
1

Robust Emulations of Shared Memory in a
Crash-Recovery Model

Rachid Guerraoui and Ron Levy
Distributed Programming Laboratory

EPFL

Abstract— A shared memory abstraction can be robustly
emulated over an asynchronous message passing system where
any process can fail by crashing and possibly recover (crash-
recovery model), by having (a) the processes exchange messages
to synchronize their read and write operations and (b) log key
information on their local stable storage.

This paper extends the existing atomicity consistency criterion
defined for multi-writer/multi-reader shared memory in a crash-
stop model, by providing two new criteria for the crash-recovery
model. We introduce lower bounds on the log-complexity for
each of the two corresponding types of robust shared memory
emulations. We demonstrate that our lower bounds are tight by
providing algorithms that match them. Besides being optimal,
these algorithms have the same message and time complexity as
their most efficient counter part we know of in the crash-stop
model.

We analyze the real-world performance of our emulations
by looking at a set of measurements obtained using an actual
implementation over a network of workstations.

Index Terms— asynchronous distributed system, message pass-
ing, shared memory, crash-recovery, atomicity, logging, complex-
ity, lower bound, optimality, stable storage.

I. I NTRODUCTION

A. Motivation

D ISTRIBUTED programming with a shared memory is
usually considered easier than with message passing.

Hence, when no hardware shared memory is available, it can
be very useful to emulate a virtual one at the software level.

In an asynchronous message passing system where pro-
cesses can fail by crashing and never recover (crash-stop
model), such emulation can be achieved through a distributed
algorithm that implements thereadandwrite operations of the
distributedshared memory, using underlying message passing
channels between the processes. The emulation can be made
robust(fault-tolerant) provided that a majority of the processes
do not crash [1]–[4]:robustness[1] means here that anyread
or write operation invoked by a processp, which does not
subsequently crash, eventually returns.

In an asynchronous message passing system where any
process can fail by crashing and possibly recover (crash-
recovery), a shared memory can be robustly emulated provided
that eventually a majority of the processes are permanently
(long enough for an operation to terminate) not crashed. The
processes exchange messages to synchronize theirread and
write operations (as in thecrash-stopmodel), as well as log
key information to their local stable storage (unlike in the
crash-stop model). Intuitively, logging to stable storage is

necessary because upon recovery, a process might have lost
all the content of its local volatile memory.

The number of logs have a direct impact on the performance
of the emulation. In our local area network of Pentium
IV workstations for instance, it takes around 0.1ms for a
message to transit between two processes located at different
workstations whereas logging a single byte on a local disk
might take twice as long; comparatively it costs almost nothing
for a process to execute a local operation.

The objective of this paper is to devise an algorithm
that robustly emulates a shared memory in a crash-recovery
message passing model, while minimizing thelog-complexity
of any read andwrite operation on the memory. In particular,
we seek to devise robust emulation algorithms with minimal
log-complexity, while preserving thetime-andmessage-com-
plexity of efficient and robust memory emulations we know
of in a crash-stop model.

B. Performance Metrics

To illustrate what we mean bylog-complexity, consider the
implementation of awrite operation using the two following
algorithms:A and A′, both emulating a shared memory in a
crash-recovery model1.

1) In algorithm A, the writer process firstlogs some
information, then sends a message to all processes.
Every process that gets the message alsologs some
information, except the writer, before sending back an
acknowledgment (ack). Once the writer gets back all
acks, it terminates thewrite (i.e. returns an “OK”).

2) In algorithm A′, the writer directly sends a message
to all processes. Every process that gets the message,
including the writer, logs some information before send-
ing back an ack. Once the writer gets back all acks, it
terminates thewrite.

In both algorithms, awrite operation requires2 communica-
tion steps, i.e., one round-trip between the writer and the rest of
the processes. How many logs are used in each algorithm? At
first glance, it might appear that both algorithms use the same
number of logs. Indeed, in both cases all processes must log to
terminate thewrite. However, a closer look at the algorithms
reveals that logs are not used in the same manner. InA, the
log of the writer causally precedes[5] the log of the other
processes, whereas inA′, there is no such causal precedence:

1None of these emulations are robust, but this is irrelevant for explaining
the notion of log-complexity

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147916017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

all logs can be performed in parallel. We say that awrite
operation costs2 causal logs in algorithmA and1 causal log
in algorithmA′. In practice, even if shared memory emulation
algorithms are devised in an asynchronous model, the most
frequent case for which they need to be optimized is when the
message transmission delay is within a reasonable time period
(0.1 ms in our network). If we define the communication delay
as δ and the log delay asλ, a write with A costs2δ + 2λ,
whereas awrite with A′ only costs2δ + λ.

Using this metric, we address in this paper the following
question: how manycausal logsare needed to robustly emulate
a write and areadoperation of a shared memory over a crash-
recovery message passing system?

C. Atomic Memory

Several kinds of shared memory have been defined in the
literature. The strongest is theatomic one [6], also so-called
linearizable[6]. It provides the processes with the illusion that
they access the memory one at a time. Processes are sequential
and each of their operations on the shared memory appears
to be executed instantaneously, at some instant in the time
interval between the invocation and reply events, despite actual
concurrent accesses by the processes.

In this paper we mainly focus on this kind of memory since
it is the most useful to the programmer. By default, we assume
that readandwrite operations on this memory can be invoked
by any process in the system (multi-writer/multi-reader). To
get an idea of the ramifications underlying the problem of
devising a robust and log optimal atomic shared memory emu-
lation over a crash-recovery message passing system, consider
the robust atomic memory emulation algorithm over acrash-
stopmessage passing system described in [2]. (This algorithm
is itself an extension for multiple writers of the single-writer
algorithm of [1].) Processes that crash never recover and it
is assumed that a majority of the processes never crash. The
algorithm uses monotonically increasing timestamps to order
the written values: every process holds a value, presumably the
latest written value, with an associated timestamp. Consider
for instance the emulation of awrite operation. First, the
writer process requests the highest timestamp from a majority
of processes. The writer then increments this timestamp and
broadcasts it together with the value to be written. Every
process that receives this message updates its variable with
the new value and timestamp,2 then sends back an ack to the
writer. Once the writer receives a majority of acks, it returns
from thewrite operation.

We can easily adapt this algorithm to a crash-recovery
model by having every process log each of its steps in stable
storage, but the resulting algorithm would be very expensive
(clearly not log optimal). Below we discuss some of the issues
related to minimizing log-complexity.

1) Before a write completes, at least a majority of the
processes must have logged the new value and its
associated timestamp: in other words, awrite needs

2Note that timestamps are sequence numbers (integers) associated with
process ids, and these ids help order timestamps with the same sequence
number.

at least one causal log. Otherwise there might be no
way for a written value to persist in the system and be
eventually read (forgotten-value).

2) But do we need two causal logs? For instance, does
the writer need to log the timestamp it associates with a
value, before asking a majority of the processes to adopt
the value with this timestamp? This seems desirable
to prevent the case where the writer crashes and a
single process adopts the new value and timestamp.
Upon recovery, the writer might otherwise use the very
same timestamp to write a different value, leading to
two different values with the same timestamp (confused-
values).

3) Furthermore, does the writer need to log the very fact
that it is about to start writing some valuev? Again, this
seems desirable because, if the writer crashes during a
write and recovers, it might start a new operation without
finishing the previouswrite (orphan-value).

Finding out which logs are really needed goes through
carefully defining the very notion of atomicity in a crash-
recovery model.

D. Contributions

We extend the notion of atomicity to the crash-recovery
model by defining two new forms of atomicity:

• The first one guarantees atomicity to persist through
crashes: we call itpersistent atomicity;

• The second one is weaker and only guarantees atomicity
between crashes: we call ittransient atomicity.

Transient atomic memory provides exactly the same se-
mantics as persistent atomic memory, except that it does not
prevent the issue oforphan valuesmentioned above. An unfin-
ishedwrite (due to the crash of a writer) can appear to “over-
lap” with a consecutivewrite at the same process (the writer).
Every operation still appears to be executed instantaneously
at some instant in its time interval, but a process that crashes
while writing might temporarily not appear to be sequential
upon recovery (until its nextwrite terminates). We believe this
situation to be sufficiently exceptional. Therefore, studying the
notion of transient atomicity is practically meaningful in a
crash-recovery model.

We show that robustly emulating a persistent atomic shared
memory in a crash-recovery model requires at least2 causal
logs for awrite and1 causal log for aread, whereas transient
atomicity requires1 causal log for each. These lower bounds
hold even for a single-writer/single-reader memory, no matter
how many messages or communication steps are used among
processes.

Our bounds aretight. We give an algorithm that robustly
emulates a multi-writer/multi-reader persistent atomic memory
with 1 causal log for areadand2 causal logs for awrite, and
an algorithm that robustly emulates a multi-writer/multi-reader
transient atomic memory with1 causal log for awrite and1
causal log for aread.

Our algorithms assume that eventually a majority of pro-
cesses are permanently non-crashed (long enough for an
operation to terminate). This assumption is needed for any

3

robust emulation and does not exclude scenarios where all
the processes crash, possibly at the same time, as long as a
majority eventually recovers.

We present our log-optimal emulation algorithms as exten-
sions of the algorithm of [2], which is the most efficient robust
atomic memory emulation we know of in a crash-stop model.
Our algorithms use the same number of communication steps
as [2], namely4 for any operation. In other words, this means
that minimizing the number of logs does not increase the
number of messages, or communication steps, with respect
to the most efficient robust emulation algorithms we know of
in a crash-stop model.

E. Road-Map

Section II describes the crash-recovery model. Section III
defines our two notions of memory atomicity in such a
model: persistent and atomic memory. Section IV presents
tight bounds on the log-complexity of each form of memory.
Section V analyzes the performance of a practical implemen-
tation of the emulations using various configurations.

II. M ODEL

Our crash-recovery model follows the one introduced in [7].
We consider an asynchronous message passing model, without
any assumptions on communication delay or relative message
speeds. To simplify the presentation of our algorithms we
assume the existence of a global clock. This clock however is
a fictional device outside of the control of the processes.

The set of processes is static and every process executes a
deterministic algorithm assigned to it, unless itcrashes. The
process does not behave maliciously. If it crashes, the process
simply stops executing any computation, unless it possibly
recovers, in which case the process resumes the execution
of the algorithm assigned to it. Note that in this case we
assume that the process is aware that it had crashed and
recovered. Upon recovery, a process is allowed to execute
a recovery procedure: there is no limitation on the number
of communication steps or messages used in this recovery
procedure.

Every process has a volatile and a stable storage. If it crashes
and recovers, the process loses the content of its volatile
storage but not the content of its stable storage. By default,
whenever a process updates one of its variables, it does so on
its volatile storage. The process can decide to store information
in its stable storage using a specific primitivestore: we also
say that the processlogs the information. The process retrieves
the information logged using the primitiveretrieve.

All processes can crash, even all at the same time. A
process that never crashes, or that eventually recovers and
never crashes again, is said to becorrect. It is important to
notice that, when we say that a processnever crashes, this
concretely means never crashes during the lifetime of the
algorithm the process is supposed to be executing.

We assume fair-lossy channels [8], which are defined as
follows: if a processpi sends a messagem to a correct process
pj an infinite number of times, andpi does not crash, then
pj receivesm an infinite number of times. Furthermore, if a

processpj receives some messagem, then some processpi

has sentm.
We assume a correct majority of processes, which is clearly

needed for robust emulations of the kinds of memory we
consider. (In fact, this is needed for the robust emulation of any
useful form of memory where written values do not disappear).

III. A TOMIC MEMORY IN A CRASH-RECOVERY MODEL

The notion of atomic single-writer/multi-reader memory
was introduced in the form of a sharedregister abstraction
in [6]. This notion was generalized to any type of object
(queues, counters, stacks, etc.), where any process can invoke
any object’s operation, through a general correctness criteria
called linearizability [9]. Roughly speaking, linearizability
provides the illusion that the shared object appears to be
accessed in a sequential way. Emulating an atomic memory
comes down to implementing a linearizable object accessed
through two operations:read and write, such that, despite
concurrency and failures, theread provides the illusion to
return the last written value.

We are interested in robust emulations where a process that
invokes areador write operation and does not crash, after that
invocation, eventually terminates the operation.

In the following section, we extend the traditional notion
of atomic memory in the crash-stop model to encompass the
crash-recovery model. We first give an intuitive idea before
we define this notion more precisely. Ideally, to the user
of an atomic memory, it should make no difference if the
underlying model is crash-stop or crash-recovery. This means
that atomicity should persist through crashes, hence the notion
of persistent atomicity. But in the crash-recovery model, it
is possible to define a different consistency criterion that is
weaker than persistent atomicity but does guarantee atomicity
in between crashes. This is why we refer to it astransient
atomicity.

Roughly speaking, persistent atomicity always provides the
illusion that the memory is accessed in a sequential and
failure-free way. Transient atomicity provides almost the same
guarantees as persistent atomicity, the only exception being
that the full illusion of atomicity can be temporarily broken
when a process recovers after a failure. More precisely: when a
writer pw crashes in the middle of executing awrite operation,
recovers and invokes a newwrite operation, other processes
might have the impression that the two operations are invoked
concurrently: the presentwrite, as well as thewrite pw had
invoked but not terminated prior to its last crash.

Depicted in Figure 1 are two runs: one of a memory that
ensures persistent atomicity and one that ensures transient
atomicity. The run of the transient atomic memory exhibits
the overlapping write behavior. What happens is that, during
the third write (W(v3)) of the writer p1, the other processes
do not know if the secondwrite (W(v2)) was successful or not
and can still return the value written by the firstwrite. The
main problem is that the end of the secondwrite can in fact
be delayed until the end of a consecutivewrite. The writer
itself would not be affected by the “overlapping” writes.

4

W(v2)W(v1)

R() R()

W(v3)

v2 v3

W(v2)W(v1)

R() R() v2v1

W(v3)
p1

p2

p3

Transient Atomicity Persistent Atomicity

Fig. 1. Runs of a persistent and transient atomic memory emulations

A. Histories

We recall below some elements underlying the definition
of linearizability from [9] in order to define our notions of
persistent and transient atomicity more precisely.

Linearizability defines correctness in terms of histories. A
history is a sequence of events of four kinds:invocations,
replies, crashesand recoveries. Crash and recovery events
are associated with exactly one process. Every invocation and
every reply is associated with exactly one process and one
object. A reply is said tomatch an invocation if they are
associated with the same process and the same object: such
a pair defines an operation execution (sometimes we simply
say operation when there is no ambiguity). In our context,
operations are eitherread or write. An invocation with no
matching reply in a history is said to bependingin that history.
An operationop is said toprecedean operationop′ in a history
if the reply ofop precedes the invocation ofop′ in that history.

Two historiesH and H ′ are said to beequivalentif for
every processp, the historyH at p is equal to the historyH ′

at p.
A local history is a sequence of events associated with one

process. A local history is said to bewell-formed if: (a) its
first event is either an invocation or a crash, (b) a crash can
only be followed by a matching recovery event, and (c) an
invocation can only be followed by a crash or a reply event.
A history is said to be well-formed if all its local histories are
well-formed.

To define linearizability, we reason about histories that are
complete: these are histories made only of invocation-reply
pairs, i.e. operations without pending invocations and without
crash or recovery events. Given any well-formed historyH1,
we say thatH2 completesH1 if H2 is made of the very same
object events in the same order as inH1, with one exception:
any pending invocation inH1 is either absent inH2, or has
a matching reply that appears inH2 before the subsequent
invocation of the same process.

B. Persistent Atomicity

A history is said to besequentialif it is complete and every
invocation is followed by a matching reply. Every object has a
sequential specification, defined by a set of sequential histories
involving only events associated with that object. Roughly
speaking, the sequential specification captures the acceptable
behavior of the object in the absence of concurrency and
failures. In our context, we are concerned with memory objects
(registers) whose sequential specification simply stipulates that
a read returns the last value written.

A sequential history is said to belegal if each of its
restrictions to any object involved in the history belongs to
the sequential specification of that object. A historyH is said
to be persistent atomicif it can be completedsuch that it
is equivalent to some legal sequential history that preserves
the operation precedence of H. We say that an algorithm
emulates persistent atomic memory if every history generated
by the algorithm is linearizable. We are interested in robust
emulations where any processp that involves areador awrite
operation eventually terminates, unless the process crashes.

C. Transient Atomicity

We define transient atomicity similarly to how we define
persistent atomicity, with one exception: the way histories can
be completed is now slightly extended. Given any well-formed
history H1, we say thatH2 weakly completesH1, if H2 is
made of exactly the same ordered object events as inH1 with
one exception: any pending invocation inH1 is either absent in
H2 or has a matching reply that appears before the subsequent
write reply of the same process. A historyH is said to be
transient atomicif H can beweakly completedby a legal
sequential history that preserves the operation precedence of
H 3. By definition, every persistent memory emulation is also
a transient memory emulation.

IV. L OG OPTIMAL ATOMICITY

In this section we give a tight bound on the log complexity
of robustly emulating persistent atomic memory. We first
give a lower bound on emulating single-writer/single-reader
persistent atomic memory and then a matching algorithm that
even tolerates multiple writers and readers. This means that
no extra cost in terms of the number of causal logs is incurred
by going from single-writer/single-reader memory to multiple
writers and readers. Furthermore, our algorithms use the same
number of messages as the currently most efficient robust
algorithm in the crash-stop model we know of [2].

A. Lower Bound

Clearly, in any robust atomic memory emulation, it is
impossible to write a value without logging at all. Consider
a run where a writer process successfully writes a value
v1 without any process logging this value to stable storage.
Assume that all processes had initialized their local values to
v0 at the beginning of the run. If after the completion of the

3Note that the definition of persistent atomicity applies to any object while
transient atomicity applies only to shared memory objects (read-write objects).

5

write, all processes crash at the same time, it is obvious that
once the processes recover, no subsequentreadcould possibly
returnv1. At least one causal log is obviously needed. The next
theorem states that in fact at least two causal logs are actually
needed towrite to a persistent atomic memory.

Theorem 1:Any algorithmA, robustly emulating a single-
writer/single-reader persistent atomic memory has a run in
which somewrite uses two causal logs.

Proof (Sketch): We consider the case ofn processes
where n ≥ 3. We construct a run that violates persistent
atomicity and is inevitable if only one causal log perwrite
is allowed. Figure 2 displays this run, denotedρ1, along with
the instants when processes log. Processp1 is the writer and
p2 is the reader.

Assume by contradiction that one causal log is enough for
every run, i.e., logs of different processes are not causally
related and every process performs at most one log. Now
consider runρ1: the writer successfuly writes the valuev1 (all
processes log) but crashes while writingv2. It is important
to note that the writer did not log before crashing. After the
crash, the writer recovers and starts a newwrite operation.
There are two reads (R1 and R2) by p2 that are concurrent
with the thirdwrite.

The history H1 associated with runρ1 is not complete,
because the invocation W(v2) has no matching reply. We can
completeH1 and obtainH ′

1 by removing W(v2) from the
history or by completing thewrite by adding a matching
response event toH1. Since the completed history must be
equivalent to some sequential history, this response event must
be placedbeforethe invocation event W(v3) at processp1. A
complete history is sequential only if each invocation event
is immediately followed by the matching response event, i.e.
locally “overlapping” operations are not allowed. In order for
H1 to satisfy persistent atomicity,H ′

1 must be equivalent to
some legal sequential historyS. In other terms this means that
in S every read must return the last written value and this
implies thatR1 andR2 cannot arbitrarily return any value. In
fact, H ′

1 must be equivalent to one of the following sequential
histories:

• W(v1).W(v2).R(v2).R(v2).W(v3)
• W(v1).W(v2).R(v2).W(v3).R(v3)
• W(v1).W(v2).W(v3).R(v3).R(v3)
• W(v1).R(v1).R(v1).W(v3)
• W(v1).R(v1).W(v3).R(v3)
• W(v1).W(v3).R(v3).R(v3)

In more general terms, in order to guarantee persistent atom-
icity, the algorithmA must ensure that the following property
is satisfied beforep1 starts a newwrite after recovering:

P1 : If a read invoked after the invocation of W(v3) returns
v1, then no subsequentread returnsv2.

In our model, a recovering process can initiate a recovery
phase that is not limited by the number of commmunication
steps, messages or logs it is allowed to perform. There are two
cases to consider:

1) No read returnsv1 after the start of W(v3). This leaves
two possibilities for the recovery phase:

p2

p1

W(v3)W(v1) W(v2)

R1() R2()

p3 − pn

Fig. 2. Runρ1 (Proof of Theorem 1)

• “Cancel”v1: no subsequentreadcan returnv1. Con-
sider aread R1 that is invoked after the invocation
of W(v3). Since W(v2) was not completed,R1 may
not returnv2. BecauseR1 is concurrent with W(v3),
it may not returnv3. This implies thatR1 can return
an old value, written before W(v1). This violates
persistent atomicity because W(v1) is a complete
write: A cannot cancelv1.

• Completev2: a subsequentread will only return
v2 or v3. This is not possible because the writer
did not log during the previous write and since
there is no causal relation between logs at different
processes none of the process might have logged. It
is therefore impossible forA to complete W(v2).

2) No read returnsv2 after the start of W(V3). The only
way to do this is to cancelv2 so that all subsequent
reads only returnv1 or v3. But v2 can only be cancelled
if v2 has not yet been read. Upon recovery, the writer
process (i.e.p1) must initiate a recovery phase that first
tests if v2 has been read (say this phase is initiated at
time T1) and if not the recovery phase ensures thatv2

will never be read (from timeT2). If T1 is not equal
to T2, then the reader could stillread v2 in betweenT1

and T2. Since aread initiated afterT2 can returnv1,
persistent atomicity can be violated. Our model asumes
a completely asynchronous system and since the writer
process must contact other processes to know ifv2 has
been read,T1 cannot be equal toT2.

Given that it is impossible forA to satisfyP1, is impossible
to emulate persistent atomic memory by using only one log
per write for any run.

Theorem 2:No algorithm robustly emulating single-reader
transient atomic memory in a crash-recovery model can per-
form a read without logs.

Proof (Sketch): We prove our result using indistinguisha-
bility arguments among three runs displayed in Figure 3. Let
p1 be the writer andp2 be the reader with a total ofn ≥ 3
processes in the system.

Suppose by contradiction that there exists such an algorithm,
i.e. which never logs during aread. Consider the runρ2

and the associated historyH2. The writerp1 writes valuev1

followed by v2. The reader process crashes and readsv1 after
recovering. This run satisfies persistent atomicity because the
read returns before the end of the secondwrite. In run ρ3,
processp2 reads before crashing and returnsv2, this run also
satisfies persistent atomicity.

6

W(v1)

p2

p1

R()

p3 − pn

W(v2)

v1

Runρ2
W(v1)

p2

p1

R()

p3 − pn

W(v2)

v2

Runρ3

W(v1)

p2

p1

R()R()

T

p3 − pn

W(v2)

v2 v1

Runρ4

Fig. 3. Runsρ2, ρ3 andρ4 (Proof of Theorem 2)

Now consider runρ4 where the reader reads before and after
recovering. For processp2, this run is indistinguishable with
run ρ3 up to timeT . From timeT , the run is indistinguishable
with runρ2 for p2 because of the initial hypothesis that no logs
are allowed. Processp2 cannot “remember” anything about
its previous state after it recovers from a crash if it does
not log. The fact thatρ4 is indistinguishable fromρ2 and
ρ3 contradicts the assumption that the emulation guarantees
transient atomicity, since there is no legal sequential history
which is equivalent toH4 (the history associated with run
ρ4) and respects its operation precedence. Therefore it is
impossible to emulate transient atomic memory that does not
log during aread.

The lower bound of one log perread for transient atomic
memory holds for persistent atomic memory because persistent
atomicity is stronger than transient atomicity. Intuitively, the
previous bound makes sense considering that, in the crash-stop
model, Theorem 10.4 of [10] states that every reader must
“write” to emulate a single-writer/multi-reader memory.

B. Log Optimal Persistent Atomic Memory Emulation

We now describe an algorithm that robustly emulates
a multi-writer/multi-reader persistent atomic memory while
matching our lower bound on the number of logs for theread
and thewrite operations.

As in [2], the algorithm requires two round-trips perwrite
(4 communication steps): the first communication round-trip
queries a majority of processes for their timestamp. In the

second round, the writer broadcasts the new value together
with the highest timestamp collected in the previous round,
incremented by one. The other processes only update their
local value and timestamp if the received timestamp is higher
than the local one. The writer appends its process id to
the sequence number so that other processes can distinguish
between two simultaneous writes when both writers use the
same sequence numbers. These timestamps are then compared
lexicographically.

The writer logs the timestamp and incremented value after
the first round before starting the second one.

In the second round, all processes log the new value and
timestamp before returning the ack. The first log enables the
writer to “remember” to finish the write in case it crashed.
At recovery, all processes systematically finish their previous
write by running the second round of thewrite operation.
Even if there are no previously unfinished writes, writing an
old value with an old timestamp will not replace any newer
values. This mechanism adds one log each time a process
recovers. Note that this log is outside the actualreadandwrite
operations.

The read is also divided in two rounds: a first round, which
queries a majority of processes for their value-timestamp pairs
and a second round, where the reader broadcasts the value
with the highest timestamp collected in the previous round.
The processes will only update and log their local value if the
received timestamp is higher than the local one. This means
that in the absence of concurrency, aread will not log, since
all processes will have already logged the latest value during
the previouswrite.

We now sketch the proof for the correctness of our log-
optimal persistent atomic memory emulation. Remember that
our emulation is robust provided a majority of correct pro-
cesses.

As in the proof of Theorem 4.1 of [2], we use Lemma
13.16 of [8] to prove the persistent atomicity of the memory.
For a well-formed historyH, the lemma lists four conditions
involving a partial order on operations inH. It states that
if there is an order satisfying these four conditions then the
atomicity property is satisfied. Although the lemma has been
proven correct in the crash-stop model, it can be applied to the
crash-recovery model because it only considers well-formed
and complete histories.

Let O be the set of operations in the complete history
H, and τ the timestamp associated with the value written
or returned by each possibly completed operation. We define
the partial orderPO = 〈O,≺〉 on the operations by letting:
op1 ≺ op2 for op1, op2 ∈ O, if (a) τ(op1) <lex τ(op2), or if
(b) op1 is a write,op2 is a read, andτ(op1) =lex τ(op2).

The following lemmas are sufficient to show thatPO
satisfies the required conditions:

Lemma 1: If op1 precedesop2, then
(i) if op2 is a read, thenτ(op1) ≤lex τ(op2), and
(ii) if op2 is a write, thenτ(op1) <lex τ(op2).

Proof: (i) op2 is a read, thereforeτ(op2) is obtained by
the reader process by gathering timestamps from a majority of
processes and computing the maximum timestamp. We must

7

1: procedure Initialize
2: sn := 0, v :=⊥ {Initialize sequence number and value}
3: store(writing,0,⊥)
4: store(written,0,i,⊥)
5: end

6: function Write(vi) at pi

7: repeat
8: send(SN) to all
9: until receive(SN ack,sn) from dn+1

2
e processes {Wait for a majority of sequence numbers}

10: select highestsn
11: sn := sn + 1
12: store(writing,sn,vi) {Store the sequence number and value that is going to be written}
13: repeat
14: send(W, [sn, i], v) to all
15: until receive(W ack) fromdn+1

2
e processes {Wait for a majority of acknowledgments}

16: return

17: Message listeners for all processes {All processes have a separate thread that listens for incoming messages}
18: when receive(SN) from pi

19: send(SN ack, sn) to pi {Send back sequence number}
20: end when
21: when receive(W, [sni, i], vi) from pi

22: if [sni, i] >lex [sn, pid] then
23: v := vi, sn := sni, pid := i {Update value and timestamp because received timestamp is bigger}
24: store(written,sn,pid,v) {Store the new value and tag}
25: end if
26: send(W ack) topi

27: end when
28: when receive(R) from pi

29: send(R ack, [sn, pid], v) to pi {Send back timestamp and value}
30: end when

31: function Read() atpi

32: repeat
33: send(R) to all
34: until receive(R ack, [snj , pid], vj) from dn+1

2
e processes {Wait for a majority of value - timestamp pairs}

35: selectv with highest[snj , pid]
36: repeat
37: send(W, [snj , pid], vj) to all {Write value with highest timestamp}
38: until receive(W ack) fromdn+1

2
e processes {Wait for a majority of acknowledgments}

39: return v

40: procedure Recover
41: retrieve(written, sni, i, vi)
42: v := vi, sn := sni, pid := i {Restore local value and timestamp}
43: retrieve(writing, snw, vw)
44: repeat
45: send(W, [snw, i], vw) to all {Write last written value before crash}
46: until receive(W ack) fromdn+1

2
e processes

47: end

Fig. 4. Persistent atomic memory emulation algorithm

consider several cases:

If op1 is a successfulwrite, the algorithm ensures that the
value together withτ(op1) has been logged at a majority
before returning. Because of intersecting majorities, clearly
τ(op1) ≤lex τ(op2). We must also consider the possibility of a
process crashing and recovering in the midst of executingop1,
in this caseop1 is a completed write(the return event ofop1

does not really exist, i.e. the application layer of the process
executingop1 will not receive such an event, it is merely an
artifact resulting from the use of complete histories). When
the writer crashes in the middle of awrite, upon recovery the

writer finishes thatwrite and ensures that no majority contains
τ smaller thanτ(op1).

If op1 is a successfulread, the algorithm ensures that
the value that is returned by theread has been logged at a
majority during the second round of theread, this implies
τ(op1) ≤lex τ(op2). Also, op1 cannot be a completed read,
because incomplete reads are removed fromH.

(ii) op2 is a write:

If op1 is a write (successful or completed), as explained in
(i), τ(op1) is stored at a majority. Since in a subsequentwrite
the writer process obtainsτ(op2) by gathering timestamps

8

from a majority of processes, computing the maximum times-
tamp and incrementing it by one, we haveτ(op1) <lex τ(op2).

If op1 is a successfulread, again as shown in (i), no
majority contains a value smaller thanτ(op1). Because the
writer increments the timestamp before sending it to all other
processes, we haveτ(op1) <lex τ(op2).

Lemma 2: If op1 and op2 are concurrent, then ifop1 is a
write, eitherop1 ≺ op2 or op2 ≺ op1.

Proof: Because the writer appends its process id to the
sequence number, other processes can distinguish between two
simultaneous writes when both writers use the same sequence
numbers. These timestamps are compared lexicographically,
thus ensuring that two concurrent writes do not have the same
timestamp.

Lemma 3:For a read op, let thePO imposed onH give
the set of write operations{op1, op2, ..., opk} such that∀i ∈
[1, k]opi ≺ op. Thenop returns the value written byopj such
that τ(opj) =lex maxi∈[1,k](τ(opi)).

Proof: Every completedwrite opj stores the value-
timestamp pair at a majorityWi of processes. Any consecutive
read op contacts a majority and therefore receives at least
one timestamp from a processp ∈ Wi. Because of Lemma 1
we know that timestamps impose a partial ordering on the
writes such that the lastwrite according to≺ has the highest
timestamp. Therefore theread op returns the value written by
opj such thatτ(opj) =lex maxi∈[1,k](τ(opi)).

C. Log Optimal Transient Atomic Memory Emulation

The bound which stated that two causal logs are needed per
write to emulate persistent atomic memory (Theorem 1) does
not hold for transient atomicity. The proof for the bound is
based on the fact that historyH1 associated with runρ1 in
Figure 2 can not be always be guaranteed to be persistent
atomic if only one log per causal log is allowed; i.e. it
cannot be completed in such a way that it is equivalent to
some sequential history. ButH1 can beweakly completed:
the response towrite invocation W(v2) can be placedafter
the write invocation W(v3) (but before its response) so that
it is equivalent to the following legal sequential historyH ′

1,
ordering the operations as follows: W(v1), R(v1), W(v2),
R(v2), W(v3).

This section presents an algorithm that uses only one causal
log per read and write to emulate transient atomic memory.
One log perwrite is clearly needed and Theorem 2 applies to
transient atomicity. It has the same structure as the algorithm
of Figure 4 but with a few minor changes. The transient
atomic memory emulation algorithm is presented in Figure 5
and contains only the procedures that are different from the
algorithm of Figure 4.

Because of transient atomicity there is no need to finish a
write after recovering from a crash. This means that the second
round after recovering can be safely removed and that the
writer does not need to log the timestamp before broadcasting
a new value-timestamp pair. However, if this were the only
change to the algorithm, transient atomicity could be violated:
a writer can begin awrite, crash, and start a newwrite with a

different value using the same timestamp as before. To solve
this problem, an additional variable calledrec is added when
incrementing the sequence number at the writer (line 11). This
variable counts the number of times the process recovered,
thus adding one extra log during the recovery round. We can
now guarantee that the sequence numbers will always increase
monotonically.

The correctness proof is similar to that of the algorithm in
Figure 4 and is omitted.

V. PERFORMANCEANALYSIS

In order to analyze the real-world performance of the
algorithms described in the previous section, a version of each
memory emulation algorithm was implemented and several
experiments were run. The goal of these experiments was to
precisely measure the cost of logging in a real atomic memory
emulation. How much more expensive is it to support crash-
recovery in the first place? How much more expensive is it
to guarantee persistent atomicity, rather than just transient
atomicity?

A. Implementation and Setup

Our algorithms are written in C, using low level network
abstractions such as IP-multi-cast and UDP. Initially we de-
veloped a version in Java, but since the performance of the
C-based implementation is a lot better, we will only present
measurements based on that version.

The storage abstractions are implemented using files written
to disk synchronously so that the operating system writes the
data to disk immediately instead of buffering several writes
together (which would violate even transient atomicity).

The experiments were run on a 100Mbps local area network
using up to nine Pentium IV workstations equipped with
standard IDE hard disks. The installed operating system is
Red Hat Linux 8 with the 2.4.18-14 kernel. Each workstation
runs the same executable. The only parameter that needs to
be set initially is the number of nodes participating in the
emulation. Every workstation runs one process participating in
the emulation and consists of two threads: one that listens for
and executes read and write commands, and one that responds
to broad-casted messages. This means that when a process
waits for a majority of responses, it does not necessarily
include itself in the majority.

B. Experimental Results

The first experiment consisted of writing a 4 byte integer
value and measuring the time that the operation took to
complete, repeating thewrite fifty times and finally averaging
the write times. These measurements were performed on a
varying number of workstations for three different algorithms:
atomic crash-stop, transient atomic crash-recovery and persis-
tent atomic crash-recovery. The results of the experiment are
shown in the top graph of Figure 6. The reason why the graph
only shows the averagewrite times is that in a run without
any crashes aread does not log, meaning that the execution
times would be the same for each algorithm.

9

1: procedure Initialize
2: sn := 0, v :=⊥, rec := 0
3: store(recovered,0) {Set the number of recoveries to zero}
4: store(written,0,i,⊥)
5: end

6: function Write(vi) at pi

7: repeat
8: send(SN) to all
9: until receive(SN,sn) from dn+1

2
e processes {Wait for a majority of sequence numbers}

10: select highestsn
11: sn := sn + rec + 1 {Increment the sequence number by one plus the number of times the process recovered}
12: repeat
13: send(W, [sn, i], v) to all
14: until receive(W ack) fromdn+1

2
e processes {Wait for a majority of acknowledgments}

15: return

16: procedure Recover
17: retrieve(sni, i, vi)
18: v := vi, sn := sni, pid := i {Restore local value and timestamp}
19: retrieve(recovered)
20: recovered := recovered + 1 {Increment variable counting number of times the process recovered}
21: store(recovered,rec) {Store variable}
22: end

Fig. 5. Transient atomic memory emulation algorithm

From the graph it is easy to distinguish between the three
different algorithms: there is a clear performance impact due
to logging. If we take the case of N=5 workstations, the
averagewrite time without logging is 500µs, for transient
atomicity it’s 700µs and for persistent atomicity it’s 900µs.
Thus the performance impact due to logging is 200µs for the
transient atomicity and double that for the persistent atomicity.
This illustrates why counting the number ofcausallogs is so
important: transient atomicity needs a single causal log for
memory emulation and persistent atomicity two, reflecting the
doubling of the performance hit due to logging.

The second experiment was designed to study the perfor-
mance impact of increasing the size of the data stored in the
memory. The size of the data that can be written by onewrite
is limited by the fact that a UDP packet cannot contain more
than 64KB of data; cutting up the data into chunks would
completely change the algorithm by requiring more messages
per write. The bottom graph of Figure 6 plots the average
write times with respect to the data size for five workstations.
We can conclude from looking at the graph that, for relatively
small data sizes, the time it takes to log and the time it takes
to send a message over the network increases linearly. This is
of course only true for systems where network congestion is
not an issue.

VI. CONCLUDING REMARKS

The log complexity results studied in this paper focus on
atomic (persistent and transient) memory emulations in a
crash-recovery model. Interestingly, a lot can be learned from
these results about weaker memory emulations in the same
model.

In the crash-stop model, the notions ofsafe and regular
memory were introduced by [6] for the single-writer case, as
weaker forms of memory than the atomic one. The weakest

� � �
��� �

��� �

��� �

��� �

��� �

��� �

��� 	

��� �

���

��� �

� � �

�� � �� � �� � ��� � � �
� �� � � �� � � � � ��
�� � � � � � � � � � ��

��� !#" $% & �% ' " (

)*
+
,-.
/0
12
- 3
/.
45
6
7 8
9

� �� � � � � � � � � �� � � �
��� �
��� �
� � �
� � �

� � �
� � �
� � �
� � �
�� �
�� �
� � �
� � �
	 � �
	 � �

� � �
� � �

�� �� � �� � ��� � �� �
� � � � � �� � � � �� � �
�� � � � � � � � � � �� � �

��� �� � "! # $% & � # � '

()
*
+,-
./
0
1,
2.-
3
4
5
6 7
8

Fig. 6. Atomic Memory Emulation Performance

10

of the two is thesafe one which, roughly speaking, only
guarantees to return correct values forreadoperations that are
not concurrent withwrite operations. Theregular one guaran-
tees, in addition, that aread operation returns any previously
written value if it is concurrent with a write operation. The
extension of safety to the multi-writer case is trivial and several
new consistency criteria were defined in [11] for multi-writer
regularity in the crash-stop model.

We have shown that robustly emulating transient atomicity
requires one causal log perwrite and it is easy to see that any
meaningful memory emulation in the crash-recovery model
also requires such a log. Even though we have not studied
the extension of safe and regular consistency criteria to the
crash-recovery model, we can however imply that clearly, any
robust emulation of a reasonable safe or regular memory will
also need one causal log per write.

Although atomicity implies a lower bound of one causal log
perread, this bound will not hold for safe and regular memory
emulations. But as we pointed out, during most atomic reads,
no log is needed at all: in the absence of concurrency an atomic
read does not log, while a write will always log, even in the
absence of concurrency.

Therefore, in a system where logging is very expensive and
where the cost of sending and receiving messages is negligible,
it does not make sense to emulate safe or even regular memory.
Transient atomic memory emulations need only one causal
log per write and do not need to log for most reads while
still guaranteeing atomicity most of the time. Only when a
process crashes in the middle of awrite and executes awrite
directly after recovery, atomicity is not guaranteed. But in most
systems such a sequence of events will be sufficiently rare and
even when such a sequence does occur, atomicity is only lost
temporarily.

REFERENCES

[1] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in a
message passing system,”Journal of the ACM, vol. 42, no. 1, pp. 124–
142, 1995.

[2] N. Lynch and A. Shvartsman, “Robust emulation of shared memory
using dynamic quorum-acknowledged broadcasts,”Proceedings of the
IEEE Symposium on Fault-Tolerant Computing Systems (FTCS), 1997.

[3] H. Attiya, “Efficient and robust sharing of memory in message-passing
systems,”Journal of Algorithms, vol. 34, no. 1, pp. 109–127, 2000.

[4] N. Lynch and A. Shvartsman, “Rambo: A reconfigurable atomic mem-
ory service for dynamic networks,”Proceedings of the International
Symposium on Distributed Computing (DISC), 2002.

[5] L. Lamport, “Time, clocks and the ordering of events in a distributed
system,”Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[6] ——, “On interprocess communication - part i: Basic formalism, part
ii: Algorithms,” DEC SRC Report, vol. 8, 1985, also in Distributed
Computing, 1, 1986, 77-101.

[7] M. Aguilera, W. Chen, and S. Toueg, “Failure detection and consensus
in the crash-recovery model,” inInternational Symposium on Distributed
Computing, 1998, pp. 231–245.

[8] N. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers, San
Mateo, CA, 1996.

[9] M. Herlihy and J. Wing, “Linearizability: A correctness condition for
concurrent objects,”ACM Transactions on Programming Languages and
Systems, vol. 12, no. 3, pp. 463–492, 1990.

[10] H. Attiya and J. Welch,Distributed Computing, Fundamentals, Simula-
tions and Advanced Topics. McGraw-Hill International (UK), 1998.

[11] C. Shao, E. Pierce, and J. Welch, “Multi-writer consistency conditions
for shared memory objects,” in17th International Symposium on Dis-
tributed Computing (DISC), 2003.

