des mesures. Cette thèse propose une nou-

velle méthodologie basée sur les mesures, appelée Correlation-based Tun-
ing (CbT). Elle s’inspire de l’approche bien connue de corrélation, qui est

utilisée dans le cadre de l’identification des systèmes. Les paramètres du
régulateur sont ajustés itérativement de manière à soit décorreler l’erreur
de sortie en boucle fermée du signal de référence externe (”decorrelation

procedure“), ou réduire cette correlation (”correlation reduction“). Dans le
meilleurs des cas, l’erreur de sortie en boucle fermée contient uniquement

la contribution relative au bruit, et une poursuite parfaite des trajectiories
peut alors être réalisée. D’autre part, le choix du critère de synthèse pour la

commande assure que la sensibilité des paramètres du régulateur vis-à-vis
du bruit tend vers zéro.

À la fois des aspects théoriques et de mise en oeuvre pratique sont traités.

Concernant la procédure de décorrelation, une équation de corrélation est
résolue par une méthode d’approximation stochastique. Le processus itératif
converge vers la solution de l’équation, même lorsque le gradient de l’erreur

de sortie en boucle fermée (par rapport aux paramètres de régulateur) est
approché. Une analyse de la distribution asymptotique des paramètres es-

timés est effectuée. Quand la décorrelation totale ne peut pas être obtenue,
la méthode de réduction de corrélation est utilisée. L’analyse du critère

dans le domain fréquentiel révèle que l’algorithme revient alors à minimiser
la norme-2 de l’écart entre les systèmes en boucle fermée specifié et ob-
servé. Avec cette approche, une estimée non-biasée du gradient de l’erreur
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en boucle fermée est toutefois nécessaire pour garantir la convergence de

l’algorithme vers un minimum local du critère. En outre, il est possible de
généraliser ce critère afin de traiter les cas où les spécifications sont définies
en termes de fonctions de sensibilité.

Par la suite, une extension de cette méthodologie à l’ajustement des
régulateurs multivariables linéares est proposée dans les 2 cas. L’approche

CbT permet d’ajuster certains éléments de la matrice de fonctions de trans-
fert du régulateur de manière à ce que les performances désirées soient

satisfaites en boucle fermée; les autres éléments sont ajustés afin que les
sorties en boucle fermée soient mutuellement découplées. L’ajustement de

l’ensemble des régulateurs et découpleurs peut s’effectuer sur la base d’une
seule expérience par itération, indépendament du nombre d’entrées et de
sorties, étant donné que tous les signaux de référence peuvent être excités

simultanément. Néanmoins, l’excitation simultanée de toutes les signaux
de référence augmente la variance des paramètres estimés du régulateur

puisque la découplage est ici imposé comme critère de synthèse. Il existe
en fait un compromis entre la réduction du coût experimental (excitation

simultanée) et la précision des paramètres estimés (excitation séquentielle).
Cette méthodologie a été testée sur de nombreux exemples en simula-

tion numérique, et appliquée à un système expérimental de sustentation
magnétique. Elle a egalement été appliquée à un problème de référence,
relatif à un système de suspension active, proposé lors d’une édition

spéciale de la revue ”European Journal of Control“ sur la conception et
l’optimisation de régulateurs de complexité réduite.

Mot-clés: ajustement de régulateurs, corrélation, commande basée sur les

mesures
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Chapter 1

Introduction

Automatic control is the scientific discipline that employs methods from

mathematics and engineering in order to force dynamical systems to be-
have in a desired fashion. The first application of feedback control goes as

far back as the invention of a float regulator by the Greek Ktesibos in the
times of antiquity [52]. Since then, mankind has witnessed a tremendous

development of this field that has closely followed advances in technology.
In recent years, the increase in the demand for higher accuracy, economi-

cal benefits, increased safety, reduced energy consumption, and so on, has
made feedback loops inevitable in almost every part of our daily lives. Typ-
ical examples of systems that use feedback loops are vehicles, consumer

electronics, aircraft, power plants and chemical processes.

1.1 Historical background

In the early days of automatic control, the control design was based mainly

on engineering intuition without any established methodology. The first
systematic methods based on the use of Bode and Nyquist plots were devel-
oped and applied to the design of amplifiers in the 1930s and 1940s [67, 6].

In 1960, Kalman published his seminal papers that introduced state-space
methods along with the design equations for the linear quadratic regulator

and the discrete Kalman filter [39, 40]. These papers set the stage for an
extraordinary development of model-based control design methods. A few

years later, in the field of system identification, the paper [3] appeared that
sparked the development of the prediction error (PE) framework [54]. These
identification techniques provided reliable models allowing the applicability

1



2 Chapter 1: Introduction

of model-based control design to a wide range of dynamical systems and

processes.

For a long time, identification and control design were considered sep-
arately within the framework of model-based control. The dominant idea

was to identify the best possible model and then design the controller on
the basis of that model. However, when implementing this controller on
the real system, performance degradation occurred because of modeling

errors. Then, the paradigm “goal-oriented identification” emerged in the
system identification community [19, 85]. Namely, it was understood that

the model was an approximation of the “true system” and that the quality
of the model should reflect the intended model application.

Based on this observation, a new research topic named “iterative identifi-

cation and control” started to develop around 1990. In this line of research,
identification and control design have been considered as a joint design

problem. An iterative scheme is used to solve this problem by means of
separate identification and control design. In each identification step, the
previously designed controller is used to obtain new data from the plant.

Then, the controller is designed on the basis of the model obtained in the
identification step. If the resulting closed-loop system does not meet the

specifications, one continues to iterate. It was recognized that the identifi-
cation criterion should match the control design criterion, which led to the

result that a model identified in closed loop should be used for controller
design [33, 13]. Methods of iterative identification and control have blos-

somed in the 1990s. Practical applications have shown that these schemes
improve the closed-loop performance, especially in the first few iterations.
However, there are also examples where the divergence of these schemes is

observed. It is demonstrated in [36] that identification for control schemes
does not necessarily converge to a local minimum of the design objective

in the presence of modeling errors. In addition, it should be noted that
all steps of model identification including data acquisition, order selection,

parametric identification, model validation, uncertainty bound estimation
as well as robust controller design should be redone at each iteration. For
more details about this research area the reader is referred to [82, 84, 32, 17].
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1.2 Motivation

Iterative identification and control is appealing to process engineers because
it is not necessary to open the loop in order to identify a model and subse-

quently to design a controller. However, reliable models of industrial plants
are often difficult or impossible to obtain due to the high complexity of the

plants. In addition, the cost of modelling in some cases can be excessive.
It is argued in the literature that obtaining the process model is the single
most time consuming task in the application of model-based control [68].

A straightforward idea to circumvent the aforementioned problems is to

use the information collected on the plant directly for controller update,
i.e. without the intermediary of a plant model. The methods featuring

this idea, so-called data-driven methods, bring benefits compared to model-
based control design methods. Within this framework, besides the obvious
reduction of the control design cost, the complexity of the controller is not

dependent on that of the model as it is, for instance, for iterative identi-
fication and control schemes. Consequently, the design of low-complexity

controllers naturally appears as the primary application field of data-driven
methods. In practice, low-order controllers are usually preferred because the

controller size may be limited by hardware and/or computational require-
ments. Moreover, simple controllers are easier to understand, implement
and maintain – the typical example being the PID controller. Considering

that PID controllers still operate in more than 90% of the installed industrial
loops [4], it is clear that data-driven methods have wide potential.

Although direct optimization of the control objective over the controller

parameters is much simpler than identification and control re-design at each
iteration and the convergence to a local minimum can be guaranteed, it
requires more experiments on the real plant. There are several questions

that arise in this context. The first and rather obvious question is whether
the increased experimental cost is acceptable to industry and how to reduce

it. When is it appropriate to use an iterative approach and when is it better
to apply a method using a single set of measurements? An another question

is how to address the robustness issues of the closed-loop system. In fact,
it is very difficult to speak about the robustness of the closed-loop system
for a model-free approach where the controller parameters are tuned to
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improve time-domain performances. However, the robustness of the system

can be taken into account with a judicious choice of the criterion (with some
a priori information about the plant) and an appropriate selection of the
excitation signal.

A question of great importance is how to cope with the noise that neces-
sarily corrupts the measurements and therefore also affects the closed-loop
performance. In a model-based approach, the influence of noise is treated in

the identification step and may be taken into account as model uncertainty
in the control design step. On the other hand, for a data-driven approach

that minimizes a norm of some error signal, satisfying model-following objec-
tives is not obvious because the estimated controller parameters are affected

by noise. In particular, in a high-noise setting, tracking performance can be
poor since the resulting controllers tend to minimum-variance controllers.

In this thesis, a new control design objective is proposed in an attempt to
address this and the other aforementioned questions.

1.3 Related work

The idea to directly update the controller parameters using data collected
in closed loop is not new. In fact, it emerged in the 1950s in the area of

direct adaptive control. In particular, it is worth mentioning Model Refer-
ence Adaptive Control (MRAC) and direct Self Tuning Regulation (STR)

methods [2]. In that period, many of the parameter adjustment mechanisms
were gradient-based. The crucial problem was how does one compute the
gradient of the criterion with respect to the controller parameters assuming

that the plant and disturbance dynamics are not known. In addition to
the well-known gradient approximation used in the MIT rule [69] and its

variations, the efforts for gradient computation have been pursued in two
directions.

The first group of methods relies on finite-difference approximations of

the gradient. The idea is to evaluate the criterion for different perturbed
values of the controller parameters and then to compute the gradient nu-

merically. The basic difficulty with this approach is that, in general, all
perturbed parameters affect each signal, which hinders successful gradient
approximation since it is impossible to distinguish individual contributions
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of the perturbed parameters to the changes in the measured signals. To

overcome this problem, it was proposed to alter the parameters sequen-
tially [1, 80, 14]. The number of experiments needed to approximate the
gradient is proportional to the number of parameters, which for the case of

Multi-Input Multi-Output (MIMO) systems is often unacceptably large. In
[55], it is proposed to perturb the various parameters at different frequencies

in order to determine independently the variations in the criterion due to
changes in each parameter.

The second research direction consisted of computing the partial deriva-
tives of a performance criterion with respect to adjustable parameters by

filtering signals measured during system operation either by a model of the
system or by the system itself. An approximate Wiener filter has been de-

signed in [63] where the gradient of the performance criterion (defined as
the mean square error between the output of the filter and a desired output)

has been computed using the signals collected on the filter itself. The same
publication proposes for the design of an optimal feedback control system
to use a model of the closed-loop system to generate the signals needed to

compute the sensitivities. This idea is developed further in [64] where the
gradient of the performance criterion is computed using the system itself as

a model. In order to obtain an estimate of the gradient, the error signal is
delayed and fed back to the input via an outer loop. In [81] an identified

model of the plant is used to compute the gradient.

The data-driven methods have been brought back into focus in the

mid-1990s. Simultaneous Perturbation Stochastic Approximation control
(SPSA) appeared in this context [78]. SPSA belongs to the class of stochas-

tic approximation algorithms that are typically used for finding roots in
the presence of noisy measurements. Usually these algorithms rely on the
finite-difference approach and therefore the number of experiments required

depends on the number of parameters to be adjusted. In an effort to reduce
the experimental cost, it has been proposed in [77] to perturb all parameters

simultaneously. This method turned out to be much more efficient than the
finite-difference stochastic approximation algorithms, in particular SPSA

requires only one or two experiments per iteration. However, the number of
iterations required to reach a minimum can be important with this method.
The parametric convergence of this method has also been proven.
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The idea of computing the gradient of the performance criterion using

the system itself appeared again in [35]. This gradient-based method for
the iterative optimization of the performance criterion over the controller
parameters has been called Iterative Feedback Tuning (IFT). IFT allows

computing an unbiased estimate of the gradient of the control objective us-
ing signals acquired on the closed-loop system. With the resulting estimate

of the gradient, the minimization of the criterion is performed iteratively us-
ing a Gauss-Newton scheme. To compute the gradient, three experiments

per iteration are needed in the case of two-degree-of-freedom controllers.
Here, the only “special” experiment is the second one, where the output

measured during the first experiment is fed back to the reference input.
During the first and third experiments data may be collected under nor-
mal operating conditions where the same reference signal is used in both

experiments. The third experiment is necessary to ensure the unbiased-
ness property of the gradient estimate. For tuning a one-degree-of-freedom

controller, the first two experiments suffice. Assuming that the closed-loop
signals remain bounded, it can be proven using ideas from stochastic ap-

proximation procedures that this algorithm converges to a local minimum
as the number of iterations goes to infinity [26, 28]. Due to its simplicity

and attraction, IFT has gained popularity in the control community and a
number of papers have appeared on this topic. The possibility of using IFT
for the control of nonlinear systems has been presented in [27]. IFT has

also been used for tuning a multivariable controller in [29]. An overview of
this method is given in [31].

An interesting approach to controller design is the unfalsified control con-
cept proposed in [71]. In this paper, with no assumption about the plant,

the candidate controllers are evaluated based solely on experimental data.
Controllers that are found to be incapable of meeting the required perfor-

mance specifications are eliminated from a class of admissible control laws.
This idea is used for controller tuning in [50]. An interesting feature of

these methods is that candidate controllers are falsified before they are im-
plemented in the feedback loop. However, note that in both aforementioned
references noise-free systems are considered.

Virtual Reference Feedback Tuning (VRFT) is yet another data-driven
method that appeared recently. The original concept behind VRFT is intro-
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duced in [23]. This concept is further developed in [9], where implementation

aspects have been addressed and a data prefilter has been designed in order
to match the VRFT and model-following criteria. This approach aims at
solving a model reference control problem without iteration, i.e. by using

a single set of measurements. The idea of VRFT is very interesting. Let a
set of input-output data, say (um, ym), be measured on a noise-free system

(it does not matter whether data are collected in open-loop or closed-loop
operation) and assume that a reference model is defined. A reference signal

that would give the measured output ym if applied to the reference model
can be constructed. This reference signal is called “virtual” because it is

not used in the actual generation of the output ym. Moreover, it is possible
to compute the virtual tracking error defined as the difference between the
virtual reference and ym. The idea is to compute a controller that generates

um when fed by the virtual tracking error. By suitable filtering of the virtual
tracking error and um, the transfer function of the feedback loop consisting

of the calculated controller and the unknown plant is equal to the given ref-
erence model, provided that the controller is of appropriate order. Observe

that the task of calculating the controller reduces to a simple identifica-
tion problem. VRFT uses an instrumental variable method to counteract

the effect of the noise. An interesting application of this one-shot method
consists of providing initial controllers for iterative algorithms intended to
perform the “fine-tuning” of the controllers.

The method presented in this thesis is closely related to the well-known

correlation approach in system identification [74, 75, 54]. The main in-
centive for introducing this approach in system identification is to ensure

the unbiasedness properties of the estimated parameters. Correlation tech-
niques have not been used much in control outside of the field of system
identification. The rare exceptions are [63, 46, 47], where these techniques

have been used for the computation of parameter sensitivities. Another ex-
ample is the correlation-based auto-tuning technique developed in [25]. In

that paper, the cross-correlation of a small pseudo-random-binary-sequence
(PRBS) test signal and the process output is used to compute the process

impulse response, which is then numerically transformed into its frequency
response to extract the ultimate gain and period for use in the Ziegler-
Nichols formula.
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In gradient-based controller tuning schemes, there is a necessity to verify

whether the controller calculated iteratively will stabilize the closed-loop
system or whether the controller computed in subsequent iteration will pro-
vide a better closed-loop performance than the previously computed con-

trollers. Therefore, controller validation is an important issue that is treated
in a number of papers. The unfalsified control concept in [8] has been used

to directly validate closed-loop controller performance from open-loop data,
or from closed-loop data acquired while another controller was in the feed-

back loop. Another approach to control validation is given in [18]. In
that paper, based on the knowledge that the true system belongs to a con-

structed uncertainty set with a certain probability, it is proposed to validate
the controller that stabilizes all models in the uncertainty set. Therefore,
this particular controller also stabilizes the true system with at least the

same probability. In a similar fashion, controllers can also be validated for
closed-loop performance. If a plant model is not available, the stability

test based on the Vinnicombe gap between two successive controllers can
be performed using closed-loop data [41]. In this thesis, the closed-loop

stability and performance are verified using simply an identified model, and
no method adapted to the approach proposed here has been developed.

1.4 The basic concept of correlation-based
controller tuning

In a standard approach to the model-following problem, the controller pa-
rameters are adjusted so that a norm of the closed-loop output error, defined

as the output error between the achieved closed-loop system and a reference
model (or a designed closed-loop system), is minimized. Several observa-
tions that followed an analysis of these approaches initiated the development

of the method presented here:

- Observe first that perfect model-following is not attainable due to the
very nature of the criterion. That is, in the presence of noisy measure-

ments, there is always a trade-off between model-following and noise
attenuation. In other words, the estimated controller parameters are
affected by noise and do not converge to the values that provide perfect
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Figure 1.1: Model-following problem

matching between achieved and designed closed-loop systems.

- The second observation is that, when perfect-following is not achieved,

the closed-loop output error consists of a part due to modeling errors
and a contribution originating from the disturbance v(t). To clarify

this observation, let us consider the model-following problem shown in
Fig. 1.1. Suppose that the controller Kd is designed using the plant

model Gd and then applied to the real plant G. Let the system be
excited by the reference signal r(t). From this figure, the closed-loop
output error can be computed as:

εoe(ρ, t) = y(ρ, t) − yd(t)

=
{
(1 + GKd)

−1GKd − (1 + GdKd)
−1GdKd

}
r(t)

−(1 + GKd)
−1v(t)

=
{
(1 + GKd)

−1Kd(1 + GdKd)
−1
}
{G − Gd} r(t)

−(1 + GKd)
−1v(t)

It is obvious that the closed-loop output error contains a contribution
due to the difference between G and Gd (modeling errors) and an-

other contribution containing the measurement noise v(t) filtered by
the achieved closed-loop system.

- Finally, observe that the contribution due to the difference between
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the achieved and designed closed-loop systems is correlated with the

reference signal r(t).

Under the realistic assumption that the measurement noise and, by the same
reasoning, the contribution due to this noise are not correlated with the ref-

erence signal, the control objective can be modified as follows. Instead of
minimizing a quadratic criterion, say the 2-norm of the closed-loop output

error, tune the controller parameters to decorrelate the closed-loop output
error εoe(ρ, t) with the external reference signal r(t). The motivation for
introducing such a control objective is clear. If the closed-loop output error

between designed and achieved closed-loop systems is not correlated with
the reference signal, this means that the resulting controller is updated to

compensate the effect of modeling errors only. In other words, the achieved
closed-loop system has captured the dynamics of the designed one, and the

closed-loop output error contains only the contribution due to measurement
noise. Therefore, perfect model-following is achieved regardless of the pres-
ence of the disturbance v(t). This feature is the founding block of this

thesis.

Note that the effect of noise on the closed-loop output is not minimized
in this approach. One may argue that this insensitivity to noise implies that

this method, called Correlation-based Tuning (CbT), is not appropriate for
disturbance rejection. However, one can consider that, in an ideal case, the
loop transfer functions of the resulting and designed closed-loop systems are

equal. Hence, by imposing some disturbance rejection specifications on the
desired output sensitivity function, it is possible to handle the disturbances

indirectly. In other words, the designed closed-loop system is typically more
complex than a simple reference model for tracking since it indirectly defines

all design specifications for tracking, disturbance and noise attenuation.
Hence, the objective for the achieved closed-loop system is to approximate

the designed one, independently of the noise characteristics. As a result, the
robustness properties of the designed closed-loop system will be preserved,
but the performance with respect to noise attenuation will normally not

change.

The ideas presented above can be expressed mathematically in the form
of the cross-correlation function defined as the mathematical expectation
between the closed-loop output error and a vector of instrumental vari-
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ables. The instrumental variables are chosen so as to be correlated with

the reference signal and independent of the noise. Based on assumptions
regarding the complexity of the controller with respect to the plant, two
ways of computing the controller parameters can be distinguished. When

the controller is of sufficiently high order to perfectly decorrelate the closed-
loop output error from the reference signal, the controller parameters can

be calculated as the roots of the cross-correlation function. This approach
and the corresponding controller are called respectively “decorrelation pro-

cedure” and “decorrelating controller”. The approach where the controller
parameters are computed to minimize a norm of this function is labeled

“correlation reduction”.

1.5 Contribution of the thesis

This thesis introduces the correlation approach in control design. More
specifically, the concept of instrumental variable methods is used to tune

the parameters of a linear time-invariant controller using the data acquired
in closed-loop operation. To the best knowledge of the author, this is the

first time in control literature that correlation appears as a control design
objective.

The contribution of this thesis can roughly be divided in three parts.

1. The first part analyzes the features of the decorrelation procedure.

• For a finite number of data, the roots of the cross-correlation func-
tion are computed by using an iterative stochastic approximation

scheme of the Robbins-Monro type [70]. Provided that the param-
eterized set of controllers contains a decorrelating controller and
that the signals in closed loop remain bounded, it can be proven

that, under relatively mild conditions, the controllers obtained by
the iterative algorithm converge toward the decorrelating controller

as the number of iterations tends toward infinity [45]. The most
important part in this proof is to give conditions under which the

gradient of the closed-loop error with respect to the controller pa-
rameters is positive definite in the vicinity of the solution. It is
shown that this gradient is positive definite provided that an SPR
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(strictly positive real) condition on some transfer function is satis-

fied. Using the latter result, an appropriate choice of instrumental
variables is given. An important observation is that a single experi-
ment per iteration is required to evaluate the cross-correlation func-

tion and no gradient evaluation is needed. The required number
of experiments per iteration is the same regardless of whether one-

degree-of-freedom or two-degree-of-freedom controllers are tuned.

• An explicit expression for the variance of the estimated controller
parameters around the solution is derived [45]. This expression,
which is asymptotic in the number of iterations, is useful for choos-

ing design parameters such as instrumental variables, number of
data, the form of the reference signal, etc.

• In practical situations where it is possible to collect a large number

of data, noise does not greatly affect the cross-correlation function.
Hence, the Newton-Raphson algorithm, as a typical representative

of gradient-based deterministic schemes, can be employed to com-
pute the controller parameters. The Newton-Raphson algorithm
converges much faster than the Robbins-Monro procedure but re-

quires an estimate of the gradient. Closed-loop data are used to
evaluate the cross-correlation function and, at the same time, to

identify a plant model that is subsequently used to estimate the
gradient. For a finite number of data, this algorithm converges

toward a set whose center is at the solution of the cross-correlation
equation. The asymptotic accuracy of the controller parameter
estimates as a function of the number of data is analyzed. The

expression for the asymptotic variance of the controller parameter
estimates allows one to construct the confidence interval around

the decorrelating controller, which is, in turn, used to develop the
stopping condition for the iterative procedure [59].

• The decorrelation procedure has been implemented on an experi-
mental magnetic suspension system where a two-degree-of-freedom

controller has been tuned. Excellent performance using only a few
real-time experiments is achieved [44].

2. The second part treats theoretical and practical aspects of the correla-
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tion reduction method. Considering that industrial plants can be very

complex, it is not a rare situation that the decorrelating controller does
not exist or does not belong to the selected controller class. In these
situations, instead of finding the roots of the cross-correlation function,

a norm of this function is minimized.

• Again, for a finite number of data, the Robbins-Monro procedure
is used. This algorithm converges to a local minimum of the per-

formance criterion provided that an unbiased estimate of the gra-
dient is available. The gradient can be estimated by using either

a full-order plant model or an additional closed-loop experiment
as is done in IFT. A frequency-domain analysis of the criterion

shows that the noise has asymptotically no effect on the controller
parameters. In addition, it is shown that the achieved closed-loop
system approaches iteratively the designed one, with the difference

between the two closed-loop systems being weighted by the square
of the power spectrum of the reference signal [43].

• The proposed performance criterion can be generalized so that

the mixed sensitivity specifications can be handled. That is, by
adding in the performance criterion the term consisting of the

cross-correlation between the reference signal and the input closed-
loop error (defined analogously to the closed-loop output error),
the specifications expressed in terms of output and input sensitiv-

ity functions can be met [58].

• An adaptation of the correlation reduction method for the distur-
bance rejection problem has been proposed [57]. It is shown that,

when the disturbance signal can be measured or a known signal can
be injected as a “test” disturbance, this method can be used. This
idea has been successfully applied to the active suspension bench-

mark problem posed for a special issue of the European Journal
of Control on the design and optimization of restricted-complexity

controllers. The controller with CbT has been ranked among the
five best controllers with acceptable complexity and performance

on the underlying real system [51].

• When a large number of data is available, the Gauss-Newton algo-
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rithm can be used for correlation reduction. In this case, an accu-

rate estimate of the gradient is needed to guarantee local conver-
gence. A stopping condition for the correlation reduction method
has been developed [57].

3. The idea of CbT has also been proposed for the tuning of linear time-

invariant multivariable controllers.

• Some elements of the controller transfer function matrix are tuned
to satisfy the performance specifications, while others are tuned to
be decouplers. Both variants of CbT, i.e. the decorrelation pro-

cedure and the correlation reduction method, can be employed.
Comparing CbT to the other data-driven methods based on the

minimization of some error signal, one can immediately notice ad-
vantages that CbT offers for the tuning of MIMO controllers. First

of all, CbT offers perfect decoupling by decorrelating a given refer-
ence with the noncorresponding outputs, while this is not possible

with the other methods. The second advantage is that all con-
trollers and decouplers can be tuned using a single experiment per
iteration regardless of the number of inputs nu and outputs ny. In

the other methods, the number of experiments required per itera-
tion increases typically with nu and ny [56, 60].

• However, the analysis performed in this thesis reveals that simul-
taneous excitation of all reference inputs negatively affects the ac-

curacy of the estimated controller parameters due to the imposed
decoupling specifications. One can obtain more accurate estimates

by performing ny experiments per iteration. Actually, there is a
user choice between low experimental cost and better accuracy of
the estimated parameters [62, 60].

1.6 Outline

This thesis is organized as follows.

Chapter 2: Preliminaries. To facilitate the reading of the material
presented in this thesis, some basic facts from control and identification
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theory are recalled in this chapter. In addition, some details about IFT

and the Robbins-Monro procedure are given.

Chapter 3: Decorrelation procedure. The CbT variant, where the

controller parameters are calculated as the roots of the cross-correlation
function, is treated from a theoretical and practical point of view in this

chapter. The application of this method to an experimental setup is
presented as well.

Chapter 4: Correlation reduction. In this chapter, the controller

parameters are updated by minimizing the cross-correlation function. Ex-
isting extensions of this variant and the application to an active suspension
system are documented.

Chapter 5: Correlation-based tuning of linear decoupling mul-

tivariable controllers. This chapter deals with the tuning of linear
time-invariant multivariable controllers. Apart from performance specifica-

tions, decoupling specifications are imposed as well.

Chapter 6: Conclusions. Concluding remarks are given and some possi-
ble further research topics are proposed in this chapter.



16 Chapter 1: Introduction



Chapter 2

Preliminaries

The aim of this chapter is to introduce some of the definitions and concepts
that are required in later chapters to follow the presentation or to prove
some of the theoretical results. In addition, in order to provide an objec-

tive account of the proposed method, the features of CbT are occasionally
compared with those of the closely related IFT scheme. For this purpose,

a brief introduction to the IFT method is also given.

2.1 Basic notations and system description

Let the output of an Single-Input Single-Output (SISO) linear time-
invariant true plant be described by the following discrete-time model

y(t) = G(q−1)u(t) + v(t) (2.1)

where u(t) is the plant input and v(t) represents a zero-mean weakly sta-

tionary random process. The unknown transfer operator G(q−1) is defined
as

G(q−1) =
B(q−1)

A(q−1)
(2.2)

where B(q−1) and A(q−1) are polynomials in the backward-shift operator

q−1. The plant is controlled by the following one-degree-of-freedom con-
troller

K(q−1, ρ) =
S(q−1, ρ)

R(q−1, ρ)
(2.3)

17



18 Chapter 2: Preliminaries

where

R(q−1, ρ) = 1 + r(1)q−1 + · · · + r(nr)q−nr (2.4)

S(q−1, ρ) = s(0) + s(1)q−1 + · · · + s(ns)q−ns (2.5)

and the controller parameter vector ρ of dimension nρ = nr + ns + 1 is
defined as

ρT = [r(1) · · · r(nr), s(0) · · · s(ns)] (2.6)

The control law can be presented in regression form

u(ρ, t) =
(
1 − R(q−1, ρ)

)
u(ρ, t) + S(q−1, ρ)e(ρ, t)

= φT (ρ, t)ρ (2.7)

where e(ρ, t) = r(t) − y(ρ, t), r(t) is the closed-loop reference signal and
y(ρ, t) is the plant output in closed-loop operation. The regressor vector

φ(ρ, t) is defined as follows

φT (ρ, t) = [−u(ρ, t− 1), · · · ,−u(ρ, t − nr), e(ρ, t), · · · , e(ρ, t − ns)] (2.8)

The controller parameters are tuned by an iterative algorithm. Thus, the
controller at the i-th iteration is denoted by K(ρi, q

−1) and other signals,

vectors, matrices and closed-loop transfer functions that depend on the
operation of this controller will carry the argument ρi. The argument q−1

will be omitted when appropriate.

Fig. 2.1 shows the block diagram of the closed-loop system which is

usually used in the context of iterative identification and controller design.
The upper part presents the achieved closed-loop system and the lower part
shows the designed closed-loop system containing the reduced-order model

of the plant (designed model)

Gd(q
−1) =

Bd(q
−1)

Ad(q−1)
(2.9)

and the designed controller Kd(q
−1). The controller Kd(q

−1) is designed

using the plant model Gd(q
−1) so that the designed closed-loop system sat-

isfies all the specifications for tracking and noise attenuation. If needed,
specifications for control signal limitation can be included as well.
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Figure 2.1: Block diagram of the achieved and designed closed-loop systems

The closed-loop output error is defined as

εoe(ρ, t) = y(ρ, t) − yd(t) (2.10)

where yd(t) is the output of the designed closed-loop system or the desired
output, and the closed-loop input error is

εie(ρ, t) = u(ρ, t) − ud(t) (2.11)

where ud(t) is the controller output in the designed closed-loop system.

The closed-loop sensitivity functions are defined as follows

- Output sensitivity function

S(K(ρ), G) =
1

1 + GK(ρ)
=

AR(ρ)

Ac(K(ρ), G)
(2.12)

- Complementary sensitivity function

T (K(ρ), G) =
GK(ρ)

1 + GK(ρ)
=

BS(ρ)

Ac(K(ρ), G)
(2.13)

- Input sensitivity function

U(K(ρ), G) =
K(ρ)

1 + GK(ρ)
=

AS(ρ)

Ac(K(ρ), G)
(2.14)
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where Ac(K(ρ), G) = AR(ρ)+BS(ρ) is the characteristic polynomial of the

closed-loop system. The corresponding sensitivity functions for the desired
closed-loop systems are

Sd = S(Kd, Gd) =
1

1 + GdKd

(2.15)

Td = T (Kd, Gd) =
GdKd

1 + GdKd

(2.16)

Ud = U(Kd, Gd) =
Kd

1 + GdKd

(2.17)

2.2 Estimation of ∂y/∂ρ using a model

As explained in the introductory section, the method proposed in this thesis

is gradient based. The principal components of the gradient of the proposed
performance criterion with respect to ρ are the derivatives ∂y

∂ρ
. Since these

sensitivity derivatives are unknown, a way to compute their estimates using

a model is presented in this section.

Note that the input and output of the plant in the closed-loop system
can be described as

y(ρ, t) = T (K(ρ), G)r(t) + S(K(ρ), G)v(t)

=
B(q−1)S(q−1)

Ac(q−1, K(ρ), G)
r(t) +

A(q−1)R(q−1)

Ac(q−1, K(ρ), G)
v(t) (2.18)

u(ρ, t) = U(K(ρ), G) (r(t) − v(t))

=
A(q−1)S(q−1)

Ac(q−1, K(ρ), G)
(r(t) − v(t)) (2.19)

and that

e(ρ, t) = S(K(ρ), G) (r(t) − v(t)) =
A(q−1)R(q−1)

Ac(q−1, K(ρ), G)
(r(t) − v(t)) (2.20)

The derivatives of y with respect to the parameters of R are computed as
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follows [2]:

∂y

∂r(j)
=

−q−jABS

A2
c(K(ρ), G)

r(t) +
q−jAAc(K(ρ), G)− q−jAAR

A2
c(K(ρ), G)

v(t)

=
−Bq−j

Ac(K(ρ), G)

[
AS

Ac(K(ρ), G)
(r(t) − v(t))

]
=

−B

Ac(K(ρ), G)
u(t − j) j = 1, . . . , nr (2.21)

In the same way, the derivatives of y with respect to the parameters of S

can be computed:

∂y

∂s(j)
=

B

Ac(K(ρ), G)
e(t − j) j = 0, . . . , ns (2.22)

Thus, the gradient of y with respect to ρ can be represented in terms of the
regressor vector φ filtered by B/Ac:

ψT (ρ, t) =
∂y(ρ, t)

∂ρ
=

B

Ac(K(ρ), G)
φT (ρ, t) (2.23)

Note that it is possible to measure the signals e(t) and u(t), i.e. the regressor
vector φ(ρ, t) is available. Since the controller parameters are known, a

model of the plant is needed to estimate ψ(ρ, t). This model can be identified
using the data collected on the plant operating in open or closed loop.

2.3 Robbins-Monro procedure

Stochastic approximation schemes have been developed as a response to a
need for methods that can efficiently provide the roots of some function

in situations where the influence of noise is not negligible compared to the
required accuracy of the solution. The typical problem in this context is as

follows. Let f(ρ) be a monotonically increasing function. Suppose that one
can observe the values of this function corrupted by measurement noise.

Assume that the realization f̄(ρi) of f(ρi) at ρi and time i + 1 can be
expressed as

f̄(ρi) = f(ρi) + ξi+1 (2.24)
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Figure 2.2: Robbins-Monro procedure: the idea

where ξ1, ξ2, . . . are independent zero-mean random variables. Find the
solution of the equation

f(ρ) = 0 (2.25)

In their pioneering work Robbins and Monro have proposed the following
scheme to address this problem [70]. For a given initial point ρ0, use the

following recursion:
ρi+1 = ρi − γif̄(ρi) (2.26)

to solve (2.25). A sequence of positive numbers γi must be chosen that
verifies ∞∑

i=1

γ2
i < ∞,

∞∑
i=1

γi = ∞ (2.27)

The idea is intuitively clear. The update Δρi = ρi+1−ρi will be positive on

average for the values ρi < ρ◦ since its conditional expectation for a given
ρi is as follows:

E {Δρi|ρi} = −γif(ρi) (2.28)

For the values ρi > ρ◦ this update will be negative on average. In other
words, the recursion (2.26) pushes the sequence ρi to approach ρ◦ (see
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Fig. 2.2). The first condition in (2.27) ensures that the updates Δρi are

“damped” throughout the recursion, otherwise the sequence ρi will oscil-
late around ρ◦. The second condition in (2.27) ensures that Δρi does not
decrease too fast, otherwise the sequence will not reach ρ◦. Note that the

random vectors ρi are in fact the realizations of the real variable ρ at the
time i (or if the solution is sought iteratively at the iteration i).

The following result will be needed subsequently to prove the convergence

of the Robbins-Monro multidimensional procedure that is extensively used
in this thesis [5].

Theorem 2.1 Let ρ be a vector in Rk. Suppose that for each ρ there cor-
responds a random vector f̄(ρ) ∈ Rk. Let f(ρ) = E

{
f̄(ρ)

}
. Now let h(ρ)

be a real-valued function defined on Rk and possessing continuous partial
derivatives of the first and second order. The vector of first partial deriva-

tives is denoted as Qh(ρ) and the matrix of second partial derivatives by
Ah(ρ). Then, for any real number γ, by Taylor’s theorem one has,

h(ρ − γf̄(ρ)) = h(ρ) − γ〈Qh(ρ), f̄(ρ)〉
+

1

2
γ2〈f̄(ρ),Ah(ρ − θγf̄(ρ))f̄(ρ)〉 (2.29)

where θ is a real number with 0 ≤ θ ≤ 1. By taking expectation on both

sides of (2.29) one gets

E
{
h(ρ − γf̄(ρ))

}
= h(ρ) − γ〈Qh(ρ), f(ρ)〉

+
1

2
γ2E

{
〈f̄(ρ),Ah(ρ − θγf̄(ρ))f̄(ρ)〉

}
(2.30)

Then, let {γi} be a sequence of positive numbers and consider the sequence

of recursively defined random vectors given in (2.26). Moreover, assume
f(0) = 0 without loss of generality and, together with (2.27), consider the

following set of conditions:

(i) h(ρ) ≥ 0

(ii) sup
ε<‖ρ‖

〈Qh(ρ), f(ρ)〉 > 0 for every ε > 0

(iii) inf
ε≤‖ρ‖

‖h(ρ) − h(0)‖ > 0 for every ε > 0
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(iv) E
{
〈f̄(ρ),Ah(ρ − θγf̄(ρ))f̄(ρ)〉

}
< Vγ < ∞ and Vγ ≥ 0 for every

number γ

Then the sequence {ρi} defined by (2.26) converges to zero almost surely.

In Theorem 2.1 the 〈·, ·〉 operator denotes the inner product of two vectors,

while the ‖ · ‖ operator denotes the norm of a vector.
In addition to the convergence property of a recursive scheme, one is also

interested to analyze how fast the estimates approach the solution. In other
words, the behavior of the stochastic variable ρi − ρ◦ is of interest. The fol-
lowing theorem provides sufficient conditions for the asymptotic normality

of the sequence
√

i(ρi − ρ◦) [65].

Theorem 2.2 Consider the process defined in (2.26) with initial condition

ρ0 = ρ. Let the sequence γi be given as γi = α
i

where α is a positive constant.
Suppose that the following conditions are satisfied:

(i) The process defined in (2.26) converges to ρ◦ almost surely as i → ∞
and is a Markov process.

(ii) The function f(ρ) may be represented by f(ρ) = Q(ρ◦)(ρ−ρ◦)+ o(|ρ−
ρ◦|), where the matrix D = 1

2
I − αQ(ρ◦) is stable in the sense that its

eigenvalues have a negative real part.

(iii) All the elements of the matrix E
{(

f̄(ρi) − f(ρi)
) (

f̄(ρi) − f(ρi)
)T}

are

finite for i ≥ 1 and lim
i→∞

lim
ρi→ρ◦

= lim
i→∞

E
{
f̄(ρ◦)f̄(ρ◦)T

}
= P .

(iv) For some θ > 0,

lim
Ξ→∞

sup
|ρi−ρ◦|

sup
i≥1

∫
|f̄(ρi)−f(ρi)|>Ξ

|f̄(ρi) − f(ρi)|2Pdω = 0

with Ξ being a real variable and P a probability density function corre-

sponding to f̄(ρi).

Then, the sequence
√

i(ρi − ρ◦) ∈ AsN (0, V ), i.e.
√

i(ρi − ρ◦) converges
asymptotically in distribution to a zero-mean normal distribution with co-

variance

V = α2

∫ ∞

0

eDx P eDT xdx (2.31)
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Figure 2.3: Open-loop identification problem

For more details about the stochastic approximation schemes and their

features, the reader is referred to [86, 65]

2.4 The correlation approach in system
identification

In this section, the idea of the correlation approach that inspired the devel-

opment of CbT is presented. Consider the open-loop identification problem
shown in Fig. 2.3. Suppose that the true system is given as follows:

y(t) = ϕT (t)θ◦ + v(t) (2.32)

where ϕ(t) is a regressor vector containing the delayed versions of input and

output, and v(t) is a zero-mean noise. Consider also the predictor in the
form of the linear regression model:

ŷ(t|θ) = ϕT (t)θ̂ (2.33)

In the correlation approach, a good model of the system is considered to
be one that makes the prediction error ε(t, θ) = y(t) − ŷ(t|θ) uncorrelated

with the input signal u(t). Intuitively is clear that if ε(t, θ) is correlated
with u(t) then all available information about y(t) is not contained in ŷ(t|θ).
This can be formulated mathematically as follows. Find the solution of the
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following equation:

1

N

N∑
t=1

ζ(t)ε(t, θ) =
1

N

N∑
t=1

ζ(t)
(
y(t) − ϕT (t)θ̂

)
= 0 (2.34)

where ζ(t) is the vector of Instrumental Variables (IV). The explicit form

of the solution follows easily:

θ̂ =

[
1

N

N∑
t=1

ζ(t)ϕT (t)

]−1 [
1

N

N∑
t=1

ζ(t)y(t)

]
(2.35)

By replacing y(t) from (2.32) in the above expression, one gets for the IV

estimate:

θ̂ = θ◦ +

[
1

N

N∑
t=1

ζ(t)ϕT (t)

]−1 [
1

N

N∑
t=1

ζ(t)v(t)

]
(2.36)

This estimate is consistent if the following holds:

E
{
ζ(t)ϕT (t)

}
has full rank (2.37)

E {ζ(t)v(t)} = 0 (2.38)

Therefore, to ensure the consistency of the IV estimates, the instrumental

variables should be chosen so as to be independent of the noise sequence and
correlated with the regressor vector. A common choice for the instrumental

variables are filtered versions of the input.

Observe that the well-known least-squares method can be obtained if one
takes ζ(t) = ϕ(t). Note that, in this case, the estimate θ̂ will be consistent if

and only if the regressor vector ϕ(t) is not correlated with the noise v(t). In
general, the regressor vector contains samples of the output (see Fig. 2.3)

and therefore, for this condition to be satisfied, v(t) must be white noise
which is very restrictive.

2.5 Iterative feedback tuning

As discussed before, one of the major problems in the context of gradient-
based data-driven control is the computation of the gradient of the perfor-
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mance criterion with respect to the controller parameters. The distinctive

feature of the Iterative Feedback Tuning method is that an unbiased esti-
mate of this gradient can be computed from signals obtained on the actual
closed-loop system.

Consider the achieved and designed closed-loop systems shown in Fig.
2.1. Here, for simplicity of presentation, the minimization of the following

criterion is considered:

J(ρ) =
1

2N

N∑
t=1

E
{
ε2
oe(ρ, t)

}
(2.39)

The first derivative of the criterion (2.39) with respect to the controller

parameters is:

∂J

∂ρ
=

1

N

N∑
t=1

E

{
εoe(ρ, t)

∂y(ρ, t)

∂ρ

}
(2.40)

The minimum of the criterion (2.39) is attained when the expression (2.40)
is equal to zero. The roots of ∂J/∂ρ can be found by applying the Robbins-
Monro stochastic approximation procedure provided that an unbiased esti-

mate of this gradient is available.

Consider now the expression for the output y(ρ, t) given in (2.18). The
differentiation of y(ρ, t) with respect to the i-th element of ρ gives:

∂y(ρ, t)

∂ρi

∣∣∣∣
ρ

= S(ρ, G)G
∂K(ρ)

∂ρi

∣∣∣∣
ρ

(r(t) − y(ρ, t)) (2.41)

This expression gives an idea of how to obtain an estimate of ∂y(ρ, t)/∂ρ

by performing two experiments on the actual closed-loop system. That is,
perform a first experiment under normal operational conditions and collect
measurements of the output y(ρ, t). All signals appearing during this ex-

periment will carry the subscript e1; similarly, the signals from the second
experiment will have the subscript e2. For example, ye1(ρ, t) denotes the

measured output during the first experiment. Then, in the second exper-
iment, form the signal r(t) − ye1(ρ, t) and inject it at the process input.

Then collect the output signal ye2(ρ, t) and filter it with the filter ∂K(ρ)/∂ρ
to obtain a realization of ∂y(ρ, t)/∂ρ. Illustration of this so-called gradient
experiment is given in Fig. 2.4. Now, the estimate of ∂J/∂ρ is calculated
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Figure 2.4: IFT: gradient experiment

as follows:

∂̂J

∂ρ
(ρi) =

1

N

N∑
t=1

[
∂K(ρ)

∂ρ
ye2(ρi, t)

]
(ye1(ρi, t) − yd(t)) (2.42)

Hjalmarsson and co-workers have shown that this estimate is unbiased [34].
The controller parameters are updated using the following iterative formula:

ρi+1 = ρi − γiH
−1
i

∂̂J

∂ρ
(ρi) (2.43)

where Hi is some positive-definite matrix. A typical choice for this matrix

might be an approximation of the Hessian, i.e.

Hi =
∂̂2J

∂ρ2
(ρi) =

1

N

N∑
t=1

[
∂K(ρ)

∂ρ
ye2(ρi, t)

][
∂K(ρ)

∂ρ
ye2(ρi, t)

]T

(2.44)

IFT offers a very nice possibility of obtaining an unbiased estimate of

the gradient using only signals collected in closed loop. However, the price
to pay is an increased number of experiments. For the case of two-degree-

of-freedom SISO controllers, IFT requires three experiments per iteration.
In the case of MIMO controllers, the number of experiments per iteration
increases to nu×ny+1.There have been some attempts to reduce the number

of experiments in the case of MIMO systems [15, 16, 38].
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Decorrelation Procedure

A method for iterative controller tuning using data acquired in closed-loop
operation is presented in this chapter. It is assumed that a reasonable

model of the plant to be controlled is at one’s disposal and that it is used
to design the controller. Furthermore, it is assumed that the control design

is performed with all precautions to ensure that the desired specifications
for tracking, disturbance rejection and control effort penalization for that
model are satisfied. Very often, when such a designed controller is used,

the achieved closed-loop performance is mediocre or unsatisfactory and it is
desirable to improve it. To perform this task, a new data-driven method is

proposed. Since the performance criterion within this method is based on
the correlation approach, this scheme is coined Correlation-based Tuning

(CbT). It is important to understand that the CbT approach is intended
for a “fine” tuning of the controller. In other words, it is assumed that the
controller obtained in model-based design procedure is in the vicinity of the

controller that satisfies all design specifications for the actual system.

The basic idea of CbT is to make the output error between the de-
signed and achieved closed-loop systems uncorrelated with the reference

signal. This way the loop transfer functions of the achieved and designed
closed-loop systems coincide, i.e. there remains no information about the

excitation signal in the closed-loop output error. The controller parame-
ters are calculated as the solution to a cross-correlation equation involving

instrumental variables. The controller whose parameters are the solution
to the cross-correlation equation is called subsequently the decorrelating
controller.

Since the proposed control design objective involves mathematical ex-

29
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pectations that are in general not known, the Robbins-Monro stochastic

approximation scheme is used. One of the contributions of this chapter is
to provide sufficient conditions for this iterative algorithm to converge to-
ward the solution of the correlation equation. Convergence of this scheme

depends on the choice of instrumental variables. It turns out that this de-
pendence can be expressed in the form of a mild SPR condition on some

transfer function. Furthermore, this condition gives insight for the choice
of instruments.

Another goal of this chapter is to provide an analytic expression for the

asymptotic covariance of the controller parameter estimates. It is shown
that this covariance depends on the covariance of the estimates of the cross-

correlation function. The expression for the asymptotic accuracy of the
controller parameter estimates is useful since it allows one to construct the

optimal instrumental variables.

The second part of this chapter explores situations when a large number
of data is available. In this case, the influence of noise is within an accept-

able level with respect to the required accuracy of the solution. Therefore,
it is possible to use the deterministic Newton-Raphson algorithm to find

the roots of the cross-correlation function. This algorithm converges faster
than the Robbins-Monro scheme, which makes it more adapted to indus-

trial applications. Due to the presence of noise, the obtained estimated
controller parameters converge toward a region around the decorrelating
controller instead of to one single point. An asymptotic expression for this

region is derived and, based on it, a stopping condition for the iterative
procedure is introduced.

Chapter outline: Section 3.2 presents the numerical stochastic approxi-
mation method used to compute the controller parameters. Conditions for

the convergence of this algorithm are discussed and appropriate choices of
instrumental variables are proposed. The study of the accuracy of the con-

troller parameters as the number of iterations goes to infinity finishes this
section. Section 3.3 treats the case when the number of data is sufficiently

large to use the Newton-Raphson algorithm to update the controller param-
eters. An application to an experimental setup is detailed in Section 3.4.
Finally, Section 3.5 gives some concluding remarks.
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3.1 The control design criterion

The cross-correlation function that reflects the idea expressed in the previ-
ous section is as follows:

f(ρ) � E{f̄(ρ)} (3.1)

where E{·} denotes the mathematical expectation and f̄(ρ) is defined as

follows

f̄(ρ) =
1

N

N∑
t=1

ζ(t)εoe(ρ, t) (3.2)

where N is the number of data and ζ(t) an nζ-dimensional column vector of

instrumental variables that are correlated with the reference signal r(t) and
independent of the disturbance v(t). The instrumental variable vector ζ(t)
may be a function of the controller parameter vector ρ and will be denoted

by ζ(ρ, t).
Note that, if the transfer function of the true plant were known, the

controller K◦ that perfectly decorrelates the output error and the reference
signal could be computed analytically as follows

K◦ = Kd

Gd

G
(3.3)

This controller may be improper or of very high order. Furthermore, it may
destabilize the system if the unstable zeros and poles of G are not contained

in Gd. On account of this fact, two different situations can be distinguished:

1. The decorrelating controller K◦ exists, stabilizes the closed-loop sys-

tem and belongs to the parameterized set of controllers. Though, this
assumption seems to be too restrictive, it allows the parametric conver-

gence and the accuracy of the estimates to be studied. These analyses
give important guidelines for the choice of instrumental variables and

the improvement of the convergence rate of the iterative algorithm.

The parameter vector of this controller, ρ◦, is evidently a solution of
the correlation equation

f(ρ) = 0 (3.4)

2. The decorrelating controller K◦ does not exist or does not belong to the
controller set. In this case, the controller parameters can be computed
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as the minimizing argument of some norm of the correlation function

(3.1). This case will be studied in detail in Chapter 4.

3.2 Iterative solution using the Robbins-
Monro procedure

In this chapter, assuming that a decorrelating controller exists, the param-
eters of the tuned controller are computed as a solution of the correlation

equation (3.4). In fact, if nζ = nρ, (3.4) represents a system of nρ nonlinear
equations in nρ unknowns. Since this system of equations can be expressed
in vector form and its solution can be expressed as a vector, in the following

(3.4) will be called simply “equation”.

Following the discussion from Section 2.3, it is easy to see that the equa-

tion (3.4) is of the exact type for which the Robbins-Monro stochastic
approximation algorithm is intended. In other words, a solution of this

correlation equation can be found using the following iterative stochastic
approximation algorithm

ρi+1 = ρi − γif̄(ρi) (3.5)

where γi is a positive scalar step size and f̄(ρi) can be easily computed

from (3.2) using data collected during the closed-loop experiment with the
controller K(ρi).

Before proceeding to analyze the properties of this procedure in the con-

text of correlation-based tuning, let us introduce some general assumptions.

3.2.1 Assumptions

(A1) The system to be controlled is SISO, linear time-invariant, finite order
and strictly causal.

(A2) The noise v(t) is a zero-mean stationary stochastic process with

bounded fourth moments and a rational, nonsingular spectral density
matrix. Realizations of the noise in different experiments are mutually
independent.
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(A3) The reference signal r(t) is persistently exciting of sufficiently high

order (with respect to the number of controller parameters) and is
uncorrelated with the disturbance v(t).

(A4) The signals in the loop are bounded, i.e. the computed controllers

stabilize the closed-loop system at each iteration.

(A5) The correlation function f(ρ) possesses continuous partial derivatives

of first and second order with respect to ρ.

(A6) Given the orders of the decorrelating controller K◦ (n◦
r and n◦

s), the
orders nr and ns of the tuned controller satisfy the following inequality

min(nr − n◦
r, ns − n◦

s) ≥ 0 (3.6)

(A7) The solution ρ◦ of the correlation equation is unique.

Assumption A1 defines the class of systems to be considered. Assumption

A2 ensures that a solution of the correlation equation (3.4) exists. Observe
from (3.1), (3.2) and (3.4) that this solution exists if ζ(ρ◦, t) or εoe(ρ

◦, t)
are zero-mean signals. If v(t) is zero mean, then εoe(ρ

◦, t) is a zero-mean
signal. If A2 is not satisfied, εoe(ρ

◦, t) can be made zero mean by intro-

ducing an integrator term into the controller. Indeed, the integrator forces
εoe(ρ

◦, t) = S(K(ρ◦), G)v(t) to zero at low frequencies. If the integrator is

not desirable, ζ(ρ◦, t) can be chosen so as to be zero mean. Assumption A3
is a classical assumption for the excitation signal in parameter estimation al-
gorithms based on the correlation approach. Assumption A4 may be rather

restrictive for some systems, but it is absolutely required for implementing
the controllers on the real system in each iteration. In practice, a stability

test based on the designed model of the plant Gd or the model identified in
the previous iteration can be performed before implementing a controller.

Assumption A5 is verified for rational controllers (under assumption A1).
Assumption A6 implies that there is at least one solution to the correlation
equation and this solution is attainable by the estimates.



34 Chapter 3: Decorrelation Procedure

3.2.2 Convergence

In this section, the conditions for which the controller parameters updated

with (3.5) converge toward the solution ρ◦ of the equation (3.4) are stated.

Theorem 3.1 Under Assumptions A1-A7, the iterative parameter update
algorithm defined by (3.2) and (3.5) converges to a solution of the correlation

equation (3.4) when i → ∞ almost surely, provided that:

(C1) The sequence γi of positive step sizes satisfies
∞∑
i=1

γi = ∞ and

∞∑
i=1

γ2
i < ∞.

(C2) f(ρ) is monotonically increasing in the vicinity of the solution ρ◦, i.e.

the following condition holds:

Q(ρ) = E

{
∂f̄(ρ)

∂ρ

∣∣∣∣
ρ

}
> 0, ∃δρ > 0 such that |ρ − ρ◦| < δρ (3.7)

Proof. The proof of the theorem follows by applying Theorem 2.1 stated

in Section 2.3 to the iterative algorithm defined by (3.2) and (3.5). If one
sets h(ρ) = fT (ρ)f(ρ), then condition (i) of Theorem 2.1 follows naturally.

Conditions (ii) and (iii) follow from C2, while condition (iv) is satisfied due
to A2 and A5. �

Observe that the principal requirement for convergence is the positive

definiteness of Q(ρ) in the vicinity of the solution. The fulfillment of this
requirement depends on the choice of the instrumental variables ζ(t), which
is studied below.

3.2.3 Choice of instrumental variables

Let the gradient of the closed-loop output error with respect to ρ be denoted

by ψ(ρ, t) and the instrumental variables be a function of ρ, then the matrix
Q(ρ) can be represented as

Q(ρ) = E

{
1

N

N∑
t=1

∂ζ(ρ, t)

∂ρ
εoe(ρ, t) +

1

N

N∑
t=1

ζ(ρ, t)ψT (ρ, t)

}
(3.8)
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Near the solution, the first term in equation 3.8 is close to zero (because the

derivatives of the instrumental variables are not correlated with the closed-
loop output error) and can be neglected. Now, it is clear that an ideal choice
of the instrumental variables is a noise-free estimate of the gradient ψ(ρ, t),

which makes Q(ρ) as close as possible to a positive definite matrix. On the
other hand, the gradient of the closed-loop output error can be expressed

in terms of the regressor vector φ(ρ, t) as was demonstrated in Section 2.2

ψT (ρ, t) =
∂εoe(ρ, t)

∂ρ
=

∂y(ρ, t)

∂ρ
=

B(q−1)

Ac(K(ρ), G)
φT (ρ, t) (3.9)

Therefore, a noise-free estimate of the gradient can be obtained in the fol-

lowing ways:

1) IV based on designed closed loop: A noise-free estimate of the gra-

dient is based on the model Gd, the controller Kd, and the signals in
the designed closed-loop system.

ζ(t) = ψd(t) =
Bd(q

−1)

Ac(q−1, Kd, Gd)
[−ud(t − 1), · · · ,−ud(t − nr),

ed(t), · · · , ed(t − ns)]
T (3.10)

where Ac(q
−1, Kd, Gd) is the characteristic polynomial of the designed

closed-loop system. This IV variant is very simple and needs no extra
computational effort at each iteration. In addition, the instrumental

variables are not functions of ρ, and the first term in (3.8) is identically
zero. However, if the modeling error G − Gd is large, the estimation
error will be large and the positive definiteness of Q may not be guar-

anteed.

2) IV based on controller parameters: The instrumental variables are

based on the controller K(ρ) and the available model of the plant Gd.

ζ(ρ, t) = ψ̃(ρ, t) =
Bd(q

−1)

Ac(q−1, K(ρ), Gd)
φ̃(ρ, t) (3.11)
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where φ̃(ρ, t) is defined as

φ̃(ρ, t) = [−ũ(ρ, t − 1), · · · ,−ũ(ρ, t − nr),

ẽ(ρ, t), · · · , ẽ(ρ, t − ns)]
T (3.12)

with ũ(ρ, t) = U(K(ρ), Gd)r(t) and ẽ(ρ, t) = S(K(ρ), Gd)r(t). With
this choice of IV, the positive definiteness of Q(ρ) in neighborhood of

ρ◦ can be shown and so the convergence of the algorithm can be ensured
under some weak conditions.

3) IV based on the identified model: The instrumental variables are

based on the controller K(ρ) and the identified model of the plant
Ĝ = B̂/Â.

ζ(ρ, t) = ψim(ρ, t) =
B̂(q−1)

Ac(q−1, K(ρ), Ĝ)
φim(ρ, t) (3.13)

where φim(ρ, t) is defined as

φim(ρ, t) = [−û(ρ, t − 1), · · · ,−û(ρ, t − nr),

ê(ρ, t), · · · , ê(ρ, t − ns)]
T (3.14)

with û(ρ, t) = U(K(ρ), Ĝ)r(t) and ê(ρ, t) = S(K(ρ), Ĝ)r(t). For this

choice of IV, one might identify a model in the initial iteration and use
it subsequently through the iterative procedure. Another possibility

is to identify models in the first few iterations (since better control-
oriented models are obtained as the computed controllers are closer to
the decorrelating controller) and then to “freeze” the identification. It

is also possible to make the convergence condition milder using this
choice of IV.

3.2.4 Fixed terms in the controller

In order to preserve certain properties of the initial controller (e.g. integral
action), fixed terms can be considered in the R and S polynomials (i.e.,

R = R′Rfix and S = S ′Sfix). In this case, the input u(t) and the output y(t)
of the system are replaced in ψ(ρ, t) by u′(t) = Rfixu(t) and y′(t) = Sfixy(t),
respectively. Then, R′ and S ′ are computed using the iterative algorithm
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and later multiplied by the fixed terms to obtain the controller polynomials

R and S.

3.2.5 Algorithm

Having elucidated the choice of instrumental variables, let us summarize
the CbT algorithm.

Algorithm 3.1 Starting with the initial controller K(q−1, ρi) =

Kd(q
−1), i = 0, computed using the model Gd(q

−1), perform the following
steps:

(1) Collect N samples of the signals u(ρi) and y(ρi) from the closed-loop ex-
periment with the controller K(q−1, ρi) operating on the actual system.

If needed, filter u(ρi) and y(ρi) with Rfix and Sfix, respectively.

(2) Construct the vector of instrumental variables ζ(ρi) as one of the
choices presented in Section 3.2.3. Compute f̄(ρi) from (3.2) using
the acquired data and constructed ζ(ρi).

(3) Calculate the new controller parameter vector ρi+1 according to the re-

cursion (3.5). Add the fixed terms Rfix and Sfix if applicable.

(4) Using Gd or an identified model, test the stability of the closed-loop
system formed by this model and the controller K(q−1, ρi+1). If the test
fails, reduce γi in (3.5) as follows γi = αγi, 0 < α < 1, and go to step

(3).

(5) Replace i with i+1 and repeat steps (1)-(4) until ‖ρi+1−ρi‖ < ε, where
ε is appropriately chosen.

Let us recall that no gradient estimates are needed for this algorithm to
converge. Note that all quantities required for this algorithm are either

known to the user or measurable on the closed-loop system. The sequence
of step sizes γi should satisfy the condition C1, but it is a user choice. A

possible choice for γi is to take γi = 1/i. Finally, observe that only one
experiment per iteration is required, which is advantageous compared to
the related IFT method.
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3.2.6 2DOF controllers

The CbT scheme can be applied in a straightforward manner for the tuning

of two-degree-of-freedom controllers. Let us consider an RST controller with
the following control law:

R(q−1)u(t) = −S(q−1)y(t) + T (q−1)r(t) (3.15)

where R(q−1) and S(q−1) are defined in Section 2.1 and

T (q−1) = t0 + t1q
−1 + · · · + tnt

q−nt (3.16)

Hence, the controller output can be presented in regression form:

u(t) = φT
e (ρe, t)ρe (3.17)

where the regressor vector φe(ρe, t) and the vector of controller parameters
ρe are defined as follows:

φe
T (ρe, t) = [−u(t− 1), · · · ,−u(t− nr),

−y(t), · · · ,−y(t − ns), r(t), · · · , r(t − nt)] (3.18)

ρT
e = [r(1), · · · , r(nr), s(0), · · · , s(ns), t(0), · · · , t(nt)] (3.19)

Now, it suffices in Algorithm 3.1 to replace ρi with ρei, φ(ρ, t) with φe(ρe, t)
and, if necessary, to introduce the fixed term Tfix in steps (1) and (3).

Observe that the introduction of an additional degree of freedom does not
increase the required number of experiments per iteration.

3.2.7 Sufficient condition for positive-definiteness of

Q(ρ)

It should be noted that the crucial condition for the convergence of the
iterative algorithm (3.5) is the positive definiteness of Q(ρ). Now, let Q(ρ)

be evaluated at ρ◦ for the IV choice based on controller parameters

Q(ρ◦) = E

{
1

N

N∑
t=1

ψ̃(ρ◦, t)ψT (ρ◦, t)

}
(3.20)
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It is clear that the positive definiteness of Q(ρ◦) guarantees the positive

definiteness of Q(ρ) in the vicinity of the solution because of the assumption
on the continuity of the derivative of Q(ρ). Furthermore, the gradient vector
ψ(ρ, t) can be expressed as

ψT (ρ, t) =
B

Ac(K(ρ), G)

[ −AS

Ac(K(ρ), G)
r(t − 1), · · · ,

−AS

Ac(K(ρ), G)
r(t − nr),

AR

Ac(K(ρ), G)
r(t), · · · ,

AR

Ac(K(ρ), G)
r(t − ns)

]
+ ψT

v (ρ, t)

=
AB

A2
c(K(ρ), G)

[r(t), · · · , r(t − nρ + 1)] MT (ρ) + ψT
v (ρ, t) (3.21)

where ψv(ρ, t) is the noisy part of the gradient vector (uncorrelated with
the reference signal) and MT (ρ) an nρ × nρ dimensional Sylvester matrix
associated with the polynomials S(q−1) and R(q−1) defined as

M(ρ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −s(0) · · · −s(ns)

. . . . . . 0
0 −s(0) · · · −s(ns)

1 r(1) · · · r(nr)

. . . . . . . . . 0
0 1 r(1) · · · r(nr)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.22)

In the same way, the noise-free estimate of the gradient can be expressed

by

ψ̃T (ρ, t) =
AdBd

A2
c(K(ρ), Gd)

[r(t), · · · , r(t − nρ + 1)] MT (ρ) (3.23)

Then, substituting (3.23) and (3.21) into (3.20) and considering the fact
that ψ̃(ρ, t) is not correlated with ψv(ρ, t), gives

Q(ρ◦) = M(ρ◦)E

{
1

N

N∑
t=1

H(ρ◦)[rf(t), · · · , rf(t − nρ + 1)]T

× [rf(t), · · · , rf(t − nρ + 1)]}MT (ρ◦) (3.24)

where

rf(t) =
AB

A2
c(K(ρ◦), G)

r(t) (3.25)
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and

H(ρ◦) =
S(K(ρ◦), Gd)T (K(ρ◦), Gd)

S(K(ρ◦), G)T (K(ρ◦), G)
=

S(K(ρ◦), Gd)T (K(ρ◦), Gd)

Sd Td

(3.26)

Note that at the decorrelating solution ρ◦, the sensitivity and complemen-

tary sensitivity functions of the achieved closed-loop system are equal to
those of the designed one.

Theorem 3.2 Suppose that Assumptions A1-A7 hold and ζ(ρ, t) = ψ̃(ρ, t)
(defined in equation 3.11). Then, Q(ρ◦) defined in (3.20) is positive definite
if:

(i) rf(t) is a stationary stochastic process or a deterministic periodic signal
persistently exciting of order equal to or greater than nρ.

(ii) The transfer function H(ρ◦) is strictly positive real.

Proof: It is well known that the Sylvester matrix M(ρ◦) is not singular if

and only if the polynomials R∗ and S∗ are coprime [83] (this condition is
satisfied under Assumptions A6-A7). Therefore, Q(ρ◦) is positive definite

if and only if

Z(ρ◦) = E

{
1

N

N∑
t=1

H(ρ◦)[rf(t), · · · , rf(t − nρ + 1)]T

[rf(t), · · · , rf(t − nρ + 1)]} > 0 (3.27)

Let x = [x1 . . . xnρ
]T be an arbitrary nonzero vector and define X(q−1) =

x1+x2q
−1+ · · ·+xnρ

q−nρ+1. Then, by definition Z(ρ◦) > 0 iff xTZ(ρ◦)x > 0.

One has

xTZ(ρ◦)x = E

{
1

N

N∑
t=1

[H(ρ◦)X(q−1)rf(t)][X(q−1)rf(t)]

}
=

1

2π

∫ π

−π

H(ρ◦, ejω)|X(ejω)|2Φrf
(ω)dω

=
1

2π

∫ π

−π

Re[H(ρ◦, ejω)]|X(ejω)|2Φrf
(ω)dω (3.28)
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where Φrf
(ω) is the spectral density of rf which according to (i) is nonzero

at least in nρ frequencies. Therefore, if H(ρ◦) is SPR, then Z(ρ◦) and
consequently Q(ρ◦) are positive definite. �

Remarks:

1. The SPR condition is a sufficient condition. In fact, if Re{H(ρ◦, ejω)} >
0 in the frequency region where the spectrum of the excitation signal

is large, Q(ρi) is positive definite. For example, for a sum of sinu-
soidal signals, it suffices that the real part of the sensitivity function

estimates S and T based on the plant model in the frequency domain
have the same sign as those of the real sensitivity functions in the ex-
cited frequencies. This condition is likely to be satisfied if a closed-loop

identified model is used to construct the instrumental variables. Note
that the model used for constructing the instrumental variables should

only satisfy equation (3.28) and it is not necessarily a good model for
controller design.

2. The results can be extended to deterministic nonperiodic signals if the
number of data N goes to infinity.

For the IV choice based on controller parameters, the results of Theo-

rems 3.1 and 3.2 allow the sufficient condition for the convergence of the
Algorithm 3.1 to be precisely stated.

Proposition 3.1 Consider the choice of instrumental variables based on
controller parameters (3.11). Let the Assumptions A1-A7 hold. Then, the

Algorithm 3.1 converges to a solution of the correlation equation (3.4) when
i → ∞ almost surely, provided that:

(C1) The sequence γi of positive step sizes satisfies
∞∑
i=1

γi = ∞ and

∞∑
i=1

γ2
i < ∞.

(C2′) rf(t) defined in (3.25) is a stationary stochastic process or a deter-

ministic periodic signal, persistently exciting of order equal to or greater
than nρ.

(C2′′) The transfer function S(K(ρ◦),Gd)T (K(ρ◦),Gd)
Sd Td

is strictly positive real.
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Remark: The results of Proposition 3.1 apply mutatis mutandis to the

choice of instrumental variables based on the identified model. This is not
surprising considering that in some implementations Gd and Ĝ may coincide,
i.e. Gd might be obtained as a result of closed-loop identification.

Next, when conditions for the convergence to a solution of the cross-

correlation function are established, the behavior of the controller parameter
estimates around the solution will be analyzed.

3.2.8 Asymptotic accuracy when i tends to infinity

In this section, the asymptotic distribution of the controller parameter es-
timates will be analyzed through the following theorem.

Theorem 3.3 Assume that

(i) The Algorithm 3.1 converges to ρ◦ almost surely as i → ∞.

(ii) The sequence of step sizes is chosen as γi = α
i

where α is a positive
constant.

(iii) The matrix D = I/2 − αQ(ρ◦) has all eigenvalues with negative real
parts.

Then, the sequence
√

i(ρi − ρ◦) converges asymptotically in distribution to
a normally distributed zero-mean random variable with covariance matrix

V = α2

∫ ∞

0

eDx Pf eDT xdx (3.29)

where the covariance matrix Pf of f̄(ρ◦) is defined as follows:

Pf = E
{
f̄(ρ◦)f̄T (ρ◦)

}
(3.30)

Proof. The proof follows directly by applying Theorem 2.2 stated in
Section 2.3. �

This analysis can help one to obtain a measure of the accuracy of the
estimates. However, the covariance matrix V depends on the unknown
vector of controller parameters ρ◦ and cannot be computed. Here, a natural
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estimate of V using the available information at the i-th iteration is given.

Let us assume that the disturbance v(t) can be described as

v(t) = H(q−1)η(t) (3.31)

where H(q−1) is a linear, asymptotically stable noise model, and η(t) is
the zero-mean white noise with variance σ2. Then, after straightforward

calculations (see Section 3.3.3), the asymptotic expression for the covariance
of f̄(ρ◦) when N → ∞ is given as

lim
N→∞

Pf = lim
N→∞

E
{
f̄(ρ◦)f̄T (ρ◦)

}
= σ2E{ζf(ρ

◦, t)ζT
f (ρ◦, t)} (3.32)

where

ζf(ρ
◦, t) = H(q−1)S(K(ρ◦), G)ζ(ρ◦, t) = H(q−1)Sd ζ(ρ◦, t) (3.33)

Note that the designed closed-loop transfer function Sd is equal to the decor-
relating one, S(K(ρ◦), G), and is used instead. By replacing H in (3.33)

with an estimate Ĥ, a reasonable estimate ζ̂f(ρi, t) of ζf(ρi, t) can be ob-
tained. Then, an estimate of the covariance matrix Pf , when the number of

data N is large, can be obtained with the current estimates of the controller
parameters as follows

P̂f =
σ2

N

N∑
t=1

ζ̂f(ρi, t)ζ̂
T
f (ρi, t) (3.34)

Then, an estimate of the covariance matrix V can be given by

V̂ = α2

∫ ∞

0

eD̂x P̂f eD̂T xdx (3.35)

where D̂ = I/2 − αQ̂(ρi) and

Q̂(ρi) =
1

N

N∑
t=1

ζ(ρi, t)ψ̂
T (ρi, t) (3.36)

The matrix Q̂(ρi) is an estimate of the Jacobian of the correlation function
based on the estimate of the gradient ψ̂T (ρi, t) that can be computed using
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the model of the plant and the controller K(ρi) as follows

ψ̂T (ρi, t) =
Bd

Ac(K(ρi), Gd)
φ(ρi, t) (3.37)

Note that the instrumental variable ζ(ρi, t) is not necessarily dependent on
ρi, for example ζ(ρi, t) = ψd(t).

3.3 Iterative solution using the Newton-
Raphson algorithm

In the previous section, an iterative stochastic approximation procedure
for solving equation (3.4) is proposed. Although the proposed procedure

converges under weak conditions to the solution ρ◦, the convergence rate is
slow and therefore not suitable for industrial applications. However, if the

number of data can be chosen to be sufficiently large so that, for a fixed
controller, the variation of f̄(ρ) in different experiments with different noise

realizations is within an acceptable range, the Newton-Raphson algorithm
can be used to search for ρ◦. This is the topic of this section.

3.3.1 Newton-Raphson algorithm

Within this algorithm, the controller parameters are updated in the follow-

ing way
ρi+1 = ρi − γi Q̂

−1(ρi)f̄(ρi) (3.38)

where the Jacobian estimate Q̂(ρi) is given in (3.36). The step-size γi is

typically chosen to be equal to 1 in all iterations. In practice, however, γi

can be reduced in iterations where the resulting controller destabilizes the

system.

Although the Jacobian estimate is sensitive to modeling errors, an inaccu-

racy in this estimate does not hinder the convergence. In fact, as mentioned
in Section 1.5, this inaccuracy reduces the convergence rate [48]. The follow-

ing example, taken from [42], investigates the influence of modeling errors
on the convergence speed in the absence of noise. It will be shown that,
with reduced-order identified models, the proposed algorithm converges to
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the solution of the cross-correlation equation.

Example 3.1 The output of the plant is generated as follows:

y(t) =
q−1 + 0.5q−2

1 − 1.5q−1 + 0.7q−2
u(t) (3.39)

The designed closed-loop system is given in the form of the following refer-

ence model:

Td =
−0.0781q−1 − 0.0625q−2 − 0.0117q−3

1 − 1.5781q−1 + 0.6375q−2 − 0.0117q−3

which has two poles at 0.7794 and one pole at 0.019. Using the pole-
placement technique, the decorrelating controller can be easily computed

as: R◦(q−1) = 1 and S◦(q−1) = −0.0781 − 0.0234q−1 which gives ρ◦ =
[−0.0781 − 0.0234]T . The same structure is considered for the initial con-

troller with the initial parameter vector ρ0 = [0.075 0]T which represents
a proportional controller that stabilizes the closed-loop system.

Table 3.1: Influence of the modeling error

nÂ = deg(Â) 0 1 1 2 2

nB̂ = deg(B̂) 1 1 2 1 2
No. iter. 55 11 9 6 5

Consider the CbT variant where the instrumental variables are computed

using the current controller and the plant model Ĝ = B̂/Â identified in
closed loop. The reference signal r(t) is a PRBS generated by an 11-bit shift

register (data length N = 2047). Table 3.1 gives the number of iterations
needed to achieve a parametric distance of 1e-9, defined as PD = (ρi −
ρ◦)T (ρi − ρ◦), for different orders of the polynomials Â and B̂.

It is clearly seen that the speed of convergence depends on the order
of the identified plant model. Furthermore, note that Algorithm 3.2 gives

consistent estimates even when the plant is modeled only by a gain (nÂ = 0
and nB̂ = 1). �
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3.3.2 Relation to standard IFT

To facilitate comparison, the standard IFT method will be presented in
regression form. By substituting (2.42) and (2.44) in (2.43), one has

ρi+1 = ρi − γi

{
N∑

t=1

ψIFT (ρi, t)ψ
T
IFT (ρi, t)

}−1 N∑
t=1

ψT
IFT (ρi, t)εcl(ρi, t) (3.40)

where

ψT
IFT (ρi, t) =

[
∂K(ρ)

∂ρ
ye2(ρi, t)

]
(3.41)

It is interesting to compare the expression (3.40) with that of the correlation
approach with, for example, the instrumental variables ζ(ρ, t) = ψ̃(ρ, t):

ρi+1 = ρi − γi

{
N∑

t=1

ψ̃(ρ, t)ψ̂T (ρi, t)

}−1 N∑
t=1

ψ̃(ρ, t)εcl(ρi, t) (3.42)

It is clear that these two equations are very similar. However, in the presence
of noise, the methods are clearly different. The matrix in braces in (3.40) is

a biased Gauss-Newton approximation of the Hessian due to the disturbance
in the second experiment [34]. This generally decreases the convergence rate

of IFT in the neighborhood of the solution. Note that, with two additional
special experiments at each iteration of the IFT algorithm, one can construct

an unbiased estimate of the Hessian directly from data collected on the
closed loop system [76]. On the other hand, the estimate of the Jacobian
matrix in (3.42) is not affected by noise in the vicinity of the solution (since

ψ̃ is not correlated with the noisy part of the gradient estimate ψ̂). Thus,
even for the same number of iterations (three times more experiments for

the IFT for the tuning of two-degree-of-freedom controllers), it is expected
that the correlation method gives better results.

Although CbT and IFT are closely related methods, one should keep in

mind that they differ in two very important aspects: (i) underlying control
objective; (ii) way of obtaining the gradient estimates.

The two methods are compared in the following example. Observe that
two-degree-of-freedom controllers are tuned, which imposes a different con-
struction of the regressor vector for CbT, see Section 3.2.6.
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Example 3.2 Extensive Monte Carlo simulations have been performed in

order to compare the proposed correlation approach to standard IFT. The
simulated test system is given by the following transfer function:

G =
q−1 + 0.5q−2

(1 − 1.5q−1 + 0.7q−2)(1 − 0.5q−1)
(3.43)

The dominant dynamics is characterized by one very oscillatory mode. The
initial controller is calculated by pole placement using the following reduced-

order model:

Gd =
8q−1 + 2.6q−2

1 − 1.2q−1 + 0.6q−2
(3.44)

This model was purposely chosen as a poor approximation to the true plant

G. The first design specification is to obtain a closed-loop system that
preserves the natural frequency of the dominant mode of the open-loop

system, but with a damping factor of 0.95. As a second requirement, the
polynomial R(q−1, ρ0) should contain the fixed factor Rfix(q

−1) = 1−q−1 in

order to provide integral action. The precompensator T (q−1, ρ0) is chosen
to obtain unity closed-loop gain. The initial controller reads:

R(q−1, ρ0) = 1 − 0.7238q−1 − 0.2762q−2 (3.45)

S(q−1, ρ0) = 0.1189− 0.1565q−1 + 0.0637q−2 (3.46)

T (q−1, ρ0) = 0.0261 (3.47)

The instrumental variables based on identified closed-loop models (3.13) are
chosen. The plant model Ĝ is identified in closed loop using a second-order

ARMAX structure. Model-order mismatch is introduced to show that an
approximate model can be used in the calculations without significant loss

in performance.

In order to compare the standard IFT algorithm and CbT, the averaged

control criterion, ACC, is introduced:

ACC(i) =
1

nmc

nmc∑
k=1

J (k)(ρi) (3.48)

where nmc denotes the number of simulations and i denotes the iteration
number. J (k) is the IFT control criterion defined in (2.39) for the k-th
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Figure 3.1: Criterion J averaged over 100 noise realizations for IFT (thick line) and CbT
(thin line) over 400 iterations

Monte Carlo simulation. Although the criterion (2.39) is not minimized by

the CbT method, it is reduced because this method tries to suppress the
correlated part of the closed-loop output error.

In the first part, in order to compare the asymptotic behavior of two
algorithms, 100 Monte Carlo simulations are performed. For each simulation

run, the optimization is carried out over 400 iterations. Each experiment
is performed with a different realization of the measurement noise, which
is generated as a zero-mean, stationary, white Gaussian sequence with a

standard deviation σ = ± 0.025. The reference signal is a unit step.

A Gauss-Newton update direction with step size γi = 1 is used in the

IFT procedure. Penalty on the control effort is not incorporated in the
criterion. The step size γi = 1 is also chosen for CbT. The two approaches

are compared in terms of ACC in Fig. 3.1. It is clear from the figure that
IFT, as expected, converges to a lower value of the criterion ACC than CbT.

However, in the first iterations CbT reduces the criterion much faster.

Since, in practice, only the first few iterations are of interest, in the

second part, 500 simulations are performed, each with 9 iterations, i.e. 27
experiments in the case of IFT and 9 experiments for CbT. The simulation
conditions (measurement noise, reference signal and designed output) are
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Figure 3.2: Criterion J averaged over 500 noise realizations for IFT (solid) and CbT
(dashed) over 9 iterations

the same as those in the first part. Fig. 3.2 shows that CbT reaches the
final value after 6 iterations, while the cost with IFT decreases at a much

slower rate. Notice the remarkable speed of convergence and the low ACC
value for CbT. �

3.3.3 Asymptotic accuracy when N tends to infinity

In practice, the solution of the correlation equation may necessitate a large
number of iterations for convergence. Furthermore, the limited amount of

data points in each experiment affects the stochastic properties of the con-
troller parameter estimates. Finally, process disturbances and measurement
noise introduce errors in the solution. It is therefore of interest to study the

convergence rate of the algorithm. Other important questions that arise
in this context are when to stop the iterations and how close the resulting

controller is to the decorrelating one.

In this section, a confidence interval based on the covariance of the cor-

relation function is introduced. This confidence interval helps determine to
what extent the current controller decorrelates the closed-loop output error
from the reference signal. An expression, asymptotic in data length N , for



50 Chapter 3: Decorrelation Procedure

the accuracy of the controller parameters around the solution of the corre-

lation equation is derived. This allows one to construct a region around the
resulting controller that contains the decorrelating controller with a given
probability. An asymptotic expression for the accuracy of the controller

transfer function estimate that characterizes this region is also derived. An-
other reason for studying these properties is that the covariance matrix of

the controller parameter estimates helps choose optimal instruments in the
sense that they provide maximal accuracy.

When the number of data points N tends to infinity, the iterative proce-

dure (3.38) converges to the unique solution ρ◦ of the correlation equation
(3.4) provided that it exists. However, for a finite N , a different solution

to (3.4) results for each realization of the noise, i.e. instead of a unique
solution one has a set of solutions. This set is centered around ρ◦ and its

“size” depends strongly on the stochastic properties of the noise. The size
of this set is characterized by the covariance of the correlation equation.

Expressions that are asymptotic in N for this covariance are derived next.

The asymptotic expressions for the accuracy of the controller transfer
function estimate derived in this section are dual to the variance formulas

for the estimated plant model of an LTI system in the field of system identi-
fication [53, 54, 20]. To show this, the following assumptions are introduced

in this section: (i) the disturbance v(t) acting at the plant output (see upper
part of Fig. 2.1) can be expressed in the form:

v(t) = G(q−1)w(t) (3.49)

where w(t) is a zero-mean stationary random process, and (ii) G is inversely

stable. In addition, for mathematical convenience, the controller parameter
vector and the regressor vector are constructed differently compared to the
remainder of this thesis. That is, assuming ns = nr − 1 = n, the controller

parameter vector ρ̃ is written as follows:

ρ̃T = [ρ̃T
1 , ρ̃T

2 , . . . , ρ̃T
n ] (3.50)

where ρ̃T
l = [r(l), s(l−1)], l = 1, . . . n; dim(ρ̃) = nρ̃ = 2n. With (3.49) and

Assumption (ii), it can be considered as if w(t) acts at the plant input (see
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Figure 3.3: Closed-loop output error resulting from a comparison of the achieved and
designed closed-loop systems

upper part of Fig. 3.3):

u(ρ̃, t) = K(q−1, ρ̃)e(ρ̃, t) + w(t) (3.51)

It is assumed that the measurements of r(t) and y(ρ̃, t) are available. The

excitation signal r(t) is assumed to be uncorrelated with the disturbance
signal w(t). It is furthermore assumed that w(t) is described by:

w(t) = Hn(q
−1)η(t) (3.52)

where Hn(q
−1) is a linear, asymptotically stable and inversely stable noise

model, and η(t) the zero-mean white noise with variance σ2.

We denote
ϑT (ρ̃, t − 1) = [−u(ρ̃, t − 1), e(ρ̃, t)] (3.53)

and form the 2n-dimensional regressor vector

φT
ϑ (ρ̃, t) = [ϑT (ρ̃, t − 1), · · · , ϑT (ρ̃, t − n)]. (3.54)

Now, the derivative of εcl(ρ̃, t) with respect to ρ̃ can formally be expressed
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as:

ψT
ϑ (ρ̃, t) =

∂εcl(ρ̃, t)

∂ρ̃
=

B(q−1)

Ac(K(ρ̃), G)
φT

ϑ (ρ̃, t) (3.55)

Stopping condition

There is no use continuing the iterations if each element of the vector f(ρ̃i)
is within a confidence interval defined by the corresponding element on the
main diagonal of the covariance matrix of f̄(ρ̃◦). Let us assume that, based

on this idea, the iterative procedure stops after m iterations and the con-
troller ρ̃m is obtained. Then, from the expression for the covariance of f̄(ρ̃◦),
it is possible to calculate the asymptotic variance of the controller param-
eter estimates, as will be shown below. This variance, in turn, allows one

to construct the confidence ellipsoid around the optimal controller ρ̃◦ that
contains the controller ρ̃m with the probability Pm. Now, using the explicit
expression for the variance of the controller parameter estimates at the op-

timal solution, it is possible to construct around ρ̃m a region containing the
optimal controller ρ̃◦ with the same probability Pm. This region could be

interpreted as a controller uncertainty set. Expressions for this region that
are asymptotic in N are derived below for both the controller parameters

and the controller transfer function.

Using the Central Limit Theorem [54], the distribution of the random
variable

√
Nf̄(ρ̃◦) can be characterized. The following result can be estab-

lished.

Theorem 3.4 Consider expression (3.2). Suppose that the assumptions
A1-A4 and A7 hold. Then, as the data length N tends to infinity,

√
Nf̄(ρ̃◦)

tends in distribution to a normal distribution with zero mean and covariance
Pfn defined as:

Pfn = σ2E
{
ζfn(ρ̃

◦, t)ζT
fn(ρ̃

◦, t)
}

(3.56)

where ζfn(ρ̃
◦, t) = Hcl(ρ̃

◦)ζ(ρ̃◦, t) with

Hcl(ρ̃
◦) =

BR(ρ̃◦)

Ac(K(ρ̃◦), G)
Hn = GS(K(ρ̃◦), G)Hn =

∞∑
i=0

hiq
−i (3.57)

Proof. The proof follows the ideas of Theorem 5.1 and its corollary in
[74], p. 75, where the asymptotic distribution of parameter estimates for
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the extended IV open-loop estimator is investigated. Here, since the data

are collected in closed loop, the transfer function between the white-noise
input η(t) and the output y(t) is Hcl(ρ̃

◦) defined in (3.57). Considering that
the number of parameters is equal to the number of instrumental variables,

the proof follows easily. �

Using this result as a stopping condition, one can test whether the k-
th element of the correlation equation f(k, ρ̃i) falls inside the confidence
interval (see Fig. 3.4):

|f(k, ρ̃i)| ≤

√
P̂fn(k, k)

N
Nα ∀k = 1, . . . , nρ̃ (3.58)

where

P̂fn =
σ2

N

N∑
t=1

ζ̂fn(ρ̃i, t)ζ̂
T
fn(ρ̃i, t) (3.59)

and Nα is the α-level of the normal distribution N (0, 1). In ζ̂fn(ρ̃i, t), it is
necessary to replace G, Hcl and S by their estimates Ĝ, Ĥcl and Ŝ.

In practice, this test shows whether the selected controller order is ap-
propriate. If f(k, ρ̃i), ∀k = 1, . . . , nρ̃ does not enter the confidence interval

after a large number of iterations, the controller order should be increased.

Asymptotic variance of controller parameter estimates

The variance of the controller parameter estimates in the neighborhood
of the optimal controller is calculated as follows. Assume that the optimal

controller is used and one step of the iterative procedure is taken to produce
the neighboring estimate ρ̃nb:

ρ̃nb = ρ̃◦ − γiQ̂
−1
ϑ (ρ̃◦)f̄(ρ̃◦) (3.60)

where

Q̂ϑ(ρ̃
◦) =

1

N

N∑
t=1

ζ(ρ̃◦, t)ψ̂ϑ

T
(ρ̃◦, t) (3.61)

The random variable ρ̃nb − ρ̃◦ provides information regarding the accuracy
of the method around the solution, and its asymptotic covariance matrix
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Figure 3.4: Confidence interval around ρ̃◦ for nρ̃ = 1

characterizes the region containing ρ̃m. The following result can be obtained.

Theorem 3.5 Consider the parameter update law (3.60). Suppose that the
Assumptions A1-A4 and A7 hold. Furthermore, assume that the step size γi

is constant and equal to 1 throughout the iterations. Then, as the data length

N tends to infinity, the distribution of the random variable
√

N(ρ̃nb − ρ̃◦) is
asymptotically Gaussian:

√
N(ρ̃nb − ρ̃◦) ∈ As N (0, PCbT ) (3.62)

with the covariance matrix PCbT given as follows:

PCbT = Qϑ(ρ̃
◦)−1PfnQϑ(ρ̃

◦)−T (3.63)

where
Qϑ(ρ̃

◦) = lim
N→∞

Q̂ϑ(ρ̃
◦) = E

{
ζ(ρ̃◦, t)ψT

ϑ (ρ̃◦, t)
}

(3.64)

Proof. This assertion follows immediately from Theorem 3.4 and the
lemma A4.2 and its corollary in [74], p. 214. �

In practice, (3.63) can be evaluated by replacing the optimal controller
parameter vector ρ̃◦ by the current value ρ̃i. In the same way, since the
exact value of Qϑ(ρ̃

◦) is unknown, its estimate Q̂ϑ(ρ̃i) is calculated using
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expression (3.36).

Equations (3.56), (3.57) and (3.63) show that the covariance matrix PCbT

depends on the choice of the instrumental variable ζ in a rather complex

way. In addition, PCbT depends on the noise model Hn(q
−1) and the true

plant. Since both are unknown, it is difficult to optimize the accuracy of the
controller parameters. Fortunately, a solution to this problem has already

been proposed in the field of system identification [74], and it will be detailed
below.

Optimal choice of instrumental variables

In this section, a lower bound for PCbT is first established, and then the

choice of instrumental variables that makes this bound achievable is pre-
sented.

Let us denote by φ̃ϑ(ρ̃
◦, t) the noise-free part of the regressor vector

φϑ(ρ̃
◦, t):

φ̃ϑ(ρ̃
◦, t) = [ϑ̃T (ρ̃◦, t − 1), · · · , ϑ̃T (ρ̃◦, t − n)]T (3.65)

with

ϑ̃(ρ̃◦, t − 1) =

(
− AS(ρ̃◦)

Ac(K(ρ̃◦), G)
r(t − 1),

AR(ρ̃◦)

Ac(K(ρ̃◦), G)
r(t)

)T

(3.66)

Theorem 3.6 PCbT given in (3.63) is bounded from below by:

P = σ2E

{
1

R(ρ̃◦)Hn

φ̃ϑ(ρ̃
◦, t)

1

R(ρ̃◦)Hn

φ̃ϑ

T
(ρ̃◦, t)

}−1

(3.67)

Moreover, PCbT = P when the following relationship holds:

∞∑
i=0

ζ(ρ̃◦, t + i)hi =
1

R(ρ̃◦)Hn

φ̃ϑ(ρ̃
◦, t) (3.68)

Proof. This is similar to the proof of Theorem 6.1 in [74], p. 96. Taking
into account that ζ(ρ̃◦, t) is uncorrelated with w(t), it follows from (3.64)
with (3.55) and (3.57):
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Qϑ(ρ̃
◦) = E

{
ζ(ρ̃◦, t)

B

Ac(K(ρ̃◦), G)
φ̃T

ϑ (ρ̃◦, t)

}
= E

{
ζ(ρ̃◦, t)

∞∑
i=0

hiq
−i B

Ac(K(ρ̃◦))Hcl(ρ̃◦)
φ̃T

ϑ (ρ̃◦, t)

}

= E

{ ∞∑
i=0

ζ(ρ̃◦, t)hi

1

R(ρ̃◦)Hn

φ̃T
ϑ (ρ̃◦, t − i)

}

= E

{[ ∞∑
i=0

ζ(ρ̃◦, t + i)hi

]
1

R(ρ̃◦)Hn

φ̃T
ϑ (ρ̃◦, t)

}
(3.69)

Furthermore, the assumption of stationarity gives:

Pfn

σ2
= E

{ ∞∑
i=0

ζ(ρ̃◦, t + i)hi ×
∞∑
l=0

ζ(ρ̃◦, t + l)Thl

}
(3.70)

The matrix inequality

E

⎧⎨⎩
[

1

R(ρ̃◦)Hn

φ̃T
ϑ (ρ̃◦, t)

∞∑
i=0

ζT (ρ̃◦, t + i)hi

]T

×
[

1

R(ρ̃◦)Hn

φ̃T
ϑ (ρ̃◦, t)

∞∑
i=0

ζT (ρ̃◦, t + i)hi

]}
≥ 0 (3.71)

can equivalently be expressed as:

E

{
1

R(ρ̃◦)Hn

φ̃ϑ(ρ̃
◦, t)

1

R(ρ̃◦)Hn

φ̃T
ϑ (ρ̃◦, t)

}
−
[
E

{
1

R(ρ̃◦)Hn

φ̃ϑ(ρ̃
◦, t)

∞∑
i=0

ζT (ρ̃◦, t + i)hi

}

×E

{ ∞∑
i=0

ζ(ρ̃◦, t + i)hi

∞∑
i=0

ζT (ρ̃◦, t + i)hi

}−1

×E

{ ∞∑
i=0

ζ(ρ̃◦, t + i)hi

1

R(ρ̃◦)Hn

φ̃T
ϑ (ρ̃◦, t)

}]
≥ 0 (3.72)
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Now, from (3.63), (3.67), (3.69), (3.70), and (3.72), it follows that P−1
CbT ≤

P−1. Finally, it is easy to verify that PCbT = P when (3.68) holds. �

From (3.68), it is obvious that the choice of instruments

ζopt(ρ̃
◦, t) =

1

R(ρ̃◦)HnHcl(ρ̃◦)
φ̃ϑ(ρ̃

◦, t) (3.73)

provides best accuracy. However, in order to implement ζopt throughout
the iterations, one has to estimate the models of the noise Hn and the

plant G, which imposes additional computational effort on the algorithm.
In addition, in the filter in expression (3.73), the optimal parameters ρ̃◦

need to be replaced by the current values ρ̃i. This seems to be a reasonable
approximation considering the assumption that the current controller is in
the neighborhood of the optimal controller.

Note that the data collected in closed loop can be filtered by a linear filter.
This way, additional design variables are available to improve accuracy.

However, this issue will not be addressed in this thesis.

Asymptotic variance of transfer function estimate

This section derives the variance expression for the transfer function esti-
mate. This expression is asymptotic in both the number of data points and

the model order.

Since ρ̃nb is in the vicinity of ρ̃◦, it follows from (3.63) and the Gauss
approximation formula [54] that

√
N(K(ρ̃nb) − K(ρ̃◦)) ∈ As N (0,Pn(ω)) (3.74)

with

Pn(ω) = T (ω, ρ̃◦)PCbTT T (−ω, ρ̃◦) (3.75)

where T (ω, ρ̃◦) is a 2n-dimensional row vector representing the derivatives
of K(ρ̃◦) with respect to ρ̃.

The expression (3.75) is asymptotic in N , but exact in n. A simpler
expression can be obtained for n → ∞. To establish the result, the following

lemma from [88] will be used.

Lemma 3.1 Let R
(l)
n be a 2n × 2n block-Toeplitz matrix where the (i − j)
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2 × 2 block is rl(i − j). Let

Φl(ω) =
∞∑

τ=−∞
rl(τ)e−jωτ l = 1, 2

Then

lim
n→∞

1

n
Wn(ω)[R(1)

n ]−1R(2)
n W T

n (−ω) = [Φ1(ω)]−1Φ2(ω)

where
Wn(ω) =

[
e−jωI e−2jωI · · · e−njωI

]
(3.76)

I being the 2 × 2 identity matrix.

Proof. See the proof of Lemma 4.3 in [88]. �

Now, the result is given in the following theorem.

Theorem 3.7 As n and N tend to infinity, the variance of the controller

transfer function becomes:

VarK(ρ̃◦) � n

N

Φw(ω)

Φr
e(ω)

(3.77)

where Φr
e is the contribution of the reference signal r(t) to the spectrum of

the control error:

Φr
e(ω) = |S(ω)|2Φr(ω)

with Φr(ω) being the spectrum of the reference signal r(t).

Proof. Let us introduce the vector of instrumental variables

ζT (t) =
[
zT (t − 1), zT (t − 2), · · · , zT (t − n)

]
(3.78)

where
zT (t) =

[
Z1(q

−1)r(t), Z2(q
−1)r(t)

]
= Z(q−1)r(t). (3.79)

The derivative of K(ρ̃◦) with respect to ρ̃ can be expressed as:

T (ω, ρ̃◦) = Dϑ(ω, ρ̃◦)Wn(ω) (3.80)
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where

Dϑ(q
−1, ρ̃◦) =

[
− S(q−1, ρ̃◦)

R2(q−1, ρ̃◦)
,

q

R(q−1, ρ̃◦)

]
=

1

R(q−1, ρ̃◦)
ΓT (ρ̃◦) (3.81)

with ΓT (ρ̃◦) =
[
−K(q−1, ρ̃◦) q

]
.

Assume that a regularizing term λI is added to the right-hand side of

(3.64) and the resulting Qϑ(ρ̃
◦) = E

{
ζ(ρ̃◦, t)ψT

ϑ (ρ̃◦, t)
}

+ λI is used to cal-
culate PCbT in (3.63). The elements ϑ(ρ̃◦, t) of the regression vector φϑ(ρ̃

◦, t)
can be expressed as:

ϑ(ρ̃◦, t) =
AR(ρ̃◦)

Ac(K(ρ̃◦), G)
Γ(ρ̃◦)r(t) = S(K(ρ̃◦), G)Γ(ρ̃◦)r(t) (3.82)

with S(K(ρ̃◦), G) being the output sensitivity function. For the sake of
simplicity of notation, the arguments ρ̃◦ and G are omitted in the following

whenever appropriate. The cross-spectrum between ζ(t) and ψϑ(t) reads:

Φζψϑ
(ω) = Z(e−iω)S(eiω)

B(eiω)

Ac(eiω)
ΓT (eiω)Φr(ω) (3.83)

Similarly, the Fourier transform of the Toeplitz matrix Pfn in (3.56) reads:

Φζfn
(ω) = σ2

∣∣Hcl(e
−iω)

∣∣2 Z(e−iω)ZT (eiω)Φr(ω) (3.84)

Finally, applying lemma 2.1 twice to the inner product of (3.75) and (3.80)
gives:

Mλ(ω) = lim
n→∞

1

n
Wn(ω)PCbTW T

n (−ω)

=

(
ZS∗ B∗

Ac
∗Γ

∗TΦr + λI

)−1

× Φζfn

×
(
S B

Ac

ΓZ∗TΦr + λI

)−1

(3.85)

where the arguments are omitted for the sake of simplicity and an asterisk
is used to denote the complex conjugate. After straightforward but tedious
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calculation, the expression from (3.85) can be reformulated as

Mλ(ω) =
σ2|Hcl|2

|S|2| B
Ac
|2Φr

ZZ∗T

|ΓZ∗T + λI/(S B
Ac

Φr)|2
(3.86)

Now, from (3.57), (3.75), (3.80), (3.81) and (3.86), one has

P(ω) = lim
λ→0

lim
n→∞

1

n
Pn(ω, λ)

= lim
λ→0

Dϑ(w, ρ̃◦)Mλ(ω)DT
ϑ (−w, ρ̃◦)

= lim
λ→0

ΓT

R

σ2|RHn|2
|S|2Φr

× ZZ∗T

|ΓZ∗T + λI/(S B
Ac

Φr)|2
Γ∗

R∗

=
σ2|Hn|2
|S|2Φr

(3.87)

Combining this expression with (3.31), one finally obtains:

P(ω) =
Φw(ω)

Φr
e(ω)

(3.88)

where Φw denotes the spectrum of the random noise w(t) and Φr
e the con-

tribution of the reference signal r(t) to the spectrum of the control error.
The expression for the asymptotic variance of K(ρ̃◦) follows readily from

(3.88). �

The result (3.77) is interesting and not at all surprising. In fact, the
variance is proportional to the ratio of the noise spectrum to the contribu-
tion of the reference signal r(t) to the control error spectrum (Φw/Φr

e), with

the factor of proportionality being the ratio of the number of parameters
to the number of data points (n/N). This result is exactly dual to that in

system identification [53, 54, 20], where the covariance of the plant model
is proportional to the spectral ratio of the plant output noise and the plant

input signal, with the same factor of proportionality. Note also that the
estimate K(ρ̃◦) is asymptotically based on only input-output properties at
the frequency ω, i.e. independent of the choice of the instrumental variables.
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3.3.4 Algorithm

Now, having introduced the stopping condition, the controller parameters
are updated according to the following algorithm.

Algorithm 3.2 Starting with the initial controller K(q−1, ρi) =
Kd(q

−1), i = 0 computed using the model Gd(q−1), perform the following

steps:

(1) Collect N samples of the signals u(ρi) and y(ρi) from the closed-loop ex-

periment with the controller K(q−1, ρi) operating on the actual system.
If needed, filter u(ρi) and y(ρi) with Rfix and Sfix, respectively.

(2) Construct the vector of instrumental variables ζ(ρi) as one of the
choices presented in Section 3.2.3. Compute f̄(ρi) from (3.2) using

the acquired data and constructed ζ(ρi).

(3) Estimate the Jacobian using (3.36).

(4) Calculate the new controller parameter vector ρi+1 according to (3.38).
Add the fixed terms Rfix and Sfix if applicable.

(5) Using Gd or an identified model, test the stability of the closed-loop
system formed by this model and the controller K(q−1, ρi+1). If the test

fails, reduce γi in (3.38) as follows γi = αγi, 0 < α < 1, and go to step
(4).

(6) Replace i with i+1 and repeat steps (1)-(5) until the stopping condition
(3.58)-(3.59) is met.

3.3.5 Simulation example

In this section, a simulation example is provided in order to illustrate the
basic features of Algorithm 3.2.

Example 3.3 Consider that the plant output is generated by the discrete-
time model

y(t) =
(q−1 + 0.5q−2)(1 − 0.4q−1)

1 − 1.5q−1 + 0.7q−2
u(t) +

1 + 0.5q−1 + 0.5q−2

1 − 1.5q−1 + 0.7q−2
η(t) (3.89)



62 Chapter 3: Decorrelation Procedure

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time [s]

C
lo

se
d

lo
op

 r
es

po
ns

e

Figure 3.5: Closed-loop step responses: designed (solid), initial (dashed), obtained with
the decorrelation procedure after 8 iterations (dash-dot)

where η(t) is zero-mean, stationary, white Gaussian noise with standard
deviation σ = ± 0.025. Assume that the designed model of the plant is

Gd(q
−1) =

q−1 + 0.5q−2

1 − 1.5q−1 + 0.7q−2
(3.90)

and the controller satisfying certain control specifications for this model

reads

Kd(q
−1) =

0.025

1 − q−1
(3.91)

The step response of the designed closed-loop system (Kd, Gd) is presented

in Fig. 3.5 (solid line). However, the noise-free step response of the achieved
closed-loop system with the full-order model G and the designed controller
Kd (Fig. 3.5, dashed line) is far from the designed closed-loop response.

In this simulation study, a different realization of the noise η(t) is used in

each iteration. The level of the noise acting on the output of the closed-loop
system strongly depends on the controller used. The noise-to-signal ratio

varies considerably throughout the iterations. In the initial iteration, the
noise-to-signal ratio is over 20% in terms of variance. The reference signal
is a PRBS generated by a 10-bit shift register with data length N = 1023.
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Figure 3.6: Parametric distance versus iteration number

The fixed factor Rfix = (1−q−1) is included in the polynomial R to provide
integral action. Since the data length is sufficiently large, the correlation
function is assumed to be nearly deterministic and Algorithm 3.2 with γi = 1

is used. The plant model used in (3.37) for the estimation of the gradient
ψ̂ is identified in the first iteration using a second-order Output Error (OE)

structure. The decorrelating controller can be easily computed using (3.3)

K◦(q−1) =
0.025

(1 − q−1)(1 − 0.4q−1)
(3.92)

Hence, a controller with the same structure is chosen

K(q−1) =
s0

(1 − q−1)(1 + r1q−1)
(3.93)

The vector of the controller parameters to be updated is ρ = [r1, s0]
T and

that of the decorrelating controller ρ◦ = [−0.4, 0.025]T . The initial (de-

signed) controller parameter vector is ρd = [0, 0.025]T . Instrumental vari-
ables based on controller parameters are used, where an identified model

of the plant is used instead of Gd (the same model is used for the estima-
tion of the gradient, as mentioned above). The stopping condition (3.58)
with an α-level of 95% is met after 8 iterations. In spite of the presence
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of a significant amount of noise, the resulting closed-loop step response

(dash-dot) is very close to the desired one (Fig. 3.5). Fig. 3.6 gives the
evolution of the parametric distance, defined as PDi = (ρi − ρ◦)T (ρi − ρ◦),
as a function of the iteration number. The final controller with the pa-

rameter vector ρ8 = [−0.3994, 0.0253]T provides the parametric distance
PD8 = 7.4463× 10−7. �

3.4 Application to a magnetic suspension
system

In this section, the effectiveness of the decorrelation procedure is demon-

strated experimentally on a nonlinear and unstable magnetic suspension
system. First, the experimental set up is described. Then, the design of the
initial controller is explained, and the results of iterative tuning using the

proposed method and standard IFT are shown.

3.4.1 The magnetic suspension system

The magnetic suspension system is illustrated in Fig. 3.7. A ferromagnetic

sphere is suspended in the air using a magnetic force to compensate for the
gravitational force. The actuator in the system is a solenoid which produces
a magnetic force when current flows through the coil. The manipulated in-

put u is the voltage to a U/I (voltage-to-current) converter that supplies
current to the coil. The position of the sphere is measured by an optical

sensor: variations in the position of the sphere change the intensity of the
measured light, which in turn changes the voltage in the measurement cir-

cuit. The output y is the measured voltage corresponding to the position
of the sphere. The system is controlled by a Sun workstation via an I/O
board. A model of the system is needed to design the initial controller. A

momentum balance gives:

mẍ = Fg − Fm (3.94)

where m and x denote the mass of the sphere and its position, respectively,
Fg = mg denotes the gravitational force, while Fm denotes the magnetic
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Figure 3.7: Magnetic suspension system

force. The latter can be expressed as Fm = −1
2

dL
dx

i2, where L is the in-

ductance that decreases with x. The dynamics of the current i can be
approximated well by a first-order system. The current loop is controlled

by an analog high-gain controller and, therefore, its dynamics can be ne-
glected. Since dL

dx
depends nonlinearly on x, it is necessary to linearize the

system dynamics around a stationary point. The resulting transfer function
is given by:

Gd(s) =
Kui

τuis + 1

b

s2 − a
(3.95)

where Kui and τui denote the gain and the time constant of the U/I con-

verter, respectively. Note that the parameters a and b vary with the lin-
earization point. The linearization of equation (3.95) around the stationary

point x = 0.0525 m gives the values of the parameters that are shown in
Table 3.2.

Kui τui b a
0.1033 0.0173 15749.4 1238

Table 3.2: Model parameters obtained after linearization around the stationary point

The magnetic suspension system is unstable and requires a controller for
stabilization. The reference input, yref , is the voltage corresponding to the
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desired sphere position. The system is sampled at the frequency fs = 100

Hz.

It should be emphasized that this model will not be used in the iterative
scheme, and is computed only for determining a reasonable reference model

and the initial controller.

3.4.2 Experimental results

For implementation purposes, u and y correspond to deviations from a

stationary operating point (u0, y0). The value u0 is manually adjusted to
make y0 approach r0, the stationary value of the reference signal, without

static offset. A square wave signal is chosen as the reference r with an
amplitude of 0.3 V and a period of 1 s. The data length used in each
experiment is 4 s.

Discretization of equation (3.95) with the sampling rate 100 Hz gives the

following discrete-time model:

Gd(q
−1) =

0.0137q−1 + 0.0481q−2 + 0.0103q−3

1.0 − 2.6861q−1 + 2.1922q−2 − 0.5610q−3
(3.96)

The initial controller is in the form of a two-degree-of-freedom RST con-
troller. Pole placement is used to compute the coefficients of the polynomials

R(q−1, ρ0) and S(q−1, ρ0), while the precompensator T (q−1, ρ0) is chosen to
obtain unity closed-loop gain. The initial RST polynomials are:

R(q−1, ρ0) = 1 + 0.6859q−1 + 0.1631q−2 (3.97)

S(q−1, ρ0) = 21.8601− 26.7734q−1 + 8.1504q−2 (3.98)

T (q−1, ρ0) = 1.8297 (3.99)

Since Gd is only a rough approximation of the real system in the vicinity
of the operating point, the designed and achieved closed-loop responses

differ considerably as seen in Fig. 3.8. In order to improve the closed-
loop performance, and to make the responses of the achieved and designed

closed-loop systems as close as possible, two iterative tuning procedures are
used and compared.

The standard IFT scheme with the following design choices is applied
first: Gauss-Newton direction, step size γi = 1, control weight λ = 0.
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Figure 3.8: Closed-loop response achieved with the initial RST controller (solid) and de-
signed response (dashed)

At each step of the iterative design, a second experiment is performed by
feeding back, at the reference input, the error between the reference signal

and the output of the first experiment. The third experiment is performed
in the same way as the first experiment. The closed-loop response obtained
after 8 iterations (24 experiments) is shown in Fig. 3.9 (solid line), with the

designed response shown as a dashed line. The resulting closed-loop system
has dynamics and static gain very close to the desired ones. The cost J in

(2.39) is reduced by 93%.

Then, starting with the same initial controller and using the input-output

data of the first experiment in the first iteration of the IFT procedure, a
new controller is calculated using the correlation approach. In this way,
it is ensured that both iterative tuning techniques have the same initial

conditions. The step size is also fixed at γi = 1. An ARMAX structure
(na = 3, nb = 3, nc = 3, nk = 1) is considered for the plant model and no

special effort is carried out for order estimation or model validation in order
to show that the algorithm is not very sensitive to modeling error. After

6 iterations, this procedure leads to the closed-loop response shown in Fig.
3.10 (solid line). A comparison with the initial response (Fig. 3.8) shows
that CbT improves the performance significantly.
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Figure 3.9: Closed-loop response achieved with the IFT after 8 iterations (solid), and
designed response (dashed)
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Figure 3.10: Closed-loop response achieved with the CbT after 6 iterations (solid), and
designed response (dashed)
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Iteration 0 1 2 3 4 5 6 7 8
IFT 1.9454 0.6722 0.3246 0.1919 0.1455 0.1671 0.2507 0.1483 0.1217
CbT 1.9454 0.4680 0.1589 0.1126 0.1303 0.0830 0.0590 0.1156 0.0920

Table 3.3: Observed sum of squared output errors of 9 successive controllers for both IFT
and CbT

Although the correlation approach calculates the parameters of the con-

troller by solving the correlation equation (3.4), it can also reduce the sum
of squared output errors with a specific choice of the instrumental variables.

Table 3.3 compares the observed sum of squared output errors of 9 succes-
sive controllers for both IFT and CbT. It is evident that the correlation

approach converges faster than standard IFT. Note that the value obtained
with CbT after 3 iterations (i.e. 3 experiments) is less than that of IFT
after 8 iterations (and 24 experiments). This may be explained intuitively

by the fact that the estimation of the Hessian is affected by noise, whereas
the estimation of the Jacobian is not.

3.5 Conclusions

In this chapter, decorrelation of the closed-loop output error and the refer-
ence signal is considered for tuning the controller parameters using closed-

loop data. From a theoretical point of view, solving the correlation equation
using the stochastic approximation method has many advantages. The ap-

proach is very simple and converges to a unique solution of the correlation
equation. The results are not asymptotic in the number of data N but in

the number of iterations. The gradient of the closed-loop output error is not
directly involved in the solution and is used only to construct the instru-

mental variables. This way, an approximate gradient leads to the correct
solution under some weak conditions. However, the convergence rate may
be too slow for practical implementation on real plants.

In practice, if the number of data N is sufficiently large, the fast conver-
gent Newton-Raphson algorithm can be used to solve the equation. With

this method, a gradient estimate of the performance criterion is required.
Nevertheless, an unbiased gradient estimate is not a must, i.e. the algorithm
converges toward the solution even when this estimate is not accurate. The
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decorrelation procedure is applied to a nonlinear magnetic suspension sys-

tem and excellent results are obtained already after a few iterations.
Observe that, when the number of controller parameters is small, the

cross-correlation function represents the correlation between the closed-loop

output error and the reference signal computed for only few delays. In other
words, the computed K(ρ◦) does not necessarily decorrelate these two sig-

nals for other delays. One solution to overcome this problem would be to
increase the number of controller parameters. However, if the controller

order is too high, this will induce pole-zero cancellations in the tuned con-
troller transfer functions, which, in turn, will lead to numerical problems in

the algorithm. A more elegant solution would be to adopt a FIR controller
structure. This way, there are no numerical problems even when the con-
troller order is overestimated. However, since the plant can be of high order

in many practical situations, perfect decorrelation would require the use of
rarely acceptable high-complexity controllers.

Note that the size of the instrumental variable vector represents the
number of lags in which the correlation between ε(ρ, t) and r(t) is computed.

If one computes the controller parameters by minimizing a norm of the
cross-correlation function, then the size of the instrumental variable vector

is independent of the controller order. Hence, the cross-correlation function
can be computed for a large number of delays regardless the controller order.
This is the topic of the next chapter.



Chapter 4

Correlation Reduction

4.1 Introduction

If one considers that the order of the true plant G is infinite, perfect decorre-
lation of the closed-loop output error and the reference signal would require
an infinite-order controller. In other words, in the context of restricted-

complexity controllers, the solution of the correlation equation (3.4) does
not exist. This means, in turn, that Algorithms 3.1 and 3.2 cannot be used

to update the parameters of a restricted-complexity controller. A natural
way to circumvent this problem is to reformulate the control design criterion

as the minimization of the two-norm of the cross-correlation function (3.1).
The scheme relying on this new criterion is labeled the correlation-reduction
method.

Ideally, to claim that two signals are not correlated, one should verify the
correlation between these two signals for all delays. In practice, however, one
can verify this cross-correlation only for a finite number of delays. Within

the decorrelation procedure, the controller parameters are updated so as to
ensure that the closed-loop output error and the reference signal are not

correlated in nζ delays. Since the number of instrumental variables nζ is
equal to the number of controller parameters nρ for this CbT variant, when

nρ is small there is a possibility that there exist delays for which these two
signals are correlated. In contrast, within the correlation-reduction method,

nζ does not depend on nρ. Therefore, nζ can be chosen freely so as to better
reflect the correlation between the closed-loop output error and the reference
signal.

The two-norm of the cross-correlation function can be minimized itera-

71
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tively using the extended instrumental variables method. It can be shown

that the iterative algorithm converges to a local minimum provided that an
unbiased gradient of the criterion with respect to the controller parameters
is available. The frequency behavior of the resulting closed-loop system is

compared with that of the designed one using the asymptotic frequency
interpretation of the criterion. The analysis shows that the achieved closed-

loop system approaches the designed one in terms of the output and com-
plementary sensitivity functions. In addition, it is shown that under certain

conditions the achieved controller automatically compensates for additive
uncertainties. In other words, in the frequency regions where the additive

uncertainties are not large, the achieved controller is close to the designed
one, whilst in the frequency regions where the additive uncertainties are
large, the gain of the achieved controller is reduced to improve the robust-

ness of the system.

The design specifications for tracking and output disturbance rejection

can be handled using the aforementioned criterion. However, one could also
make demands on the input sensitivity function. In order to handle mixed
sensitivity specifications, this criterion can be generalized by adding the

two-norm of the cross-correlation function between the closed-loop input
error and the reference signal. This way, the desired closed-loop output can

be attained while taking into account some penalty on the control action, i.e.
it is possible to make a trade-off between the specifications given in terms

of the output sensitivity and those given in terms of the input sensitivity
function. Analysis of the proposed generalized criterion in the frequency

domain reveals the benefit of incorporating the new term.

The CbT approach was originally proposed for the model-following prob-
lem. Nevertheless, this approach can be adapted for tuning restricted-order

controllers that need to reject disturbances in certain frequency regions.
Assuming the disturbance signal can be measured, the idea is to tune the
controller parameters such that the closed-loop output be uncorrelated with

the measured disturbance. This concept can be used even in the case where
the disturbances cannot be measured but there is the possibility of injecting

a known test signal.

Similarly to the decorrelation procedure, when a large number of data
is available, it is possible to use some of the fast converging determinis-
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tic schemes such as the Gauss-Newton algorithm. Within this context, a

stopping condition based on the statistical properties of the criterion is pro-
posed.

The correlation-reduction method is applied to solve the benchmark

problem of the special issue of the European Journal of Control on “De-
sign and optimization of restricted-complexity controllers” [79, 51]. The

benchmark problem involves the design of the simplest controller capable of
ensuring good disturbance rejection for an active suspension system. The

control specifications are stated in terms of constraints on the sensitivity
functions. Although the CbT procedure does not consider specifications in
the frequency domain explicitly, these can be met thanks to a frequency

analysis of the criterion.

Chapter outline: The control design criterion is introduced in Section
4.2, and the iterative procedures for its minimization are given in Section
4.3. A frequency-domain analysis of the tuning criterion is presented in

Section 4.4. A generalization of the tuning criterion is developed in Section
4.5. Section 4.6 introduces a stopping condition for the iterative algorithm.

The algorithm is summarized in Section 4.7. Section 4.8 briefly presents
the correlation approach for the regulation problem. The penultimate sec-

tion describes the application of this approach to the benchmark problem.
Finally, some concluding remarks are given in Section 4.10.

4.2 The control design criterion

Let the vector of instrumental variables be chosen as

ζ(t) = [r(t + nz) · · · r(t) · · · r(t − nz)]
T (4.1)

where nz is large enough with respect to the order of the closed-loop system.
In this case, since the number of equations is greater than the number

of controller parameters, there is no solution to the correlation equation.
Therefore, a correlation criterion can be reformulated as follows

J(ρ) = fT (ρ)f(ρ) = E{f̄T (ρ)}E{f̄(ρ)} =

τ=nz∑
τ=−nz

R2
oe(τ) (4.2)



74 Chapter 4: Correlation Reduction

where

Roe(τ) = E{εoe(ρ, t)r(t− τ)} (4.3)

is the cross-correlation function between εoe(ρ, t) and r(t). This criterion
represents a better indicator of the correlation between signals than the

correlation equation (3.4) since it does not depend on the controller order.
Moreover, the global minimum of the criterion corresponds to the solution

of the correlation equation, if one exists. However, with a finite number of
data, the criterion (4.2) cannot be directly minimized using the Robbins-

Monro procedure because J(ρ) cannot be represented as the mathematical
expectation of a stochastic function. Therefore, let us define the following

criterion
Ju(ρ) = E{f̄T (ρ)f̄(ρ)} (4.4)

This criterion can be minimized using the stochastic approximation method.

Moreover, by developing the following expression,(
f̄(ρ) − f(ρ)

)T (
f̄(ρ) − f(ρ)

)
≥ 0

f̄T (ρ)f̄(ρ) − f̄T (ρ)f(ρ) − fT (ρ)f̄(ρ) + fT (ρ)f(ρ) ≥ 0

applying mathematical expectation to it, and taking into account (3.1), one
has

E
{
f̄T (ρ)f̄(ρ)

}
− fT (ρ)f(ρ) ≥ 0

Ju(ρ) ≥ J(ρ). (4.5)

In fact, Ju(ρ) is an upper bound of J(ρ). In addition, with an ergodicity
assumption on the signals, Ju(ρ) tends to J(ρ) when N tends to infinity.

4.3 Iterative solution

4.3.1 Robbins-Monro procedure

The criterion (4.4) can be minimized using the following iterative algorithm

ρi+1 = ρi − γiJ
′
u(ρi) (4.6)
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where

J ′
u(ρi) = Q̄T (ρi)f̄(ρi) (4.7)

and

Q̄(ρi) =
∂f̄

∂ρ

∣∣∣∣
ρi

=
1

N

N∑
t=1

ζ(t)ψ̂T (ρi, t). (4.8)

This algorithm converges to a local minimum of the criterion under As-
sumptions A1-A5 and Condition C1 of Theorem 3.1 provided that ψ̂(ρi, t)

is an unbiased estimate of the gradient of the closed-loop output. Note
that Condition C2 of Theorem 3.1 is inherently satisfied when the equation

to be solved is the gradient of a quadratic criterion. The estimate of the
closed-loop output gradient can be obtained without any model of the plant
by an extra special experiment on the system at each iteration as is pro-

posed in the IFT approach [31]. Another approach uses the designed model
for computing the gradient (from Eq. 3.37) which does not need a new

experiment. However, in this case, the local convergence of the criterion
cannot be guaranteed. Another possibility for computing the gradient is to

use the identified full-order model. If this model is unbiased the algorithm
converges.

4.3.2 Gauss-Newton algorithm

When the number of data N is large enough, the correlation function (3.2)

may be considered as a deterministic function and its two-norm can be
minimized using the Gauss-Newton iterative algorithm giving faster con-

vergence. Thus
ρi+1 = ρi − γiQ̄

+(ρi)f̄(ρi) (4.9)

where Q̄+(ρi) is the pseudo-inverse of Q̄(ρi):

Q̄+(ρi) =
[
Q̄(ρi)Q̄(ρi)

T
]−1

Q̄(ρi) (4.10)

Upon comparing (4.6), (4.7) and (4.9), (4.10) one notices that the term in
brackets in (4.10) corresponds to an approximation of the Hessian matrix.
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4.4 Frequency-domain analysis of the con-
trol design criterion

In this section the frequency characteristics of the achieved closed-loop sys-
tem are compared with those of the designed closed-loop system. The rela-
tion between cross-correlation functions and spectral density functions helps

one to obtain an asymptotic equivalent of the criterion in the frequency do-
main.

When nz in (4.2) tends to infinity, and using Parseval’s formula, the

criterion in the frequency domain reads as

lim
nz→∞

J(ρ) = lim
nz→∞

τ=nz∑
τ=−nz

R2
oe(τ) =

1

2π

∫ π

−π

|Φoe(ω)|2dω (4.11)

where Φoe(ω) is the cross-spectral density of εoe(ρ, t) and r(t). It should be
mentioned that to obtain a good approximation in the frequency domain,
the number of data N and the number of delays in the cross-correlation

function nz should be sufficiently large. However, the number of lags nz

should be less than N/2 to have a good estimation of the cross-correlation

function. On the other hand, as Roe(τ) is negligible for large values of τ , a
reasonable value of nz ensures perfect decorrelation between the reference

signal and the output error1.

Also, the closed-loop output error can be expressed as

εoe(ρ, t) = (T (K(ρ), G)− Td) r(t) + S(K(ρ), G)v(t) (4.12)

Now, using the fact that r(t) and v(t) are not correlated, Φoe(ω) is given by

Φoe(ω) =
(
T (ejω, K(ρ), G)− Td(e

jω)
)
Φr(ω) (4.13)

where Φr(ω) is the spectral density of the reference signal r(t). Thus, the
criterion can be presented asymptotically in the frequency domain as

lim
nz→∞

J(ρ) =
1

2π

∫ π

−π

|T (ejω, K(ρ), G)− Td(e
jω)|2Φ2

r(ω)dω (4.14)

1Normally, one should choose nz to cover the non-zero part of the impulse response of the closed-loop
system; however, since this quantity is not known, one can approximate it with a value larger than the
closed-loop system order
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It is interesting to compare this criterion with that of the closed-loop output

error minimization (2.39) in the frequency domain. Using the expression of
εoe(ρ, t) in (4.12), straightforward calculations give:

Jε(ρ) =
1

2π

∫ π

−π

{
|T (ejω, K(ρ), G)− Td(e

jω)|2Φr(ω)

+ |S(ejω, K(ρ), G)|2Φv(ω)
}

dω (4.15)

This criterion shows that there is a trade-off between noise attenuation
(through the sensitivity function S(ejω, K(ρ), G)) and model following (from

|T (ejω, K(ρ), G) − Td(e
jω)|). One can see clearly that the criterion based

on the correlation approach (4.14) is not influenced by the noise signal v(t)
and that the spectral density of the reference signal is emphasized with a

power of two in the criterion.

If the reference signal is white noise and nz tends to infinity, one has:

ρmin Δ
= arg min

ρ

∫ π

−π

|T (ejω, K(ρ), G)− Td(e
jω)|2dω

= arg min
ρ

∫ π

−π

|S(ejω, K(ρ), G)− Sd(e
jω)|2dω

= arg min
ρ

∫ π

−π

|S(ejω, K(ρ), G)|2|KG − KdGd|2|Sd(e
jω)|2dω (4.16)

These relations show that the achieved complementary sensitivity func-
tion T (ejω, K(ρ), G) and, consequently, the achieved sensitivity function

S(ejω, K(ρ), G) tend to their respective designed functions. Thus, the tuned
controller ensures the designed performance in tracking and disturbance re-
jection for the real closed-loop system (robust performance). It can also be

seen that the open-loop gain of the real system KG will be close to the de-
signed one KdGd in the frequencies where the magnitude of the sensitivity

function is high.

Now, consider the effect of the tuned controller on the input sensitivity
function U(K(ρ), G). For this purpose expression (4.16) is rearranged as
follows (the arguments are omitted):
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ρmin = arg min
ρ

∫ π

−π

|S|2 {|Gd(K − Kd)

+K(G − Gd)|2
}
|Sd|2dω (4.17)

Consider the frequency regions where Gd is small but the additive uncer-
tainty (G−Gd) is large (the middle and high frequencies). In these regions,

the algorithm tries to minimize |U(K(ρ), G)|2|G − Gd|2|Sd|2. Since Sd is
approximately 1 at high frequencies, the amplitude of the input sensitivity
function U(ρ) is reduced where the additive uncertainties are large (robust

stability).

The robustness properties of the proposed tuning method are illustrated
through the simulation example that follows.

Example 4.1 The plant G(s) = B(s)/A(s), taken from [72], with

B(s) = 6.599 · 10−5s9 − 2.552 · 10−3s8 − 0.1264s7

−0.2836s6 − 4.195s5 + 6.983s4 − 13.74s3

+215.2s2 + 144.0s + 1057

A(s) = s9 + 2.401s8 + 32.68s7 + 54.78s6

+347.2s5 + 351.2s4 + 1256s3

+488.8s2 + 635.3s + 105.9

is considered. The plant model is discretized using the sampling period
Ts = π/8. The initial controller is calculated by pole placement using the
following identified 4th-order model Gd(q

−1) = Bd(q
−1)/Ad(q

−1) with

Bd(q
−1) = −4.51 · 10−4q−1 + 0.0218q−2

+0.0378q−3 + 0.0152q−4

Ad(q
−1) = 1 − 2.721q−1 + 2.516q−2

−0.751q−3 − 0.0366q−4

The log-magnitude Bode plots of the plant G and the model Gd are shown
in Fig. 4.1. The curves corresponding to G and Gd show quite a good
match around the first resonant mode at 0.765 rad/s, whereas there is a
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Figure 4.1: Bode plots of G(ejωTs) (dash-dot) and Gd(e
jωTs) (solid)

large discrepancy around the second resonant mode at 3.45 rad/s.

The design objective is to damp the dominant oscillatory modes of the
open-loop system, while still preserving their natural frequencies. The con-

troller contains two fixed terms. Firstly, to enforce no static error and
to suppress low frequency disturbances, the integrator Rfix = 1 − q−1

is included in the polynomial R. Secondly, to avoid noise amplification
and control signal saturation a factor Sfix = 1 + 0.975q−1 is included in

the polynomial S, which reduces the controller gain close to the Nyquist
frequency. The resulting 5th-order initial controller Kd = K(q−1, ρ0) =
Sd(q

−1)/Rd(q
−1) is given as follows:

Sd(q
−1) = (1 + 0.975q−1) ·

(
0.4177− 1.4736q−1

+1.6283q−2 − 0.5154q−3 − 0.0560q−4
)

Rd(q
−1) = (1 − q−1) ·

(
1 − 0.2841q−1 + 0.2301q−2

+0.0521q−3 + 0.0138q−4
)

A 7th-order controller K is to be tuned on the real system. Note that
the order of the optimal controller K◦ that would perfectly decorrelate the
output error εoe with the instrumental variables ζ is 18 (there is no zero-
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Figure 4.2: Magnitude plots of the complementary sensitivity functions: designed Td(e
jωTs)

(solid), initial T (ejωTs, Kd, G) (dashed) and final T (ejωTs, K(ρ), G) (dash-dot)

pole cancellation between the transfer functions G and KdGd in (3.3)). The
instrumental variable vector is chosen as in (4.1) with nz = 19.

The tuning procedure is carried out in 8 iterations, with each one being
performed using a different realization of the noise v(t) with a noise-to-

signal ratio of about 7.5% in terms of variance. The reference signal is a
PRBS generated by a 7-bit shift register with data length N = 2048. In all

iterations, the constant step size γi = 0.5 is used.

Fig. 4.2 shows the complementary sensitivity functions Td, T (Kd, G) and

T (K(ρ), G) for the designed, initial and final closed-loop systems, respec-
tively. It can be seen that, though the obtained controller K reduces the

peak of the complementary sensitivity function around 3.45 rad/s, it does
not suppress it completely. This can be explained by the fact that the order

of the controller is not sufficient for perfect decorrelation.

Fig. 4.3 depicts the corresponding sensitivity functions Sd, S(Kd, G) and

S(K(ρ), G). A comparison of the curves shows the great similarity of the
designed and resulting sensitivity functions. This leads to the conclusion

that the resulting closed-loop system exhibits robust performance.

The input sensitivity functions U(Kd, G) and U(K(ρ), G) are given in Fig.
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Figure 4.3: Magnitude plots of the output sensitivity functions: designed Sd(e
jωTs) (solid),

initial S(ejωTs , Kd, G) (dashed) and final S(ejωTs , K(ρ), G) (dash-dot)
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Figure 4.4: Magnitude plots of the input sensitivity functions: designed Ud(e
jωTs) (solid),

initial U(ejωTs, Kd, G) (dashed) and final U(ejωTs, K(ρ), G) (dash-dot)
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4.4 together with that of the designed model Ud. These curves clearly show

that the resulting controller K reduces the sensitivity function U(K(ρ), G)
at the frequencies where the model uncertainty is large (around 3.45 rad/s),
thus trying to improve robustness. �

4.5 Generalized correlation criterion

The frequency domain analysis of the correlation criterion (4.2) showed

that the difference between the desired and achieved complementary sensi-
tivity functions is minimized. However, when minimizing this criterion, the
achieved input sensitivity function U(ejω, K(ρ), G) does not necessarily ap-

proach the designed one Ud. At some frequencies U(ejω, K(ρ), G) obtained
by controller tuning may grow large, i.e. at some frequencies the controlled

input u(t) may exert a substantial effort on the actuators. In order to han-
dle mixed sensitivity specifications, a generalized correlation criterion can

be defined as follows

Jg(ρ) = koeE{f̄T (ρ)f̄(ρ)} + kieE{ḡT (ρ)ḡ(ρ)} (4.18)

where koe and kie are positive weighting factors and

ḡ(ρ) =
1

N

N∑
t=1

ζ(t)εie(ρ, t) (4.19)

with εie(ρ, t) being the closed-loop input error defined in (2.11). This way,
both the input and the output of the achieved closed-loop system will follow

the corresponding desired signals independently of the noise dynamics.

From Fig. 4.5, εie(ρ, t) can be written as:

εie(ρ, t) = [U(K(ρ), G)− Ud] r(t) − U(K(ρ), G)v(t) (4.20)

Considering the vector of instrumental variables given in (4.1), and letting
nz tend to infinity, gives asymptotically (after straightforward calculations
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Figure 4.5: Closed-loop input error resulting from a comparison of the achieved and de-
signed closed-loop systems

similar to those in Section 4.4):

lim
nz→∞

Jg(ρ) =
1

2π

∫ π

−π

[
koe|T (ejω, K(ρ), G)− Td(e

jω)|2

+kie|U(ejω, K(ρ), G)− Ud(e
jω)|2

]
Φ2

r(ω)dω (4.21)

If r(t) is white noise, one has:

ρmin = arg min
ρ

∫ π

−π

{
koe|T (ejω, K(ρ), G)− Td(e

jω)|2

+ kie|U(ejω, K(ρ), G)− Ud(e
jω)|2

}
dω

= arg min
ρ

∫ π

−π

{
koe|S(ejω, K(ρ), G)− Sd(e

jω)|2

+ kie|U(ejω, K(ρ), G)− Ud(e
jω)|2

}
dω (4.22)

This relation shows that there is a trade-off between the minimization of

||S(K(ρ), G) − Sd||2 and that of ||U(K(ρ)) − Ud||2. By minimizing this
criterion, the mixed sensitivity specifications are satisfied, and the achieved

closed-loop system tries to preserve the robustness properties of the designed
one. Furthermore, it is easy to see that the criterion (4.18) is not influenced
by the disturbance signal v(t). With regard to this criterion, two extreme
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cases can be considered: (i) when (koe, kie) = (1, 0), (4.22) reduces to (4.14)

and S(K(ρ), G) is forced toward Sd; (ii) when (koe, kie) = (0, 1), U(K(ρ), G)
is pushed toward its designed function Ud.

The criterion can be minimized using the stochastic approximation or the

Gauss-Newton method when the number of data is sufficiently large (the
variation of the criterion for a fixed controller can be ignored in experiments

with different noise realizations).

The properties of the proposed generalized correlation criterion are illus-

trated by an example.

Example 4.2 Consider the following 4th-order true plant:

G =
0.385q−2 + 0.525q−3

1 − 1.353q−1 + 1.55q−2 − 1.282q−3 + 0.915q−4

The system has two very lightly damped resonant modes and one unstable
zero. The following second-order model Gd has been identified:

Gd =
0.6043q−2 − 0.1562q−3 − 0.0306q−4

1 − 1.5822q−1 + 0.9629q−2

Let the initial 3rd-order controller Kd be:

Kd =
−0.1530q−1 − 0.038q−2

1 − 0.8093q−1 + 0.2141q−2 − 0.012q−3

When Kd is applied to the true plant G, there is significant discrepancy be-

tween the designed Sd and the initial S(Kd, G) output sensitivity functions
due to model mismatch (see solid and dashed lines in Figs. 4.6 and 4.7). To

improve the behavior of the closed-loop system, a 4th-order controller K is
tuned on the true plant for three different choices of the weighting factors
koe and kie. The tuning procedure is carried out in 8 iterations with each

iteration being performed using a different realization of the disturbance
signal v(t) with a noise-to-signal ratio of 7% in terms of variance. The vec-

tor of instrumental variables is chosen as in (4.1) with nz = 72, and the
reference signal r(t) is a PRBS generated by a 7-bit shift register with data

length N = 2048. In all iterations, the initial step size γi = 0.5 is used. If
the algorithm provides a controller that destabilizes the closed-loop system,
the step-size is then divided by 2.
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Figure 4.6: Output sensitivity functions: designed Sd(e
jω) (solid), initial S(ejω, Kd, G)

(dashed) and final S(ejω, K(ρ), G) (dash-dot) for (koe, kie) = (1, 0)

0.5 1 1.5 2 2.5 3

10
2

10
1

10
0

Frequency [rad/s]

M
ag

ni
tu

de

Figure 4.7: Input sensitivity functions: designed Ud(e
jω) (solid), initial U(ejω, Kd, G)

(dashed) and final U(ejω, K(ρ), G) (dash-dot) for (koe, kie) = (1, 0)
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Figure 4.8: Output sensitivity functions: designed Sd(e
jω) (solid), initial S(ejω, Kd, G)

(dashed) and final S(ejω, K(ρ), G) (dash-dot) for (koe, kie) = (0, 1)

The first choice of weighting factors (koe, kie) = (1, 0) corresponds to

the minimization of ||S(K(ρ), G) − Sd||2. Fig. 4.6 shows the output sensi-
tivity functions Sd, S(Kd, G) and S(K(ρ), G) for the designed, initial and

final closed-loop systems, respectively. It can be seen that S(Kd, G) and
S(K(ρ), G) are almost superposed, i.e. the tuning algorithm has succeeded
in minimizing ||S(K(ρ), G) − Sd||2 to a large extent. However, comparing

the corresponding input sensitivity functions Ud, U(Kd, G) and U(K(ρ), G)
shown in Fig. 4.7, it is easy to see that U(K(ρ), G) becomes large at high

frequencies.

For (koe, kie) = (0, 1), ||U(K(ρ), G)−Ud||2 is minimized. Figs. 4.8 and 4.9
depict the corresponding output sensitivities Sd, S(Kd, G) and S(K(ρ), G),

and input sensitivities Ud, U(Kd, G) and U(K(ρ), G). A comparison of the
curves shows that, though the resulting controller K has not succeeded in

reducing the peak of the output sensitivity function S(K(ρ), G), the final
input sensitivity function U(K(ρ), G) is very similar to Ud.

Finally, for the case (koe, kie) = (0.5, 0.5), there is a trade-off in minimiz-

ing ||S(K(ρ), G)−Sd||2 and ||U(K(ρ), G)−Ud||2. Figs. 4.10 and 4.11 show
that the resulting controller K has reduced the peak of the output sensitiv-
ity function S(K(ρ), G) and, at the same time, the discrepancy between Ud
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Figure 4.9: Input sensitivity functions: designed Ud(e
jω) (solid), initial U(ejω, Kd, G)

(dashed) and final U(ejω, K(ρ), G) (dash-dot) for (koe, kie) = (0, 1)
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Figure 4.10: Output sensitivity functions: designed Sd(e
jω) (solid), initial S(ejω, Kd, G)

(dashed) and final S(ejω, K(ρ), G) (dash-dot) for (koe, kie) = (0.5, 0.5)
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Figure 4.11: Input sensitivity functions: designed Ud(e
jω) (solid), initial U(ejω, Kd, G)

(dashed) and final U(ejω, K(ρ), G) (dash-dot) for (koe, kie) = (0.5, 0.5)

Table 4.1: Results of tuning

Iteration ||S(K(ρ), G) − Sd||2 ||U(K(ρ), G) − Ud||2
1st 0.3002 0.0388

koe = 1, kie = 0 8th 0.0284 0.4209
koe = 0, kie = 1 8th 0.1493 0.0091
koe = kie = 0.5 8th 0.1018 0.0284

and U(K(ρ), G) remains small.

Table 4.1 gives the performance of the tuning procedure as a function
of the weighting factors koe and kie. These numerical results confirm the
qualitative shapes seen in Figs. 4.6-4.11. The minima of ||S(K(ρ), G)−Sd||2
and ||U(K(ρ), G) − Ud||2 are achieved for (koe, kie) = (1, 0) and (koe, kie) =
(0, 1), respectively. However, when minimizing only ||S(K(ρ), G)−Sd||2 or

||U(K(ρ), G) − Ud||2, the deviation of the other sensitivity does increase.
In contrast, the controller obtained with (koe, kie) = (0.5, 0.5) reduces both

||S(K(ρ), G) − Sd||2 and ||U(K(ρ), G)− Ud||2.
�
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4.6 Stopping condition

Inspired by the cross-correlation test for model validation available in the
field of identification [75, 54], a stopping condition for the iterative algo-

rithms (4.6) and (4.9) is provided in this section.
In general, the variance of the criterion cannot be computed at its mini-

mum for a finite number of data. So it is assumed that ρ◦ exists and belongs
to the set of parameterized controllers. Then, the variance of the criterion

Ju(ρ) at ρ◦ is computed and used to obtain the confidence interval with a
given probability.

Let us denote the estimate of the cross-correlation between εoe(ρ
◦, t) and

r(t) based on N data points by:

R̂oe(τ) =
1

N

N∑
t=1

εoe(ρ
◦, t)r(t − τ) (4.23)

It is shown in [54] that, for N → ∞, the sequence of random variables√
NR̂oe(τ) converges in distribution to the normal distribution with zero

mean and covariance matrix Pr, i.e.

√
NR̂oe(τ) ∈ AsN (0, Pr) ⇒

√
N

Pr

R̂oe(τ) ∈ AsN (0, 1) (4.24)

where

Pr =

∞∑
τ=−∞

Rε(τ)Rr(τ) (4.25)

with Rε(τ) and Rr(τ) being the autocorrelation functions of εoe(ρ
◦, t) and

r(t), respectively.

Consider the following lemma taken from [75]:

Lemma 4.1 Let x ∈ AsN (m, P ) be of dimension n. Then (x−m)TP−1(x−
m) ∈ Asχ2(n).

With this lemma (4.24) gives:

N

Pr

nz∑
τ=−nz

R̂2
oe(τ) ∈ Asχ2(2nz + 1) (4.26)
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Thus, if χ2
α(2nz + 1) denotes the α-level of the χ2(2nz + 1) distribution,

the iteration should be stopped when the criterion (4.4) is statistically not
different from zero with the confidence level α:

Ju(ρi) =

nz∑
τ=−nz

R̂2
oe(τ) ≤ P̂r

N
χ2

α(2nz + 1) (4.27)

where

P̂r =

nz∑
τ=−nz

R̂ε(τ)R̂r(τ)

is the estimate of Pr based on the current parameter vector ρi.

Therefore, as long as the computed value of Ju falls outside the confidence
region, the iteration should be continued. The stopping condition (4.27)

can also show whether the selected controller order is appropriate. If the
iterative procedure does not succeed in meeting the stopping condition after

a large number of iterations, one should consider increasing the order of the
controller. On the other hand, reaching the test threshold “too quickly”

indicates that the order of the controller might have to be reduced.

The effectiveness of the stopping condition is illustrated in the following

example.

Example 4.3 The experimental conditions and the plant are given in Ex-

ample 3.3. In this example one is looking for the controller K(q−1) =
s(0)/Rfix that minimizes (4.4). The vector of instrumental variables is cho-

sen as in (4.1) with nz = 4.

Table 4.2: Results of tuning

Iteration Ju
P̂r

N
χ2

α(2nz + 1) ||T − Td||2
initial 2.54 × 10−3 8.1 × 10−4 0.1953

1st 1.13 × 10−3 8.69 × 10−4 0.1426
2nd 7.64 × 10−4 7.89 × 10−4 0.1362

The stopping condition (4.27) with α = 0.05 is met after only 2 itera-
tions. The results are shown in Table 4.2. It can be seen that the two-norm
of the discrepancy between T and Td is reduced by 30% and the criterion
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Figure 4.12: Closed-loop step responses: designed (solid), initial (dashed), obtained with
the correlation-reduction method after 3 iterations (dash-dot)

10
2

10
1

10
0

10
1

10
0

Frequency [rad/s]

M
ag

ni
tu

de

Figure 4.13: Output sensitivity functions: designed Sd(e
jω) (solid), initial S(ejω, Kd, G)

(dashed) and final S(ejω, K(ρ), G) (dash-dot)
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Ju is reduced by 70%. The resulting closed-loop step response is shown

in Fig. 4.12 (dash-dot). Fig. 4.13 shows the output sensitivity functions
Sd, S(Kd, G) and S(ρ, G) for the designed, initial and final closed-loop sys-
tems, respectively. From these figures, one can conclude that the iterative

procedure makes the resulting closed-loop system approach the desired one.
However, due to the chosen controller structure, perfect decorrelation is

not possible and, therefore, some discrepancy between the designed and
achieved systems is inevitable. �

4.7 Algorithm

Let us summarize the correlation-reduction algorithm.

Algorithm 4.1 Construct the vector of instrumental variables ζ(t) as given
in (4.1), where nz should be chosen as discussed in Section 4.4. Starting
with the initial controller K(q−1, ρi) = Kd(q

−1), i = 0, computed using the

model Gd(q
−1), perform the following steps:

(1) Collect N samples of the signals u(ρi) and y(ρi) from the closed-loop ex-
periment with the controller K(q−1, ρi) operating on the actual system.

If needed, filter u(ρi) and y(ρi) with Rfix and Sfix, respectively.

(2) Compute f̄(ρi) from (3.2) using the acquired data and constructed ζ(t).

(3) If N is large, compute Q̄+(ρi) from (4.10). Update the controller pa-
rameter vector ρi+1 according to the recursion (4.9). Otherwise, update

the controller parameter vector ρi+1 according to (4.6). Add the fixed
terms Rfix and Sfix if applicable.

(4) Using Gd or an identified model, test the stability of the closed-loop

system formed by this model and the controller K(q−1, ρi+1). If the test
fails, reduce γi in (4.6) or (4.9) as follows γi = αγi, 0 < α < 1, and go

to step (3).

(5) Replace i with i+1 and repeat steps (1)-(4) until the stopping condition
(4.27) is met.

Observe that this algorithm is easy to extend to the generalized correla-
tion criterion. It is sufficient to add the terms corresponding to ḡ(ρi) from
(4.19) in steps (2) and (3) of Algorithm 4.1.
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Figure 4.14: Controlled plant with the measured disturbance v1 and the measurement noise
v2

4.8 Correlation-reduction method for the
disturbance rejection problem

In this section, the correlation-reduction method is adapted for the reg-
ulation problem depicted in Fig. 4.14. Note that this problem can be

considered as a model-following problem with the reference model equal to
zero. Let the measured output of the plant be described as:

y(t) = G(q−1)u(t) + H(q−1)v1(t) + v2(t) (4.28)

where v1(t) is the measured disturbance, v2(t) a zero-mean measurement

noise independent of v1(t), G(q−1) and H(q−1) LTI SISO discrete-time trans-
fer operators. The signals yp(t) and p(t) denote the plant output and the

output of the disturbance model H, respectively. The plant is controlled by
the controller K(q−1) defined in (2.3).

The objective is to tune the controller parameters such that the feed-

back controller exactly compensates the effect of the measured disturbance
at the plant output. In other words, the measured output should ideally

contain only the effect of measurement noise that is uncorrelated with v1(t).
Evidently, with a low-order causal controller, perfect decorrelation of y(t)

and v1(t) is not possible. Therefore, it is natural to formulate the design
objective as the minimization of some norm of the cross-correlation function
of these two signals.
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Let the correlation function fr(ρ) be defined as follows:

fr(ρ) = E

{
1

N

N∑
t=1

ζr(t)y(ρ, t)

}
(4.29)

where the instrumental variables are defined as:

ζT
r (t) = [v(t + nz), v(t + nz − 1), . . . , v(t), v(t− 1), . . . , v(t− nz)] (4.30)

and

v(t) = Wr(q
−1)v1(t) (4.31)

with Wr(q
−1) being a linear generic filter and nz a sufficiently large integer

number. Then, the tuning objective can be defined as the minimization of
the following criterion:

Jr(ρ) = fT
r (ρ)fr(ρ) =

nz∑
τ=−nz

R2
yv(τ) (4.32)

where Ryv(τ) is the cross-correlation function between the filtered distur-
bance v(t) and the closed-loop output y(ρ, t):

Ryv(τ) = E{y(ρ, t)v(t− τ)} (4.33)

Hence, the control parameter vector ρmin is given by:

ρmin = arg min
ρ

Jr(ρ) (4.34)

When nz tends to infinity, applying Parseval’s formula to (4.32) leads to:

lim
nz→∞

Jr(ρ) =
1

2π

∫ π

−π

|Φyv(ω)|2dω (4.35)

where Φyv(ω) is the cross-spectral density between y(ρ, t) and v(t).

Moreover, the closed-loop output can be expressed as:

y(ρ, t) = S(q−1, K(ρ), G)(H(q−1)v1(t) + v2(t)) (4.36)

Thus, from expressions (4.31) and (4.36), and using the fact that v(t) and
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v2(t) are independent, the cross-spectral density Φyv(ω) reads:

Φyv(ω) = S(ejω, K(ρ), G)H(ejω)W−1
r (ejω)Φv(ω) (4.37)

where Φv(ω) is the spectrum of the filtered disturbance signal v(t). Finally,

using Φyv(ω) of (4.37) in (4.35) gives:

lim
nz→∞

Jr(ρ) =
1

2π

∫ π

−π

|S(ejω, K(ρ), G)|2|H(ejω)|2|Wr(e
jω)|2Φ2

v1
(ω)dω (4.38)

with Φv1
(ω) = |W−1

r (e−jω)|2Φv(ω) being the spectrum of v1(t). This equa-

tion indicates that the criterion based on the correlation approach is not
affected by the noise signal v2(t). Furthermore, when Wr(q

−1) = 1 and

v1(t) is white noise, the tuning algorithm tries to minimize the magnitude
of the sensitivity function S in the frequency regions where |H(e−jω)| is
large.

4.9 Application to an active suspension sys-
tem

The methodology developed in the previous section is applied to a bench-

mark problem. The objective of the benchmark is to design a reduced-
complexity controller for the active suspension system of Laboratoire

d’Automatique de Grenoble (LAG) [79].

4.9.1 System description

The active suspension system setup in this benchmark is used to test the

disturbance attenuation in a large frequency band. Fig. 4.15 shows the
scheme of the active hydro-suspension system used to reduce the machine

vibrations. The principal parts of the active suspension system are:

• an elastomer cone that encloses the main chamber filled with silicon
oil (1);

• an inertia chamber enclosed with a flexible membrane (2);
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Figure 4.15: The schematic diagram of the active suspension system

• a piston (3) that is fixed on a DC motor. When the position of the
piston is fixed, the suspension system is passive;

• an orifice (4) that allows oil flow between the two chambers.

The principal idea of the active suspension is to change the elasticity of

the system in order to absorb the vibrations generated by the machine
that is to be isolated. For experimental purposes the machine is replaced
by a shaker which is driven by a computer generated control signal. The

output of the system is the measured voltage corresponding to the residual
force. The control input drives the position of the piston using an actuator.

The system is controlled by a PC through a data acquisition system. The
sampling frequency is a design parameter (upper limit: 1 kHz).

4.9.2 Experimental results

The block diagram of the active suspension system is presented in Fig. 4.16.

The system is excited by the primary force v1(t) generated by a computer-

controlled shaker. The transfer function Cr/Dr between the primary and
the residual forces is called the primary path. The disturbance signal p(t)
is the output of the primary path. The output y(t) is the measured voltage



97

� � S/R � B/A � �

��	

�

Cr/Dr

�
+

u(t)
p(t)

-
yp(t)

y(t)

�

�

v1(t)

v2(t)+

(residual force)

(primary force)

Figure 4.16: Block diagram of the active suspension system

corresponding to the residual force yp(t). The nonparametric model of the

primary path shows that there are several vibrational modes, with the first
mode at 31.47 Hz and the second mode around 160 Hz being the most

important ones (dashed line in Fig. 4.17).
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Figure 4.17: Magnitudes of Cr(e
−jω)/Dr(e

−jω) (dashed), Wr(e
−jω) (dash-dot), and aggre-

gate weighting Wr(e
−jω)Cr(e

−jω)/Dr(e
−jω) (solid) used in (4.38)

The control input u(t) drives the piston that can modify the residual

force. The secondary path is defined as the transfer function B/A between
the control input and the residual force.

The design objective is to compute a low-order linear discrete-time con-
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Figure 4.18: Incorporating fixed terms in the secondary path

troller S(q−1)/R(q−1) that minimizes the residual force around the first and

second vibrational modes of the primary path while trying to distribute
the amplification over higher frequencies. The control specifications are
expressed as constraints on the output sensitivity function S and input sen-

sitivity function U . In addition, since the controller gain should be zero at
the Nyquist frequency, the term Sfix(q

−1) = 1 + q−1 is incorporated in the

controller.

The tuning procedure is modified as follows in order to include the fixed

terms Rfix and Sfix in R and S, i.e. R = R′Rfix and S = S ′Sfix: The
secondary path model B/A is augmented with the fixed terms Rfix and

Sfix (Fig. 4.18). Then u(t) in the regressor vector (2.8) is replaced by the

input of the augmented plant u′(t) =
Rfix

Sfix
u(t). The estimate of the gradient

(3.9) is calculated by replacing B̂, Â, R and S with B̂Sfix, ÂRfix, R′ and S ′,
respectively. Finally, R′ and S ′ are computed using the iterative algorithm
and later multiplied by the fixed terms to obtain the controller polynomials

R and S.

Experiments performed on the real suspension system showed that the

plant varies slightly with time, thereby reducing the convergence rate of
the algorithm. Because of this and the fact that the number of real-time

experiments available in this benchmark study is limited, a high-order model
of the secondary path (available from the benchmark web site [79]) is used
to simulate the secondary path B/A and generate the data needed in this

“data-driven” controller tuning procedure. The same model is also used
to compute the estimates of gradient and Hessian of the criterion (4.32).

Moreover, open-loop experimental data are available from the benchmark
web site, where v1(t) is a PRBS generated by a 10-bit shift register with data

length N = 20000 and the measured signal y(t) corresponds to p(t) + v2(t).
Thus, the model Cr/Dr of the primary path is not involved in the controller
tuning procedure.
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The following controller structure is used:

K(q−1) =
(s(0) + s(1)q−1)(1 + q−1)

1 + r(1)q−1 + r(2)q−2
(4.39)

A 2nd-order controller is chosen since it corresponds to the lowest order still
capable of meeting the benchmark specifications. All the parameters of the

controller are initialized to zero except for s(0) = 0.0025. It is also verified
that the initial controller K(ρ0) = s(0)(1 + q−1) stabilizes the closed-loop
system.

Considering the spectrum of the primary path (dashed line in Fig. 4.17)

and choosing Wr(q
−1) = 1 in (4.38), it is evident that the algorithm will

reduce the sensitivity function S mainly around the first resonant mode.

However, in order to accentuate the higher frequencies, the vector of instru-
mental variables is filtered by a 3rd-order high-pass Butterworth filter with

the cut-off frequency of 100 Hz:

Wr(q
−1) =

0.4459− 1.3377q−1 + 1.3377q−2 − 0.4459q−3

1 − 1.459q−1 + 0.9104q−2 − 0.1978q−3

The magnitude plot of this filter is presented as the dash-dot line in Fig.
4.17, while the aggregate weighting |Cr(e

−jω)/Dr(e
−jω)||Wr(e

−jω)| of S in

(4.38) is shown as the solid line. The length of the instrumental variables
vector should be larger than the number of controller parameters to be
tuned but much smaller than the data length. Here nz = 28 is chosen.

A local optimum is reached after 8 iterations. In all iterations the initial

step size γi = 1 is used. When the tuning procedure provides a controller
that destabilizes the closed-loop system (which is readily verified with the

available plant model), the step size is simply divided by 2. Note that desta-
bilizing controllers were frequently found due to the fact that the underlying
open-loop plant has several oscillatory modes.

Fig. 4.19 shows the output and input sensitivity functions S and U
before tuning (dash-dot), after 3 iterations (dashed), and after 8 iterations
(thick solid line) along with the constraints (thin solid line) provided in the

benchmark problem. The resulting controller reduces S considerably around
the first and second resonant modes without violating the constraints on the
input sensitivity function U .
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Figure 4.19: Output and input sensitivity functions of the closed-loop system: before tuning
(dash-dot), after 3 iterations (dashed), after 8 iterations (thick solid line), and constraints
(thin solid line)
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Figure 4.20: Closed-loop output and input sensitivity functions estimated from data col-
lected on the experimental setup with the final controller (thick line) and constraints (thin
line)
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The controller obtained in simulation is implemented on the experimental

setup and Fig. 4.20 shows the corresponding sensitivity functions. The
output sensitivity function estimated by spectral analysis slightly violates
the constraints at some frequencies. This can be explained by the fact

that the model used to generate the data needed for controller design does
not describe the experimental system very well around these frequencies.

Nevertheless, satisfactory experimental results are obtained using the 2nd-
order controller.

4.10 Conclusions

In this chapter, the controller parameters are updated by minimizing
the correlation criterion that represents the cross-correlation between the

closed-loop output error and the reference signal. The correlation criterion,
for sufficiently large nz, expresses the amount of correlation (or decorre-

lation) between two signals. Here, “sufficiently large nz” means that nz

should be at least as large as the length of the non-zero part of the impulse

response of the closed-loop system.

The frequency interpretation of the criterion shows that the decorrelat-

ing controller, if it exists and belongs to the selected controller class, is
the unique global minimum of the criterion. Since in practice such a con-

troller does not exist or does not belong to the selected controller class, the
algorithm minimizes the two-norm of the difference between the achieved

and desired closed-loop systems provided that the excitation signal is white
noise. This is performed independently of the noise characteristics, which

is the main objective of controller tuning. In addition, the input sensitivity
function is decreased in the frequency regions where the additive uncertainty
is large. The convergence and frequency analysis results are asymptotic both

in the number of data and number of iterations. An unbiased estimate of
the gradient of the output error is necessary to guarantee the convergence of

the algorithm to a local minimum of the criterion. This gradient can be esti-
mated using a full-order identified model of the plant or the closed-loop data

from a specific experiment as is proposed in the IFT approach. It should
be noted that, in practice, an approximate gradient based on the designed
model can be used to minimize the criterion, although the convergence is
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not guaranteed. Observe that in the case of the decorrelation procedure,

an inaccurate estimate of the Jacobian will not prevent the controller pa-
rameter vector to converge to ρ◦ but will affect the convergence speed. On
the contrary, in the case of correlation reduction, the iteration will stagnate

once the residual ||ρi − ρmin|| is roughly of the same size as the error in
the gradient. For more details on these two iterative methods, the reader is

referred to Chapter 5.4 in [48] and Chapter 2.3.1 in [49], respectively.
Within the correlation-reduction method, the choice of the instrumental

variables vector is very simple, and no additional effort is necessary for its
construction it as was the case with the decorrelation procedure.

A generalization of the correlation criterion has also been proposed. The
new criterion is defined as the weighted sum of the two-norms of the cross-
correlation functions between a reference signal and the output and input

closed-loop errors. If the assumption of independence between the refer-
ence signal and the disturbance holds, the criterion remains asymptotically

unaffected by the disturbance characteristics. A frequency-domain analy-
sis of the proposed criterion has shown that, depending on the values of

the weighting factors koe and kie, there is a trade-off in meeting the de-
signed output and input sensitivities. The features and the applicability of

the correlation-reduction approach based on the generalized criterion are
illustrated by means of a simulation example.

Furthermore, the correlation-reduction method has been modified to ad-

dress the disturbance rejection problem in the cases where it is possible to
measure the disturbance signal. This approach can also be used with sys-

tems where the disturbance cannot be measured but there is the possibility
of injecting a known test signal. Though the proposed controller-tuning

algorithm uses data collected in the time domain, a frequency analysis in-
dicates how to handle the control specifications expressed in terms of con-
straints on the sensitivity functions.

This algorithm has been applied very successfully to an international
benchmark on the design and optimization of restricted-order controllers

for an active suspension system [51].



Chapter 5

Correlation-based tuning of linear
decoupling multivariable controllers

5.1 Introduction

A common approach to multivariable control is the two-step procedure,

whereby one first designs a “decoupler” to deal with process interactions
and then a set of controllers is designed for the “diagonalized” plant ob-
tained in the first step [73]. The design of decouplers and controllers using

standard model-based methods may be very sensitive to modelling errors
and uncertainties. A suitable control-oriented model is often difficult to

obtain. On the other hand, data-driven methods use the data collected in
closed-loop operation. Since these data reflect accurately the local behavior

of the plant in the vicinity of the current operating conditions, it is clear
that the use of this “implicit model” for the computation of decouplers and

controllers is advantageous in the sense that the performance is likely to be
improved.

However, the application of data-driven methods to the control of LTI
multivariable systems has a few drawbacks. First, for a data-driven method

that minimizes a norm of some error signal, it is not possible to incorporate
the decoupler design into the criterion if all references are excited simulta-

neously. Instead, for eliminating the influence of a reference on a particular
output, it is necessary to excite that reference while keeping the other refer-

ences constant and minimize an error signal norm related to that output, as
this is done with IFT in [24]. For MIMO systems with several plant inputs,
nu, and outputs, ny, this requires a large number of experiments. Another

103
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difficulty is the calculation of the gradient of the criterion. Typically, the

number of experiments needed to estimate the gradient increases with nu

and ny. For example, the IFT approach requires nynu + 1 experiments per
iteration [30]. However, some efforts have been made recently to reduce the

number of experiments with this approach (for more details see [15, 16, 38]).

In this chapter, the tuning of LTI multivariable controllers using the
correlation approach is proposed. For simplicity of presentation it is as-
sumed an equal number of inputs and outputs. The off-diagonal elements

of the controller transfer function matrix are tuned to eliminate interaction
between the controlled outputs (in the sequel this will be called “diagonal-

ization of the closed-loop system”), while the elements on the main diagonal
are tuned to provide the desired closed-loop performance. The fact that the

decoupling is done in a natural way by decorrelating a given reference from
the non-corresponding outputs without the need for additional experiments

makes CbT particularly appealing for tuning MIMO controllers. The con-
trollers on the main diagonal feature the same characteristics as those for
SISO systems. The parameters of the resulting decouplers and controllers

are asymptotically not affected by noise. A single experiment per iteration
is sufficient for the tuning of all controllers and decouplers regardless of

the number of inputs and outputs since all reference inputs can be excited
simultaneously.

Unfortunately, there is a drawback resulting from the simultaneous ex-
citation of all references. Due to the decoupling specifications, the simul-

taneous excitation of all references increases the variance of the estimated
controller parameters. To obtain more accurate estimates, one can perform

ny experiments per iteration. However, even in this case, CbT has a con-
siderable advantage in terms of decoupling compared to other data-driven
control design methods, where the controller parameters are calculated by

minimizing the norm of some error signal, such as in IFT. Using the latter
methods, perfect decoupling cannot be achieved due to the nature of the

underlying criterion, since the minimization of an error signal norm induces
a trade-off between satisfying the decoupling specifications and noise rejec-

tion. In contrast, the CbT criterion is asymptotically independent of noise
so that the resulting controller, provided that it is of appropriate structure,
perfectly satisfies the decoupling specifications.
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Similarly to the SISO case, two methods for computing the con-

troller parameters can be distinguished: the decorrelation procedure and
correlation-reduction method. The features of these two variants are
discussed and compared in terms of applicability to practical control

situations where one can collect a large number of data.

Chapter outline: Some notations are introduced in Section 5.2. Section
5.3 presents the basic idea of multivariable CbT approach and deals with the

tuning of LTI multivariable controllers by both the decorrelation procedure
and correlation reduction. Simulation results are presented in Section 5.4,
and concluding remarks are given in Section 5.5.

5.2 Notations and system description

In Section 2.1, the basic notations for SISO systems are given. Although
the same notational convention is used in this chapter, the notations for
MIMO systems will be presented in this section to avoid possible confusion.

For the sake of simplicity, and without loss of generality, it is assumed
that the plant has two inputs and two outputs. Consider the block diagram

of the model-following problem presented in Fig. 5.1. The upper part shows
the achieved closed-loop system with the unknown true plant whose outputs

can be described by the following LTI multivariable discrete-time model:

y(t) = G(q−1)u(t) + v(t) (5.1)

where y(t) ∈ R2 denotes the outputs of the true plant at time t, u(t) ∈ R2

the control signals, v(t) ∈ R2 the disturbances on the outputs, and G(q−1) is

a 2×2 transfer function matrix with q−1 being the backward-shift operator.
It is assumed that v(t) is a zero-mean stationary stochastic process.

The 2 × 2 controller transfer function matrix K(q−1, ρ) is parameter-

ized by the parameter vector ρ ∈ Rnρ, and r(t) ∈ R2 represents external
reference signals.

The (j, k) element of the controller transfer function matrix is:

Kjk(q
−1, ρ) =

Sjk(q
−1, ρ)

Rjk(q−1, ρ)
j, k = 1, 2 (5.2)
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Figure 5.1: Achieved multivariable closed-loop system and its reference model Md

where

Rjk(q
−1, ρ) = 1 + r

(1)
jk q−1 + · · · + r

(nr)
jk q−nr

Sjk(q
−1, ρ) = s

(0)
jk + s

(1)
jk q−1 + · · · + s

(ns)
jk q−ns

It is assumed, for simplicity of notation, that all controllers Kjk(q
−1, ρ),

j = 1, 2, k = 1, 2 have the same number of poles and the same number

of zeros. Moreover, it is assumed that the controllers have no common
parameters. The controller parameter vector ρ can be written as follows:

ρT = [ρT
K11

, ρT
K12

, ρT
K21

, ρT
K22

] (5.3)

where

ρT
Kjk

= [r
(1)
jk , r

(2)
jk , . . . , r

(nr)
jk , s

(0)
jk , s

(1)
jk , . . . , s

(ns)
jk ]

Thus, nρ = 4(nr + ns + 1).

The lower part of Fig. 5.1 shows the reference model Md defining the
desired behavior of the closed-loop outputs yd(t) in response to the reference
signals r(t). The reference model can be constructed, for example, as the

closed-loop system containing a model Gd of the plant and the controller
Kd:

Md
Δ
=

(
Md11 Md12

Md21 Md22

)
= (I + GdKd)

−1GdKd (5.4)

with I ∈ R2×2 being the identity matrix. It is assumed that Gd and G are
diagonalizable by output feedback, and that the reference model Md has a
diagonal structure with Md12 = Md21 = 0. Regarding the necessary and
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sufficient conditions for a linear multivariable system to be diagonalizable,

the reader is referred to [12, 10, 11] and references therein.

The closed-loop response can be written as:

y(ρ, t) = T r(t) + Sv(t), (5.5)

and the control error is:

e(ρ, t) = r(t) − y(ρ, t) = S (r(t) − v(t)) , (5.6)

where S denotes the output sensitivity function:

S = (I + GK)−1 (5.7)

and T the complementary sensitivity function:

T = (I + GK)−1GK (5.8)

The closed-loop output error is defined as:

εoe(ρ, t) = y(ρ, t) − yd(t). (5.9)

Notational remarks: The signals collected under closed-loop operation

using the controller K(ρ) will carry the argument ρ. The elements of signal
vectors and transfer function matrices will carry the position as a subscript.

For example, yk(ρ, t) will denote the kth component of the output vector
y(ρ, t). In contrast, the coefficients in numerator and denominator polyno-
mials of the controllers Kjk(q

−1, ρ) will carry the position as a superscript.

Furthermore, the backward-shift operator q−1 will be omitted whenever ap-
propriate.

5.3 CbT for MIMO systems

5.3.1 Idea of multivariable correlation-based tuning

Consider the controller structure presented in Fig. 5.2, with the following
design specifications:

• The diagonal elements K11(ρ) and K22(ρ) of the controller transfer
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matrix K(ρ) are tuned to provide satisfactory tracking of yd1(t) by

y1(ρ, t) and yd2(t) by y2(ρ, t), respectively.

• The off-diagonal elements K12(ρ) and K21(ρ) are tuned to be decou-

plers. That is, the controller K12(ρ) is tuned to eliminate the influence
of the reference signal r2(t) on the output y1(ρ, t). Hence, if the de-

coupler K21(ρ) is tuned similarly, the mutual influences of y1(ρ, t) and
y2(ρ, t) are suppressed.

In other words, the desired sensitivity functions Sd and Td are in diagonal
form.

Consider first the tuning of the decoupler K12(ρ). When applying the
controller K0 to the true plant excited by the reference signal r(t), the
output y1(ρ, t) contains the contributions due to the reference signals r1(t)

and r2(t) and the disturbance v(t). The reference signals r1(t) and r2(t)
are mutually independent and uncorrelated with v(t). Hence, the idea is to

adjust the parameters of K12(ρ) to make the output y1(ρ, t) uncorrelated
with the reference signal r2(t). The resulting decoupler provides y1(ρ, t) that

contains only the contributions due to v1(t) and r1(t), i.e. the influence of
v2(t) and r2(t) on y1(ρ, t) is eliminated.

Consider next the tuning of K11(ρ). Again, with K0 operating in the
loop, the observed closed-loop output error εoe1(ρ, t) contains a contribution
due to the disturbance v(t) and another contribution stemming from the

difference between G and Gd that, in turn, has two parts originating from
r1(t) and r2(t). The idea is to adjust the parameters of K11(ρ) so as to make

εoe1(ρ, t) uncorrelated with r1(t). The effect of modeling errors excited by
r2(t) is eliminated by the decoupler K12(ρ). Hence, the resulting controller

compensates the effect of modeling errors to the extent that the closed-
loop error εoe1(ρ, t) contains only the disturbance filtered by the closed-loop

system. This way, the output y1(ρ, t) will achieve the desired output yd1(t).

A similar reasoning follows for K21(ρ) and K22(ρ) that are related to the
output y2(ρ, t).
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Figure 5.2: Multivariable 2 × 2 controller

5.3.2 Cross-correlation function

Let the cross-correlation function be defined as follows:

F (ρ)
Δ
=E

{
F̄ (ρ)

}
(5.10)

where E{·} is the mathematical expectation, and the vector F̄ (ρ) ∈ Rnρ

reads:
F̄ T (ρ) =

[
f̄T

K11
(ρ), f̄T

K12
(ρ), f̄T

K21
(ρ), f̄T

K22
(ρ)
]

(5.11)

with

f̄Kjk
(ρ) =

1

N

N∑
t=1

ζKjk
(ρ, t)EKjk

(ρ, t) (5.12)

where N is the number of data and ζKjk
(ρ, t) ∈ Rnζ the vector of in-

strumental variables associated with the controller Kjk(ρ). Note that
nζ = nr + ns + 1, and nρ = 4nζ. The component f̄Kjk

(ρ) ∈ Rnζ corresponds
to the controller Kjk(ρ). The way ζKjk

(ρ, t) and the variable EKjk
(ρ, t) ∈ R

are constructed depends on whether or not the controller Kjk(ρ) is on the
main diagonal of K(ρ):

• j = k: Kjj(ρ) is tuned so as to reduce the correlation between εoej(ρ, t)

and rj(t). Taking into account the fact that the tuning of the controllers
Kjj(ρ) and the decouplers Kjk(ρ) is done simultaneously, the output

yj(ρ, t) will, in the case of perfect decorrelation, follow ydj(t) up to the
effect of the disturbance. Thus, the vector of instrumental variables
ζKjj

(ρ, t) should be chosen to be correlated with the reference signal
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rj(t) and independent of the disturbance vj(t). The variable EKjj
(ρ, t)

is chosen as εoej(ρ, t).

• j �= k: To eliminate the influence of rk(t) on yj(t), it is sufficient to

decorrelate these two signals, i.e. ζKjk
(ρ, t) should be correlated with

rk(t) and EKjk
(ρ, t) = yj(ρ, t).

Hence, the variable EKjk
(ρ, t) is constructed as follows:

EKjk
(ρ, t) =

{
εoej(ρ, t), j = k
yj(ρ, t), j �= k

(5.13)

and the vector of instrumental variables ζKjk
(ρ, t) is a function of rk(t).

The parameters of the controller are computed either by minimization of
a norm of the cross-correlation function (5.10) or as the values that make

this function equal to zero. Observe that in either case the underlying
criterion/equation is nonlinear with respect to the controller parameters.

In general, an analytical solution to these problems does not exist and it
is necessary to consider iterative numerical methods. Before proceeding

further, suppose that Assumptions A1, A2 and A4, introduced in Section
3.2.1, hold. In addition to these, the following assumptions will be needed

in the sequel:

(A8) The reference signals r(t) are persistently exciting of sufficiently high

order with respect to the number of controller parameters and are un-
correlated with the disturbances v(t). Furthermore, the elements of the
reference signal vector r(t) are assumed to be mutually independent.

(A9) The decorrelating controller K◦ exists, is unique, and belongs to the
set of parameterized controllers (the corresponding parameters will be

denoted as ρ◦).

5.3.3 Decorrelation procedure for MIMO systems

Under Assumption A9, the parameters of the controller that perfectly decor-
relates ζKjk

(ρ, t) from EKjk
(ρ, t) are computed as the solution to the following

system of correlation equations:

F (ρ) = 0 (5.14)
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A solution to (5.14) can be found using an iterative stochastic approximation

procedure, for example the Robbins-Monro algorithm [70]:

ρi+1 = ρi − γiF̄ (ρi). (5.15)

It can be shown using the Theorem 3.1 that, under Assumptions A1, A2,
A4, A8 and A9 and assuming that F (ρ) possesses continuous partial deriva-

tives of first and second order with respect to ρ, this scheme converges to a
solution of the correlation equations (5.10), provided that F (ρ) is monotoni-
cally increasing in the vicinity of the solution ρ◦, i.e. the following condition

holds:

Q(ρ◦) = E

{
∂F̄ (ρ)

∂ρ

∣∣∣∣
ρ=ρ◦

}
> 0. (5.16)

Let us investigate the structure of Q(ρ). It follows from (5.3), (5.11),
(5.12) and (5.16) that Q(ρ) ∈ Rnρ×nρ can be expressed as:

Q(ρ) =

⎛⎜⎜⎜⎜⎝
QK11

K11
QK12

K11
QK21

K11
QK22

K11

QK11

K12
QK12

K12
QK21

K12
QK22

K12

QK11

K21
QK12

K21
QK21

K21
QK22

K21

QK11

K22
QK12

K22
QK21

K22
QK22

K22

⎞⎟⎟⎟⎟⎠ (5.17)

where Q
Kjk

Kmn

Δ
=E{∂f̄Kjk

(ρ)/∂ρKmn
} can be expressed as:

Q
Kjk

Kmn
= E

{
1

N

N∑
t=1

∂ζKjk
(ρ, t)

∂ρKmn

EKjk
(ρ, t)

+
∂EKjk

(ρ, t)

∂ρKmn

ζT
Kjk

(ρ, t)

}
(5.18)

In the vicinity of the solution, the first term in (5.18) vanishes since the

derivative of the instrumental variable vector ζKjk
(ρ, t) is not correlated

with EKjk
(ρ, t). Note that:

∂EKjk
(ρ, t)

∂ρKmn

=
∂yj(ρ, t)

∂ρKmn

∀j, k. (5.19)
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At the solution ρ◦, (5.5)-(5.8) lead to:

∂y(ρ, t)

∂ρ
(p)
Kmn

∣∣∣∣∣
ρ◦Kmn

= S(ρ◦)G
∂K(ρ)

∂ρ
(p)
Kmn

∣∣∣∣∣
ρ◦Kmn

e(ρ◦, t) (5.20)

where p = 1, . . . , nr + ns + 1. Considering that the subvectors ρKmn
are

independent, and S is diagonal at ρ◦, it follows from (5.20) and the second
equality in (5.6):

∂y(ρ, t)

∂ρ
(p)
Kmn

∣∣∣∣∣
ρ◦Kmn

f∼ en(ρ
◦, t)

f∼ rn(t), vn(t) (5.21)

where
f∼ denotes that the signal on the left-hand side of this operator is

a function of the right-hand side signal. Furthermore, according to the

discussion leading to (5.13), one can write:

ζKjk
(ρ, t)

f∼ rk(t). (5.22)

Using the relationships (5.21) and (5.22), the expression (5.18), and the fact
that r1(t), r2(t), v1(t) and v2(t) are not correlated, it follows that:

Q
Kjk

Kmn
= 0, k �= n (5.23)

i.e. the matrix Q(ρ◦) takes the following form:

Q(ρ◦) =

⎛⎜⎜⎜⎜⎝
QK11

K11
0 QK21

K11
0

0 QK12

K12
0 QK22

K12

QK11

K21
0 QK21

K21
0

0 QK12

K22
0 QK22

K22

⎞⎟⎟⎟⎟⎠ (5.24)

where
Q

Kjk

Kmk

f∼ rk(t), vk(t). (5.25)

From (5.18) and (5.24), it is obvious that the choice of the instrumental

variables ζKjk
affects the positive definiteness of Q(ρ◦). Hence, it is im-

portant to take this fact into account when constructing the instrumental
variables. This will be investigated in the following.



113

Choice of Instrumental Variables

In the case of SISO systems, the typical choice for the instrumental variable

vector as a noise-free estimate of the gradient ∂yj/∂ρKmn
guarantees the

positive definiteness of Q(ρ◦). However, in the case of MIMO systems, the

choice of ζKjk
(ρ, t) is less trivial since the aforementioned choice ensures only

the positive definiteness of the elements on the principal diagonal of Q(ρ◦).
It is clear from (5.22) that the instrumental variables should be chosen

as signals obtained by filtering rk(t). Therefore, the instrumental variables
can by generated using the following model structure:

ζKjk
(ρ, t) =

nh−1∑
l=0

(
Fl(q

−1)rk(t)
)
hl

Kjk
(5.26)

where nh denotes the model order, Fl(q
−1) is the lth element of a set of stable

basis transfer functions and hl
Kjk

the corresponding weighting coefficients.

The simplest choice for these functions is Fl(q
−1) = q−l. However, in order

to reduce the model order, one can adopt

Fl(q
−1) =

1

1 − q−1ξl

(5.27)

where the poles ξl are chosen to incorporate some a priori information about
the underlying closed-loop dynamics [66]. Another possibility is to use or-

thonormal basis functions such as Laguerre or Kautz. Since ζKjk
(ρ, t) and

consequently Q(ρ◦) are linear with respect to the parameters hl
Kjk

, the prob-

lem of obtaining a positive definite matrix Q(ρ◦) can be formulated as a con-
vex feasibility problem and solved using Linear Matrix Inequalities (LMIs)

[7]. Hence, the choice of the instrumental variables reduces to finding hl
Kjk

that makes
Q(ρ◦, hl

Kjk
) > 0. (5.28)

In this feasibility problem, it is necessary to evaluate Q(ρ◦, hl
Kjk

) for differ-

ent values of hl
Kjk

. Plugging (5.18), (5.19), (5.20) and (5.26) in (5.24), it

is obvious that Q(ρ◦, hl
Kjk

) depends on the derivative
∂yj(ρ, t)

∂ρKmn

that is un-

known. However, this derivative can be estimated using (5.20), where: (i)
the transfer function matrix S(ρ◦) is replaced by Sd; (ii) the unknown plant
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G is replaced by either Gd or an identified model Ĝ; (iii) the signal e(ρ◦, t)
is replaced by its estimate ê(ρ◦, t) = Sdr(t).

In this context, assuming that the conditions for the iterative algorithm
(5.15) to converge to ρ◦ hold, the following question arises: Is the simul-

taneous excitation of all reference signals advantageous or detrimental to
the accuracy of the estimated controller parameters? As a first element of

response to this question, the accuracy of the parameter estimates around
this solution is investigated as a function of the external reference signals
r1(t) and r2(t). This is the topic of the next section.

Variance Analysis

From Theorem 3.3 and expression (5.15), the sequence
√

i(ρi − ρ◦) con-
verges asymptotically in distribution to a zero-mean normal distribution

with covariance

V = α2

∫ ∞

0

eDx P eDT xdx (5.29)

where
P = lim

i→∞
E
{
F̄ (ρ◦)F̄ T (ρ◦)

}
. (5.30)

Let us consider the form of the matrices P , D and V . Note that, at
ρ = ρ◦, (5.13) reduces to:

EKjk
(ρ, t) =

{
Sjj(ρ

◦)vj(t), j = k
Tjj(ρ

◦)rj(t) + Sjj(ρ
◦)vj(t), j �= k

(5.31)

Considering that r1(t), r2(t), v1(t) and v2(t) are independent, and using
(5.11), (5.12), (5.30) and (5.31), one gets, after straightforward but tedious
calculations:

P (ρ◦) =

⎛⎜⎜⎜⎜⎝
PK11

K11
0 0 0

0 PK12

K12
PK21

K12
0

0 PK12

K21
PK21

K21
0

0 0 0 PK22

K22

⎞⎟⎟⎟⎟⎠ (5.32)

where

P
Kjk

Kmn
= E

{
1

N2

N∑
t=1

ζKjk
(ρ, t)EKjk

(ρ, t) ×
N∑

s=1

ζT
Kmn

(ρ, s)EKmn
(ρ, s)

}
. (5.33)
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Observe that the matrix D(ρ◦) = I/2 − αQ(ρ◦) has the same structure

as Q(ρ◦) in (5.24), and that its elements, due to (5.25), satisfy:

D
Kjk

Kmk

f∼ rk(t), vk(t). (5.34)

Finally, note that the covariance matrix V can be partitioned as:

V =

⎛⎜⎜⎜⎜⎝
V K11

K11
V K12

K11
V K21

K11
V K22

K11

V K11

K12
V K12

K12
V K21

K12
V K22

K12

V K11

K21
V K12

K21
V K21

K21
V K22

K21

V K11

K22
V K12

K22
V K21

K22
V K22

K22

⎞⎟⎟⎟⎟⎠ . (5.35)

Next, let us focus on the following two cases:

a) The closed-loop system is excited by a single reference signal, say r1(t);
the corresponding matrices and their elements will carry the subscript
“a”, for example V

Kjk

a,Kmn
, j, k, m, n = 1, 2, or Da.

b) The closed-loop system is excited by both components of r(t); the
corresponding matrices and their elements will carry the subscript “b”.

When only r1(t) is excited, it follows from (5.12) and (5.22) that only the
controllers K11(ρ) and K21(ρ) can be tuned. Hence, only the variances V K11

K11

and V K21

K21
can be compared for the two excitation cases. Furthermore, in

order to enforce no signal path between e2(t) and u1(t) and u2(t), K12(ρ)

and K22(ρ) are set to zero. This way, similarly to the case where the optimal
controllers K12(ρ

◦) and K22(ρ
◦) are used, there is no influence of y2(t) and

v2(t) on y1(t). Note that, when the MIMO plant to be controlled is not
stable, it is not possible to set K12(ρ) and K22(ρ) to zero. In this case,
the tuning of the controller K(ρ) can only be performed by exciting both

components of r(t).

Next, the following result can be established.

Theorem 5.1 Consider the tuning of the parameters ρK11
and ρK21

of the

controllers K11(ρ) and K21(ρ). Let the components r1(t) and r2(t) be inde-
pendent and persistently exciting of sufficient order. Then, the covariance
matrices of the parameter estimates ρ̂K11

and ρ̂K21
cannot decrease by addi-
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tion of the second excitation r2(t), i.e.

V K11

b,K11
≥ V K11

a,K11
and V K21

b,K21
≥ V K21

a,K21
(5.36)

Proof. For simplicity, let α in (5.29) be set to 1. Now, observe that the

matrices V , D and P are related via the following Lyapunov equation [37]:

P + DV + V DT = 0. (5.37)

Due to the specific form of D and P , a straightforward computation of this
expression gives the following relation that includes the variances V K11

K11
and

V K21

K21
:

P̃ + D̃Ṽ + Ṽ D̃T = 0, (5.38)

where

P̃ =

(
PK11

K11
0

0 PK21

K21

)
, D̃ =

(
DK11

K11
DK21

K11

DK11

K21
DK21

K21

)
(5.39)

and

Ṽ =

(
V K11

K11
V K21

K11

V K11

K21
V K21

K21

)
. (5.40)

Equation (5.34) indicates that D̃ depends on r1(t) but not on r2(t). There-
fore, D̃ is identical for both cases of excitation, i.e. D̃a = D̃b. Furthermore,

since at the solution the closed-loop system is perfectly decoupled, it follows
from (5.22), (5.31) and (5.33) that PK11

K11
is also identical for both cases of

excitation. Let us now consider PK21

K21
. By replacing (5.22) and (5.31) in

(5.33), one gets:

PK21

K21
= E

{
1

N2

N∑
t=1

ζK21
(r1(t), ρ, t) {T22(ρ

◦)r2(t)

+ S22(ρ
◦)v2(t)} ×

N∑
s=1

ζT
K21

(r1(t), ρ, s)

{T22(ρ
◦)r2(s) + S22(ρ

◦)v2(s)}} . (5.41)

It can be concluded from this expression that the contribution of r2(t) to
PK21

K21
is positive definite. This contribution will be denoted as ΔPK21

K21
. There-



117

fore, one can write:

P̃b = P̃a +

(
0 0

0 ΔPK21

K21

)
Δ
=P̃a + ΔP̃ (5.42)

where ΔP̃ ≥ 0. Similarly, for the covariance matrices Ṽa and Ṽb, it can be
written Ṽb = Ṽa + ΔṼ , which leads to:

P̃b + D̃bṼb + ṼbD̃
T
b =(

P̃a + ΔP̃
)

+ D̃b

(
Ṽa + ΔṼ

)
+
(
Ṽa + ΔṼ

)
D̃T

b =

ΔP̃ + D̃bΔṼ + ΔṼ D̃T
b = 0 (5.43)

The last equality can be written more illustratively as:

ΔṼ =

∫ ∞

0

eD̃bx ΔP̃ eD̃T
b xdx. (5.44)

It is obvious that if ΔP̃ ≥ 0 then ΔṼ ≥ 0 [89]. The inequalities (5.36)

follow from the fact that any principal submatrix of a positive semi-definite
matrix is positive semi-definite. �

Theorem 5.1 states that the presence of the component r2(t) does not
improve the accuracy of the parameters related to the controllers K11(ρ)

and K21(ρ). In fact, the accuracy is reduced in most cases. This result is
rather interesting taking into account a number of results where, in the

cases of open-loop and direct closed-loop identification using prediction
error methods, the addition of r2(t) was shown to almost always improve

the variance of the estimated parameters [21, 22, 61].

Remarks:

• This result can be explained intuitively as follows. Consider the instru-
mental variable method in the field of system identification (see Section

2.4). The expression for the variance of the parameter estimates within
this method is as follows [75]:

PIV = σ2E
{
ζ(t)ϕ̃T (t)

}−1
E
{
[H(q−1)ζ(t)][H(q−1)ζ(t)T ]

}
×E

{
ζ(t)ϕ̃T (t)

}−T
= R−1

IV PCR−T
IV
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where ϕ̃(t) denotes the noise-free estimate of ϕ(t), H(q−1) a noise

model, PC the variance of the criterion, RIV the derivative of the pre-
dictor of the output, and σ2 is the variance of the zero-mean noise. Con-
sidering that the instrumental variables are filtered versions of the ex-

citation signal, one can conclude the following. The IV method brings
about two opposing effects of the power of the excitation signal on the

variance of the parameter estimates: 1) An increase in the power of the
excitation signal implies an increase in the variance of the criterion PC ,

which in turn increases the variance of the parameter estimates PIV ; 2)
An increase in the power of the excitation signal induces an increase in

the power of the derivatives of the predictor of the output RIV . These
derivatives enter inversely in the expression for the variance of the pa-
rameter estimates. In general, the overall effect is that the variance

of the parameter estimates decreases as the variance of the excitation
signal increases. For more details, the reader is referred to [75]. In the

case of CbT, due to the decoupling of the outputs y1(t) and y2(t), D̃ is
insensitive to the changes in r2(t), and therefore only the first effect is

present, i.e. the presence of r2(t) results in an increase of the variance
of the estimated controller parameters.

• Comparison of the case of simultaneous excitation of both components

of r(t) with the excitation of these components one-by-one shows that
r2(t) acts as an additional disturbance for the tuning of the decou-
pler K21(ρ). That is, the addition of this reference deteriorates the

signal-to-noise ratio for the estimation of K21(ρ) and, via the covari-
ance matrix, influences negatively the variances of the other elements

of the controller transfer function.

• For systems where Md is not diagonal, i.e. decoupling is not part of the
control design specifications, both effects of the variance of the excita-

tion on the variance of estimated controller parameters are present.

In this section, a variance analysis for the parameters of a multivariable
controller tuned using the CbT approach has been presented. Two cases of

excitation have been considered for 2 × 2 systems. This analysis indicates
that the addition of the second reference signal can worsen the variance
of the estimated controller parameters. In fact, there is a user’s choice
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whether to excite the elements of r(t) one by one or simultaneously. On

the one hand, simultaneous excitation provides smaller experimental cost.
On the other hand, the one-by-one excitation implies two experiments per
iteration but provides more accurate controller parameters.

5.3.4 Correlation reduction for MIMO systems

In the case of a restricted number of controller parameters, it is not guaran-

teed that, at the solution ρd of (5.14), the variable EKjk
(ρd, t), which includes

the closed-loop output errors and the outputs, is completely decorrelated

from the corresponding reference signals. In other words, if the dimension of
the controller parameter vector to be updated is smaller than the dimension
of the decorrelating controller parameter vector ρ◦), then perfect decorrela-

tion is not attainable. For example, when only one parameter per controller
Kjk is tuned, F (ρ) represents the cross-correlation between EKjk

(ρ, t) and

r(t−1). That is, at the solution of (5.14) these signals are decorrelated only
for the delay of 1, and not necessarily for other delays. In other words, the

resulting controller does not really decorrelate EKjk
(ρd, t) and r(t).

To get a grip on these difficulties, the controller parameters can be com-
puted by minimizing the following correlation criterion:

J(ρ) = F T (ρ)F (ρ) (5.45)

with the cross-correlation function F (ρ) defined by (5.10)-(5.12). The vari-
ables EKjk

(ρ, t) are chosen as in (5.13). The instrumental variables vector is
chosen as a shifted version of the reference signal rk(t):

ζT
Kjk

(t) = [rk(t + nz), . . . , rk(t), . . . , rk(t − nz)] (5.46)

where 2nz +1 ≥ nr +ns. Observe that with this choice of instrumental vari-
ables, the number of equations is larger than the number of controller pa-
rameters, i.e. the cross-correlation between EKjk

(ρ, t) and r(t) is computed

for 2nz + 1 delays. This way, the underlying system of cross-correlation
equations is a better measure of the cross-correlation between EKjk

(ρ, t) and

r(t) and, at the same time, it is independent of the controller order.

Remark: In the case of the decorrelation procedure, the instrumental vari-
ables were chosen so as to ensure positive-definiteness of Q(ρ◦). In con-
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trast, in the case of the correlation reduction, the required condition on

positive-definiteness of ∂J(ρ)
∂ρ

∣∣∣
ρ=ρ◦

is automatically satisfied because J(ρ) is

a quadratic criterion. Hence, the instrumental variables with this method
can be chosen arbitrarily.

Frequency-domain analysis

In this section, the properties of the achieved closed-loop system are inves-

tigated by frequency-domain analysis of the criterion (5.45). It follows from
(5.10)-(5.12) and (5.45) that this criterion can be expressed as:

J(ρ) =

2∑
j=1

2∑
k=1

E
{

f̄T
Kjk

}
E
{
f̄Kjk

}
(5.47)

Then, by substituting (5.46) in (5.12), (5.47) becomes

J(ρ) =

2∑
j=1

2∑
k=1

τ=nz∑
τ=−nz

R2
Kjk

(τ) (5.48)

where the cross-correlation RKjk
(τ) is defined as:

RKjk
(τ) = E

{
EKjk

(ρ, t)rk(t − τ)
}

(5.49)

Applying Parseval’s formula to (5.48), and letting nz tend to infinity, one
gets

lim
nz→∞

J(ρ) =

2∑
j=1

2∑
k=1

1

2π

∫ π

−π

∣∣Bjk(e
jω)
∣∣2 Φ2

rj
(ω)dω (5.50)

where
Bjk(e

jω) = Tjk(e
jω, ρ) − Mdjk(e

jω) (5.51)

Now, from (5.50) and (5.51), the following observations can be made:

• Criterion (5.45) is asymptotically unaffected by noise.

• The weighted discrepancy between the achieved T and desired Md

sensitivity functions is minimized, with the weight being the square of
the reference signal power. At frequencies where the reference signal
power is large, this discrepancy is small.
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• In the ideal case, when the global minimum is reached, Bjk(e
jω) = 0.

In other words, since the desired sensitivity function Md is diago-
nal, diagonal controllers provide Tjj(e

jω, ρ) = Mdjj(e
jω) and decouplers

Tjk(e
jω, ρ) = 0, j �= k.

Having analyzed the basic properties of (5.45), the next section presents a
method to minimize this criterion.

Minimizing an upper bound of the criterion

Minimization of criterion (5.45) is intractable since it involves the product
of expectations that are unknown. Therefore, let us define the following

criterion:
Ju(ρ) = E

{
F̄ T (ρ)F̄ (ρ)

}
(5.52)

This criterion can be minimized using the stochastic approximation method.
It can be shown that J(ρ) ≤ Ju(ρ), i.e. by minimizing (5.52) one in fact
minimizes an upper bound of (5.45) [45].

A local minimum of (5.52) can be found as the solution to:

J ′
u(ρ) = E

{
∂F̄ (ρ)

∂ρ
F̄ (ρ)

}
= 0 (5.53)

which can be obtained using the following iterative formula [70]:

ρi+1 = ρi − γi

∂F̄ (ρ)

∂ρ

∣∣∣∣
ρi

F̄ (ρi) (5.54)

Under Assumptions A1, A2, A4, and A8, this scheme converges to a lo-
cal minimum of the criterion as the number of iterations goes to infinity,

provided that an unbiased estimate of the gradient ∂F̄ (ρ)
∂ρ

∣∣∣
ρi

is available.

However, obtaining an unbiased estimate of this gradient for MIMO sys-
tems can be very costly. It is proposed here to compute the gradient using

an identified MIMO model, which requires only one experiment with the
closed-loop system regardless of the number of inputs and outputs. Never-
theless, in this case, local convergence of the algorithm is guaranteed only

if an unbiased model can be identified.

In this section, the vector of controller parameters is computed by min-
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imizing the cross-correlation criterion (5.52) using the stochastic approxi-

mation method. Now, having presented both the decorrelation procedure
and the correlation reduction for MIMO systems, it is of interest to compare
these two approaches in terms of applicability to practical control situations

where one can collect a large number of data. This is discussed next.

5.3.5 Iterative solution using deterministic methods

The stochastic approximation algorithm used in the decorrelation procedure
presented in Section 5.3.3 converges to ρ◦, under fairly weak conditions.

However, the convergence rate could be too slow for industrial applications.
If one can collect a large number of data, the influence of noise on F̄ (ρi) is

reduced considerably, and the Newton-Raphson algorithm can be used to
compute the controller parameters:

ρi+1 = ρi − ˆ̄Q−1(ρi)F̄ (ρi) (5.55)

where the elements of the matrix ˆ̄Q(ρi) =

(
∂ ˆ̄F (ρ)

∂ρ

∣∣∣
ρi

)
are:

ˆ̄Q
Kjk

Kmn
(ρi) =

1

N

N∑
t=1

∂ŷj(ρi, t)

∂ρKmn

ζT
Kjk

(t). (5.56)

The derivatives
∂ŷj(ρi,t)
∂ρKmn

can be estimated using (5.20), where the transfer
function matrix G is typically unknown but can be identified and replaced
by its estimate Ĝ. Finally, the estimate Ŝ(ρi) is calculated using Ĝ and the

current value of the controller K(ρi).

Similarly, in the case of correlation reduction, for N sufficiently large,

the criterion (5.52) can be considered as deterministic and minimized using
the much faster Gauss-Newton iterative algorithm:

ρi+1 = ρi − HF (ρi)
−1 ˆ̄Q(ρi)F̄ (ρi) (5.57)

where HF (ρi) is chosen as:

HF (ρi) = ˆ̄Q(ρi)
(

ˆ̄Q(ρi)
)T

(5.58)
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Observe that the Jacobian estimate ˆ̄Q(ρi) is asymptotically unaffected

by noise since the noisy part of
∂ŷj(ρi,t)
∂ρKmn

is not correlated with ζT
Kjk

(t).

However, it is sensitive to modelling errors.

Remark: To tune the decoupler Kjk(ρ) by a method that minimizes the
2-norm of the closed-loop output error (such as IFT), it is necessary to
excite the component j of the reference signal r(t) while keeping the other

components equal to zero and then minimize the 2-norm of yj(ρ, t). For
MIMO systems with a large number of inputs and outputs, this requires a

large number of experiments per iteration to tune all decouplers Kjk(ρ), j �=
k. In contrast, with both decorrelation procedure and correlation reduction,

the tuning of all controllers Kjk(ρ) is possible with only one experiment per
iteration.

5.4 Simulation Results

Two simulation studies are presented in this section. In the first study,
the basic features of the decorrelation procedure and correlation-reduction

method are investigated, while the second study compares the correlation-
reduction method to IFT for MIMO systems. Note that IFT minimizes the

sum of squares of the output error:

SSOE =
1

N

N∑
t=1

εT
oe(ρ, t)εoe(ρ, t). (5.59)

5.4.1 Decorrelation procedure vs. correlation reduc-

tion

Consider the following discrete-time multivariable plant:

G(q−1) =

(
0.09516q−1

1−0.9048q−1

0.03807q−1

1−0.9048q−1

−0.02974q−1

1−0.9048q−1

0.04758q−1

1−0.9048q−1

)
(5.60)

and let the initial controller for this plant be:
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Figure 5.3: Decorrelation procedure vs. correlation reduction. Reference signals (dash-dot)
and desired responses (dotted). Achieved responses: the initial controller (dashed), final
controller obtained by decorrelation procedure (thin solid line) and final controller obtained
by correlation reduction (thick solid line). The references are changed in a step-like manner
at 0 and 2.5s (for r1) and 5s (for r2).

K0 =

(
1−0.99q−1

1−q−1

0.1−0.099q−1

1−q−1

−1−0.99q−1

1−q−1

1−0.99q−1

1−q−1

)
(5.61)

The output of the plant is perturbed by a zero-mean, stationary, white

Gaussian sequence v(t) with variance 0.05I. The reference signals are given
in Figure 5.3 (dash-dotted line). The parameters of the controllers Kjj, j =

1, 2 are tuned to provide the desired closed-loop response with the natural
frequency of 3rad/s and damping factor of 0.7, while the parameters of

Kjk, j �= k are tuned for decoupling. Hence, the corresponding reference
model reads:

Md1
=

(
0.1148q−1−0.0942q−2

1−1.79q−1+0.8106q−2 0

0 0.1148q−1−0.0942q−2

1−1.79q−1+0.8106q−2

)
(5.62)

The instrumental variables for the decorrelation procedure are computed
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using the following Laguerre basis functions:

Fl(q
−1) =

(√
1 − ξ2

1 − ξq−1

)(
q−1 − ξ

1 − ξq−1

)l

(5.63)

where ξ = 0.895 is chosen to approximately reflect the closed-loop dynamics,
and the model order l = 2. The weighting coefficients hl

Kjk
are obtained by

solving the feasibility problem

Q̂(ρ◦, hl
Kjk

) > I (5.64)

where Q̂(ρ◦, hl
Kjk

) is estimated as explained in Section 5.3.3. In the right-

hand side of inequality (5.64) the identity matrix I is used instead 0 to
ensure the positive definiteness of Q(ρ◦, hl

Kjk
). This safety margin is in-

troduced to compensate for differences between Q(ρ◦, hl
Kjk

) and its esti-

mate Q̂(ρ◦, hl
Kjk

). The following values for the coefficients hl
Kjk

are obtained

using Matlab LMI Control Toolbox: h0
K11

= 200.0328, h1
K11

= −5.5225,
h0

K12
= 107.4611, h1

K12
= −352.1068, h0

K21
= 226.8947, h1

K21
= −85.2721,

h0
K22

= 234.8072 and h1
K22

= −371.1253.

To compare the two CbT methods, the tuning is carried out in 6 itera-
tions, with one experiment per iteration and each experiment is performed

with a different realization of the noise. The resulting responses obtained
with the initial controller (dashed line), the controller tuned by decorre-

lation procedure (thin solid line) and that tuned by correlation reduction
method (thick solid line) are shown in Fig. 5.3. Both tuned controllers

allow following the desired response (dotted line) up to the effect of noise.
Observe also that both resulting closed-loop systems are diagonalized. The
results are summarized in Table 5.1. Note that the correlation indices are

reduced in both cases by 99%, while SSOE index is reduced by 97%.

5.4.2 Correlation-reduction CbT vs. IFT

The aim is to tune a multivariable PI controller for a LV100 gas turbine

engine [87]. The simulation conditions are taken from [30]. The plant is
represented by a continuous-time state-space model with five states, two in-
puts and two outputs. The model is discretized using Tustin approximation
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Table 5.1: Comparison of CbT variants. The index ||F (ρi)||2 denotes the 2-norm of F (ρi)

Iter- Decorrelation Procedure Correlation Reduction
ation ||F (ρi)||2 SSOE Ju(ρi) SSOE
i = 0 28770.2 34.2411 138.3408 34.2411
i = 6 335.0878 0.9284 1.2709 0.9352
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Figure 5.4: Correlation-reduction CbT: Closed-loop responses in a noisy environment.
Reference signals (dash-dot), desired responses (dotted), achieved responses with the initial
controller (dashed) and final controller (solid). The references are changed in a step-like
manner at 0 and 5s (for r1) and 10s (for r2).

with the sampling period Ts = 0.1s. Each experiment is performed with

a different realization of the measurement noise v(t) that is generated as a
zero-mean, stationary, white Gaussian sequence with variance 0.0025I.

The same initial controller K0 given in (5.61) is used. The responses

obtained with this controller are plotted in Fig. 5.4 (dashed line). Eight
numerator coefficients are tuned (two for each transfer function element),

while the denominators are kept fixed at 1 − q−1. The following reference
model is specified:

Md2
=

(
0.4q−1

1−0.6q−1 0

0 0.4q−1

1−0.6q−1

)
(5.65)
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Figure 5.5: Correlation-reduction CbT vs. IFT controller in a noise-free context. Reference
signals (dash-dot), desired responses (dotted), closed-loop response with the CbT controller
(solid) and IFT controller (dashed)

and the controller parameters are calculated according to (5.57).

A discrete-time state-space model Ĝ with three states is identified using

the acquired closed-loop data. After eight iterations, this procedure provides
the closed-loop response shown in Fig. 5.4. A comparison with the desired

response (dotted line) shows that the two curves are nearly superposed
except for the effect of noise. In addition, changes in the reference signals

r1(t) and r2(t) do not induce any visible change on the outputs y2(t) and
y1(t), respectively. In other words, the closed-loop system is almost fully
diagonalized. The value of the tuning criterion is reduced by more than

99%. The resulting CbT controller is:

KCbT =

(
0.3636−0.09866q−1

1−q−1

0.3653−0.2691q−1

1−q−1

18.69−18.16q−1

1−q−1

−3.453+2.652q−1

1−q−1

)
(5.66)

In order to compare the IFT controller provided in [30],

KIFT =

(
0.248−0.03q−1

1−q−1

0.38−0.199q−1

1−q−1

16.47−15.91q−1

1−q−1

0.063+0.054q−1

1−q−1

)
(5.67)
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with the CbT controller, an experiment is performed with the simulation

conditions mentioned above. The observed SSOE with the CbT controller
is 0.0050, while that with the IFT controller is 0.0082. Since IFT contains
a noise-rejection objective, while CbT does not, one would expect IFT to

perform better in a noisy situation. However, SSOE obtained with CbT
is smaller. The IFT controller did not succeed in (i) fully decoupling the

closed-loop system, and (ii) completely satisfying the model-following spec-
ification. This indicates that IFT algorithm got stuck in a local minimum.

To illustrate this, an additional experiment without noise is performed. The
results are shown in Fig. 5.5. The closed-loop response obtained with the

CbT controller follows almost perfectly the desired response. In contrast,
the closed-loop response obtained with the IFT controller shows some dis-
crepancy in the last 5 seconds of the response. In addition, the influence of

the change in the reference signal r1(t) at the instants 0s and 5s is visible
on y2(t).

In terms of experimental cost, the IFT controller is obtained after 6

iterations (and a total of 30 experiments) compared to 8 iterations (and a
total of 8 experiments) with the CbT controller.

5.5 Conclusion

In this chapter, the parameters of a linear time-invariant multivariable con-

troller have been tuned by either solving the correlation equation or mini-
mizing a cross-correlation function. The diagonal controllers are tuned to
fulfill the desired output specifications, while the off-diagonal controllers are

tuned to decouple the various outputs. In contrast to the approaches where
decouplers and diagonal controllers are designed sequentially, the design of

decouplers and controllers is done simultaneously here. The tuning of all
decouplers and controllers can be made by performing only one experiment

per iteration regardless of the number of inputs and outputs since all refer-
ence signals can be excited simultaneously. This feature represents a major
advantage over other data-driven methods such as IFT, where the required

number of experiments per iteration increases with the number of inputs
and outputs.

The variance of the estimated controller parameters has been compared
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for the two cases of simultaneous and sequential excitations. This analysis

shows that, due to the fact that decoupling is imposed as a design crite-
rion, simultaneous excitation of all references has a negative impact on the
variance of the estimated controller parameters. More accurate estimates

require performing ny experiments per iteration. In fact, one must choose
between low experimental cost (simultaneous excitation) and better accu-

racy of the estimated parameters (sequential excitation). Even in the case of
the sequential excitation where CbT requires ny experiments per iteration,

this method is superior in terms of experimental cost to IFT which requires
nuny + 1 experiments per iteration. The presented theoretical results have

been illustrated via two simulation studies.
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Chapter 6

Conclusions

6.1 Summary

This thesis presents a novel approach to data-driven controller design la-
belled “Correlation-based Tuning” (CbT). The underlying idea of this ap-
proach, originally intended to address the model-following problem, is to

make the closed-loop output error uncorrelated with the excitation signal.
Moreover, if it is not possible to decorrelate these two signals, it is proposed

to reduce their cross-correlation. The argument behind introducing the
correlation criterion is as follows. If the aforementioned signals are uncor-

related, then the closed-loop output error contains no part that originates
from the difference between the achieved and designed closed-loop systems.
In other words, these closed-loop systems match perfectly, and the closed-

loop output error contains only contribution from the noise. Hence, the
desired tracking performance can be perfectly met even in the presence of

a considerable amount of noise.

Although CbT uses data collected in closed-loop operation to update the
controller parameters, it cannot be called a “model-free” approach. For ex-

ample, in order to reduce the experimental cost, a model is used for gradient
computation. Note that a model can be identified from the same data used

for controller tuning. This way of computing the gradient allows iterative
update of the controller parameters by performing a single experiment per

iteration regardless of whether a one-degree-of-freedom or a two-degree-of-
freedom controller is tuned.

In the first part of the thesis, it is assumed that there exists a controller
that perfectly decorrelates the closed-loop output error and the reference

131
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signal and, furthermore, this controller is in the selected controller class.

The features of the decorrelation procedure are investigated for two cases.
In the first case, the controller parameters are updated using the Robbins-
Monro stochastic approximation method, and it is shown that the algorithm

converges to the solution of the correlation equation assuming an appropri-
ate choice of the instrumental variables. Convergence conditions are derived

and the accuracy of the updated controller parameters is studied. In the
second case, the controller parameters are updated using the deterministic

Newton-Raphson method and here the resulting parameter estimates con-
verge toward a region around the decorrelating controller instead of to an

unique solution. An asymptotic expression that characterizes this region is
given and subsequently used to derive a stopping condition. Excellent per-
formance has been obtained in both simulation and real-time application to

a magnetic suspension system.

The correlation-reduction method is presented in the second part of the
thesis. Instead of seeking the roots of the correlation equation, the con-
troller parameters are updated by minimizing the two-norm of the cross-

correlation function. A frequency-domain analysis of the criterion shows
that the achieved closed-loop system approaches the desired one in the two-

norm sense. This analysis leads to the formulation of a generalized corre-
lation criterion allowing handling the mixed sensitivity specifications. The

possibility of using deterministic algorithms for the correlation-reduction
method has also been investigated, and a stopping condition has been in-
troduced. Furthermore, it has been shown that, in the case where the

disturbance signal can be measured or it is possible to inject a test distur-
bance signal, CbT can be adapted to tune the controllers for disturbance

rejection. This adaptation is applied to solve a benchmark problem on
the design and optimization of restricted-complexity controllers. Very sat-

isfactory results have been obtained. Finally, a very simple choice of the
instrumental variables is proposed.

The third part of the thesis treats the possibility of tuning linear time-
invariant multivariable controllers using both the decorrelation procedure

and the correlation-reduction methods. The CbT criterion allows one to
tune simultaneously some elements of the controller transfer function to
be decouplers, while the others are tuned to provide good tracking per-
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formance. Simultaneous excitation of all reference inputs results in low

experimental cost because it is possible to use one experiment per itera-
tion regardless of the number of inputs and outputs of the system. On the
other hand, the analysis performed in Section 5 indicates that this way of

exciting the reference input has a negative effect on the accuracy of the
estimated controller parameters. Therefore, one has to choose whether it is

more important to have reduced experimental costs by performing a single
experiment per iteration, or it is better to have more accurate controller

parameters by exciting one-by-one the reference inputs.

From a practical point of view, the CbT scheme is appealing to con-
trol engineers. It works in closed loop and requires a single experiment

per iteration. The excitation signal can be constructed as a small varia-
tion around the normal operating signal. Although CbT is a time-domain

approach, it is possible to handle frequency-domain specifications as well.
If needed, certain frequency regions can be emphasized by filtering either

the instrumental variables or the reference signals. On the downside, this
approach requires a certain engineering effort, in particular in designing the
achievable designed closed-loop system.

Last, but not least, this method works well for all types of rational con-
trollers including PID controllers, which makes it well suited for fine-tuning

of the already installed industrial loops.

6.2 Perspectives

The concepts presented in this thesis can be extended to several independent
research directions. These are briefly presented below.

• Although the cross-correlation function and the correlation equation

are used under the assumption that a linear time-invariant (LTI) plant
is controlled by an LTI controller, these two approaches are by no

means limited to only these classes of systems and controllers. That is,
the correlation approach can be used within the context of nonlinear

control design as well, which represents a very interesting research area.

• The proposed CbT approach can be used to address the control of
slowly time-varying systems. For these systems, the controller param-
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eters can be updated in two ways. One possibility is to perform the

update recursively. In this case, appropriate recursive on-line algo-
rithms need to be developed. Another possibility is to use again the
iterative procedure. However, in this case, the number of data collected

in each iteration should be small enough for the process variations to
be negligible.

• One of the main features of the correlation approach is that the con-
troller parameters are not affected by measurement noise. Hence, the

proposed decorrelation and correlation reduction criteria can be used
with methods that update the parameters in high-noise setting. For

example, the correlation approach could be used judiciously with the
simultaneous perturbation stochastic approximation (SPSA) method.
Other examples include iterative learning control (ILC) and virtual

reference feedback tuning (VRFT).

• CbT uses the fact that the closed-loop output error contains two parts:

the correlated and uncorrelated parts with respect to the excitation sig-
nal. The controller tuning objective can be defined as the minimization

of the infinity norm of the correlated part. This way, robustness issues
of the closed-loop system can be addressed.

• When dealing with a two-degree-of-freedom controller, it may be use-
ful to separately tune the feedback and feedforward controllers. The
feedback controller may be tuned first to satisfy a certain performance

with respect to disturbance rejection (to obtain some desired sensitivity
functions), while the feedforward part is tuned to satisfy some desired

tracking performance.
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SAME, Université Catholique de Louvain, Louvain-la-Neuve, Belgium,
2003.

[27] H. Hjalmarsson. Control of nonlinear systems using iterative feedback

tuning. In Proc. American Control Conference 98, volume 5, pages
2083–2087, Philadelphia, 1998.

[28] H. Hjalmarsson. Performance analysis of iterative feedback tuning.
Technical report, Dept. of Signals, Sensors and Systems, Royal Institute

of Technology, Stockholm, Sweden, 1998.

[29] H. Hjalmarsson. Efficient tuning of linear multivariable controllers us-
ing Iterative Feedback Tuning. International Journal of Adaptive Con-
trol, 13:553–572, November 1999.



138 BIBLIOGRAPHY

[30] H. Hjalmarsson. Efficient tuning of linear multivariable controllers us-

ing iterative feedback tuning. International Journal of Adaptive Control
and Signal Processing, 13:553–572, 1999.

[31] H. Hjalmarsson. Iterative feedback tuning – an overview. International
Journal of Adaptive Control and Signal Processing, 16:373–395, 2002.

[32] H. Hjalmarsson. From experiment design to closed-loop control. Auto-
matica, 41:393–438, 2005.

[33] H. Hjalmarsson, M. Gevers, and F. De Bruyne. For model-based control
design, closed-loop identification gives better performance. Automatica,
32:1659–1673, 1996.

[34] H. Hjalmarsson, M. Gevers, S. Gunnarsson, and O. Lequin. Iterative
feedback tuning: Theory and application. IEEE Control Systems Mag-

azine, pages 26–41, 1998.

[35] H. Hjalmarsson, S. Gunnarsson, and M. Gevers. A convergent itera-

tive restricted complexity control design scheme. In 33rd IEEE-CDC,
volume 2, pages 1735–1740, December 1994.

[36] H. Hjalmarsson, S. Gunnarsson, and M. Gevers. Optimality and sub-
optimality of iterative identification and control design schemes. In

Proc. American Control Conference 95, volume 4, pages 2559–2563,
Seattle, Washington, 1995.

[37] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambrigde University
Press, Cambridge, 1990.

[38] H. Jansson, H. Hjalmarsson, and A. Hansson. On methods for gradient
estimation in IFT for MIMO systems. In 15th IFAC World Congress,

Barcelona, Spain, July 2002.

[39] R.E. Kalman. Contributions to the theory of optimal control. Boletin

de la Sociedad Matematica Mexicana, 5:102–119, 1960.

[40] R.E. Kalman. A new approach to linear filtering and prediction prob-
lems. Transactions ASME, Series D, J. Basic Eng., 82:34–45, 1960.



139

[41] L. C. Kammer, R. R. Bitmead, and P. L. Bartlett. Direct iterative

tuning via spectral analysis. Automatica, 36(9):1301–1307, 2000.
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4. Mǐsković, L., A. Karimi and D. Bonvin,“Correlation-based tuning of a

145



146 Curriculum Vitae and List of Publications

restricted-complexity controller for an active suspension system”, Eu-

ropean Journal of Control, Vol. 9, No. 1, pp. 77–83, 2003.
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1. Mǐsković, L., A. Karimi, D. Bonvin, and M. Gevers.“Direct closed-loop
identification of 2×2 systems: Variance analysis“, In 14th IFAC Symp.

on System identification, Newcastle, Australia, March 2006.

2. Mǐsković, L., A. Karimi, D. Bonvin, and M. Gevers,“On the input
design for data-driven correlation-based tuning of multivariable con-

trollers”, In 14th IFAC Symp. on System identification, Newcastle,
Australia, March 2006.

3. Mǐsković, L., A. Karimi, D. Bonvin and M. Gevers,“Correlation-based
tuning of linear multivariable decoupling controller”, CDC-ECC Con-

ference, Seville, Spain, December 2005.
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