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Random walk and gap plots of DNA sequences

P.M.Leong and S.Morgenthaler 1,2

Abstract

Genomic sequence analysis is usually performed with the
help of specialized software packages written for molecular
biologists. The scope of such pre-programmed techniques is
quite limited. Because DNA sequences contain a large
amount of information, analysis of such sequences without
underlying assumptions may provide additional insights.
The present article proposes two new graphical representa-
tions as examples of such methods. The random walk plot is
designed to show the base composition in a compact form,
whereas the gap plot visualizes positional correlations. The
random walk plot represents the DNA sequence as a curve, a
random walk, in a plane. The four possible moves, left/right
and up/down, are used to encode the four possible bases. Gap
plots provide a tool to exhibit various features in a sequence.
They visualize the periodic patterns within a sequence, both with
regard to a single type of base or between two types of bases.

Introduction

Statistical analyses of nucleic acid sequences have been
carried out to answer questions about (i) frequencies of the
occurrence of subsequences (words), (ii) similarity with
known sequences stored in data banks, (iii) biological
functions encoded in DNA, (iv) evolution, (v) taxonomy,
etc. Such analyses typically include several types of plots
as well as numerical summaries to identify similarities
within or across sequences, to count frequencies of words
or to fit models. Many ideas, techniques and algorithms
are discussed in the books by Sankoffand Kruskal (1983),
Doolittle (1990) and Gribskov and Devereux (1991) which
contain also an extensive bibliography.

During the last few years the literature on mathematical
and statistical methods in the analysis of DNA data has
increased at a fast pace. The probabilities of various
structures of sequences have been calculated under the
assumption of complete randomness or using more
sophisticated Markovian hypotheses. These results can
be used to assess the statistical significance of patterns
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observed in a particular sequence. While this is an
important aspect, the relation between statistical signifi-
cance and genetic meaningfulness remains unclear. Some
patterns found to be remarkable from a statistical view
point, may well turn out to have no biological interest.
And more importantly, patterns that seem quite weak and
explainable as chance happenings, might turn out to be of
great genetic significance. There is a need for many more
methods that guide the geneticist in his learning about a
given DNA sequence. Methods that might provide help in
spotting an anomaly, without presupposing what the
anomaly might be. As long as a sequence analysis is not
narrowly focused, graphical representations of sequences
will play an important role.

Plots are useful on three different levels. First, they are
often the best way to communicate the result of an
analysis, even if the analysis is of a numerical nature. Plots
can also help in checking for the presence of an effect.
Charts of this type are designed with a particular objective
in mind and make use of the human eye rather than a
computer algorithm. Last, but certainly not least, plots are
the primary tool for identifying unsuspected structures in
data. They are the most powerful exploratory data
analysis tools. Only recently has the design of graphical
representations been revitalised under the essential leader-
ship of J.W.Tukey (see Tukey, 1986). In this paper we
propose two new plots that allow the user to see DNA
sequences in a new way and which are able to render
various different types of structures visible.

System and methods

The plots presented in this paper have been implemented
as functions in the statistical package Splus, v. 3.0 (Becker
et al, 1988). This package is available on IBM PCs
running Windows, on Sun Workstations and most other
UNIX platforms. It should be easy to implement the
techniques described here in any other graphics or
statistics package.

Methods

Random walk plot

Barry and Hartigan (1987, p. 196) defined the cleavage plot
as a tool to achieve a compact visual exhibition of the
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Fig. 1. A random walk representation of a DNA sequence. A move to the right corresponds to an A, a move to the left is a C, an upward move is a T and
a downward move is a G. The corresponding position within the sequence is shown with the help of labels and by changing colors along the curve. This
plot, as well as all the other graphical output Included in this paper, has been produced with the statistical package Splus (Becker, Chambers and Wilks,
1988).

distribution of the different nucleotides in a DNA
molecule. A cleavage plot shows the cumulative excess
of GC's over AT's as one moves along the sequence and
thus traces a curve. The choice of these particular pairings
is justified because GC and AT are complementary bases.
The curve shows the GC-richness within the sequence. In
the same figure, a second curve is included, namely the
cumulative excess of CT's over GA's. Since C and T are
pyrimidines whereas G and A are purines, this curve
exhibits the distribution of purines and pyrimidines. A
quick scan of this type of plot permits us to determine if
any of the nucleotides are over or under represented in
various regions of the sequence. In a compressed form,
this figure contains the complete information about the
base composition of the underlying sequence. In fact,
plotting only two curves is sufficient as long as they can
move in both directions, thus creating four possible
behaviours. A particular base pair can then be inferred
from the joint behaviour of the curves. If both curves of a
cleavage plot increase, the base must be a C, etc.

The random walk plot is another display based on
counting excesses of one type of base over another type. It
shows the trajectory of a particle starting at zero that
moves either left/right or up/down depending on the type
of base. The occurrence of an A moves the curve to the
right, a C to the left, a G down and a T up. For each
position along the sequence, this plot shows with its
horizontal coordinate the excess of A's over C's and with
its vertical coordinate the excess of T's over G's. In this

chart, information is lost, because periodic subsequences
can lead to a random walk that moves several times over
the same ground. For example, a stretch of alternating
AC's or TG's would not be identified. The indices of the
bases, their positions, are not part of this plot, which is the
reason for the information loss. On the other hand, we
gain in compactness because a single curve represents the
whole sequence and because the scales of the axes are such
that details remain visible even for very long sequences.
Partial positional information can be incorporated by
coloring or labelling. Gates (1985) presents the same idea
with a different mapping of base pairs to planar moves.

Figure 1 shows an example using the human HPRT
mRNA sequence as discussed in Jolly et al. (1983). This
sequence contains the coding part of the gene (657 bases
from position 86 through position 742) together with
flanking regions (of 674 nucleotides). In the example
shown in Figure 1, one notices first a flat part of the curve
moving to the left and thus indicating C-richness. On the
whole, the curve seems to move along the diagonal from
south-west to north-east. This corresponds to a steady
increase in the excess of AT's over GC's. Shortly after the
end of the coding part of the sequence, one notices a
region of more than 100 bases enriched in T's.

Gap plots

A question of interest is to determine whether the
positions of bases or of certain base combinations are
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Fig. 2. These bar charts show the number of times that the lags 1 through
50 occur for the four types of bases in the coding subsequence of the
HPRT mRNA. To make the plot more readable, the average number of
the lag counts was subtracted before constructing the plot. These means
were 56.3, 54.3, 37.1, and 16.9 for the letters A, T, G and C, respectively.
If all lags were equally likely between occurrences of A, one would
roughly have a mean count of nA(nA—l)/(n—1) for each lag, where nA is
the number of A's and n is the length of the sequence. The observed
averages are quite close to these theoretical means. A rough measure of
statistical significance could be based on twice the root of the mean
number, which supposes an approximate Poissonian behaviour of these
counts. Large deviations from the average can be observed for quite big
lags. Lag 44, for example, is often seen in the letters A, G, and C, whereas
lag 42 sticks out for T. For the letter T, lags that are multiples of three
occur more often than average, leading to a striking pattern. Even more
pronounced is the period of length 9.

periodic or, more generally, show patterns. A traditional
exploratory tool designed for this purpose is the dot matrix
plot. Another simple graphical tool to check for patterns is a
plot of the lags between occurrences of a letter.

Plotting a single sequence

The sequence AATCATGCAC, for example, has four A's
with lags 1, 4, 8, between the first A and the three others;
lags 3, 7, between the second and the rest; and lag 4
between the last two A's. Combined, the sequence of A's
has once lag 1, once lag 3, twice lag 4, once lag 7, and once
lag 8. The gap plot consists in drawing a histogram of these
lag counts. If every fifth letter of a sequence were an A,
then the most frequently occurring lag between A's would
be lag 4, followed by lag 8, by lag 12, etc. This shows how
lag counts can exhibit periodic behaviour through peaks
and troughs in the lag counts. It is easy to show that these
gaps represent the traditional autocovariances of the base
sequences consisting of O's and l's obtained from the
DNA sequence. The sequence AATCATGCAC, for
example, corresponds to the A-sequence 1100100010, to
the T-sequence 0010010000, etc. Let x,, x2, ..., xn be the

A-sequence. The autocovariance at lag k is denned as
E x, x, + k/n, which is equal to the gap count at lag k
divided by n. This connection between gap counts and
autocovariances shows that it is very easy to compute the
gap counts rapidly and efficiently via the fast Fourier
transform. Figure 2 shows the gap plot of the four bases
for the coding part of the mRNA sequence that we already
used in Figure 1.

Another possible lag statistic could be based on the lags
between successive occurrences of a particular base. The
maximal and minimal lags give indications of clustering
and sparseness and are useful in the analysis of DNA
sequences and amino acid sequences (Karlin and Brendel,
1992).

The gap plot can be generalized to lagged cross-
covariances between two letters. A DNA sequence
corresponds after all to four base sequences and studying
the cross-covariances between pairs is the next logical step
after exploring the autocovariances. We can ask, what
gaps occur between the letters A and T, for example. In the
simplistic example of the sequence AATCATGCAC, there
are gaps of 2, 5 to subsequent T's, from the second A; gaps
of 1 and 4, from the third A; and finally, a gap of 1.
Similarly, one can count gaps from T to A, or for any
other pair of letters. Figure 3 shows the corresponding gap
plot for the coding sequence of the human HPRT mRNA.
In Figure 3 we can potentially see many possible patterns
and peculiarities. Such patterns may, however, be
strengthened in grouping the letters.

Plotting two sequences

It is also quite natural to generalise this type of plot to the
case of two sequences. To illustrate, the following simple
example suffices. Let the two sequences be AATCGCA
and TATAGC. If we are interested in the lag patterns for
the A's, we convert them to 1100001 and 010100. We
define lag 0 to mean that the sequences are aligned at their
left end points. Negative lags are shifts to the right of the
second sequence, whereas positive lags are left shifts of the
second sequence. Whenever two ones are aligned for a
given lag, this indicates the presence of that particular lag.
Using our simple example, we note that at lag 0, there is
one alignment, namely the A's (or l's) in the second
position. At lags - 1 , - 2 and - 4 there are none. At lags - 3
and - 5 there is one. This is the same as saying that from
the first and second A in the second sequence, we shift to
the right five or three times to get to an A in the first
sequence. Among the positive lags a count of one occurs
for lags 1, 2 and 3. This follows because the first A in the
first sequence must be shifted right once or three time to
get to an A in the second sequence, whereas for the second
A a shift of two is necessary.
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Fig. 3. These bar charts show the number of times that the lags 1 through 50 occur for all two letter combinations within the coding sequence of the
HPRT mRNA sequence. The height of the bars represent the gap counts minus the average gap count up to lag 50. The averages are indicated in the title
of each plot.

Discussion

We have discussed two new plots of DNA sequences. The
random walk plot visualises the base composition of a
given sequence by plotting it in the form of a random
walk. This particular graph exhibits local behaviour along
short segments, but is in particular designed to show the
global structure of long sequences. The second type of plot
is based on counting gaps between the occurrence of bases
and exhibits either the lagged correlations within one
sequence or between two sequences. This technique is
based on the idea of correlations and thus is related to the
dot matrix analysis. A dot matrix—in its simplest form—
shows a maximum of detail, namely all matches of all
pieces of a sequence with all pieces of the other (or the
same) sequence. The gap plots included in this paper are a
more focused, alternative, way of visualising various
patterns in DNA sequences. By applying the techniques
of this paper to windowed sequences, the more general

methods obtained will gain in their power to show details,
affecting relatively short parts of one or two sequences.
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