
Frugal Mobile Objects

Benôıt Garbinato2, Rachid Guerraoui1, Jarle Hulaas1,
Maxime Monod1, and Jesper H. Spring1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL),
School of Computer & Communication Sciences,

CH-1015 Lausanne
2 Université de Lausanne,

Ecole des HEC,
CH-1015 Lausanne

Abstract. This paper presents a computing model for resource-limited
mobile devices. The originality of the model lies in the integration of
a strongly-typed event-based communication paradigm with abstractions
for frugal control, assuming a small footprint runtime.
With our model, an application consists of a set of distributed reac-
tive objects, called FROBs3, that communicate through typed events
and dynamically adapt their behavior reacting to notifications typically
based on resource availability. FROBs have a logical time-slicing execu-
tion pattern that helps monitor resource consuming tasks and determine
resource profiles in terms of CPU, memory, and bandwidth. The be-
havior of a FROB is represented by a set of stateless first-class citizens
together with an indirection to the state and actual behavioral references
of the FROB. This facilitates the dynamic changes of the set of event
types a FROB can accept, say based on the available resources, without
requiring a significant footprint of the underlying FROB runtime.
We demonstrate the usability of the FROB model through our J2SE-
based prototype and a peer-to-peer audio streaming scenario where an
audio provider dynamically adjusts its quality of service by adapting
to demand. The performance results of our prototype convey the small
footprint of our FROB runtime (86 kilobytes). We also augmented the
KVM to enable resource profiling with however a negligible overhead
(less than 0.5%) and a decrease in speed of the virtual machine of at
most 7%.

It is not the strongest of the species that survives, nor the most intelligent, but
the one most responsive to change. C. Darwin

1 Introduction

Motivation

As millions of mobile devices are being deployed to become ubiquitous in our
private and business environments, the way we do computing is changing. We
3 Random small things: The Free On-line Dictionary of Computing,

http://www.foldoc.org/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147915828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are moving from static and centralized systems of wire-based computers to much
more dynamic, frequently changing, distributed systems of heterogeneous mobile
devices. These devices, sometimes embedded, are typically communication ca-
pable, loosely coupled, and constrained in terms of resources available to them.
In particular, it is expected that many of such devices be limited in terms of
processing power, storage and bandwidth, for these may or not be available,
depending on the mobility pattern and the solicitations. Software components
running on such devices are typically supposed to automatically discover each
other on the network and join to form ad-hoc peer-to-peer communities enabling
mutual sharing of each others functionalities by offering and lending services. Un-
derlying communication substrates might include wireless LANs, satellite links,
cellular networks, or short-range radio links.

In an ever changing environment of resource-constrained devices, the frugality
of software components is paramount to their operation. Besides conveying that
these components are simply ”small” (the meaning of which depends on the
underlying technologies), frugality also conveys notions of resource awareness
and adaptivity. More specifically, this implies being aware of resources consumed
by the software, dynamically adjusting the quality of service following changes
to the environment, and making sure that resources are in fact available when
certain tasks are launched.

To illustrate this, imagine a mobile service offering to stream some data,
say audio, upon request to interested mobile clients. To start with, the audio
service might be able to offer the first few interested clients an audio stream
with 128 kilobits high-quality audio. If more interested audio clients show up
in the surrounding and request the audio stream, the audio service might be
forced to reduce the quality of the stream to cope with the demand. This service
degradation might occur a number of times before the service might actually
decide to reject additional requests until it has more available resources.

More generally, we believe that three principles should drive the design of a
computing model for resource-constrained mobile devices:

1. Exception is the norm. The distinction between the notion of a main flow
of computing and an exceptional flow (i.e., a plan B) is rather meaning-
less in dynamic and mobile environments. As discussed above, the software
component of a device should adapt to its changing environment and it can-
not predict the mobility pattern of surrounding devices or even the way the
resources on its own device will be allocated. The fact that something ex-
ceptional is always going on [30] calls for a computing model where several
flows of control can possibly co-exist, or even be added or removed at run
time.

2. Resources are luxuries. Just like it is nowadays considered normal practice
that a software component be able to adjust to specific changes on some of its
acquaintance components, and react accordingly, we argue for a computing
model where the components can react to the shrinking of available resources.
This calls for a computing model where the components are made aware of
the resources they use. The fact that resources are luxuries also mean that

certain greedy programming habits, such as loops, forks or wait statements,
should be used, if at all, parsimoniously.

3. Coupling is loose. Many distributed computing models have been casted as
direct extensions of centralized models through the remote procedure call
(RPC) abstraction (e.g., [27, 29, 35]). The RPC abstraction aims at promot-
ing the porting of centralized programs in a distributed context. Clearly,
RPC makes little sense when the invoker does not know the invokee, or
does not even know whether there is one at a given point in time. Some
of the extensions to the RPC abstraction, including futures [31] (also called
promises [23]) only address the synchronization part of the problem. Mo-
bile environments rather call for anonymous and one-way communication
schemes.

Needless to say, devising a robust computing model that, while obeying the
above principles, remains simple to comprehend yet implementable on resource-
constrained devices, is rather challenging. The aim of our work is precisely to
face that challenge and this paper is a preliminary step in that direction.

Contributions

This paper presents a computing model based on frugal objects, called FROBs,
which are supposed to be deployed and executed on a small memory footprint
runtime running on a resource constrained device.

– Computing is triggered by typed events that regulate the possibly anony-
mous and asynchronous communication between FROBs ((1) in Figure 1).
A FROB can specify the type of events it can process, and how, through
behavioral objects ((3) in Figure 1). Each such object is a sequential unit of
computing, bound to the handling of a single event type, and representing
a partial behavior of a FROB. At any point in time, the set of behavioral
objects in a FROB complies with its external interface, i.e., the set of event
types it is capable of handling ((2) in Figure 1). Upon receiving an event,
the runtime matches it against the interface to determine whether to accept
the event for further processing or reject it.

– Besides preventing casting errors and acting as a filtering mechanism [15],
our typed event model makes it possible to adopt a fine-grained serialization
scheme that exploits (1) the decentralized representation of a behavior, and
(2) its binding to event types. Our serialization mechanism does thus not rely
on a general reflective scheme and is memory efficient. Since the serialization
capabilities are bound to, and integrated with the behavioral objects, these
act as fully functional units of distribution, which can be exchanged between
FROBs.

– Key to supporting adaptivity with minimal underlying footprint, is the state-
less representation of a FROB behavior as a set of first-class citizens within
the FROB, together with a level of indirection to its state and behavioral
references. This enables easy replacement of the FROB behavior during ex-
ecution.

FROB
Device

FR
O

B
 C

queue

interface
FROB
Device

FR
O

B
 B

queue

FROB
Device

FR
O

B
 D

FR
O

B
 A

2

3

2

3

Event
diffusion & routing

publish()

1

interface

behavior

behavior

behavior

Fig. 1. Event-based interacting FROBs

– FROBs are inherently threadless and one behavioral object is executed at
a time. Long running procedures are split up into small, short-lived event-
based behavioral objects. The resource requirements of these individual be-
havioral objects are thus limited in terms of actual resource amount needed
and required duration.

– The FROB runtime continuously monitors availability of internal resources
on the device (CPU, memory, bandwidth, etc.) and deduces resource profiles
when executing behavioral objects. Upon detecting a significant change in
resource availability, or if prevented from executing a behavioral object based
on its requirements, expressed as a resource profile, the runtime informs the
FROBs deployed on the device about the change. These notifications are
themselves provided as regular typed events that the FROBs can choose to
react to by adjusting their external interfaces.

In retrospect, and to summarize, our contribution is not a single revolutionary
abstraction, but rather a way to integrate a typed event-based communication
paradigm with a resource-aware adaptive control scheme. The challenge is pre-
cisely in achieving that integration under the constraint of an underlying runtime
with a small footprint.

Evaluation

We implemented a prototype of our computing model on top of the J2SE [34]
platform (version 1.4.2 07). We considered this platform instead of the J2ME
CLDC [33], which is usually targeted at resource-constrained devices, because

J2SE includes a classloader framework enabling unloading of classes4 and a richer
set of networking capabilities whereas its J2ME counterpart only comes with very
basic abstractions for point-to-point communication.

We experimented our model and prototype through an ad-hoc (peer-to-peer)
audio streaming scenario between mobile devices, which turns out to be chal-
lenging in terms of resource-awareness and adaptivity. To conduct performance
tests, we used a machine fitted with an AMD Athlon 3200+ processor, 2 GB of
RAM, 100 Mbps network card and under Debian linux (kernel 2.6.8-2-k7). This
machine hosted both the audio provider and the clients used in the evaluation.

Our performance measures conveyed (1) a small footprint of our FROB run-
time (86 kilobytes), (2) a memory overhead of a factor 8 for our fine-grained
way of representing behavior (with respect to an object-oriented representation
as in Java), and (2) an insignificant performance drop due to our added level of
indirection (0.5% in our scenario).

To experiment the generation of resource profiles, we also modified the KVM
of Java J2ME CLDC [34] and conducted some performance evaluations to de-
termine the cost of the profile generation. These modifications changed the size
of the KVM by a negligible amount (less than 0.5%) and decreased its overall
speed by at most 7%.

Roadmap

Section 2 describes the FROB computing model. Section 3 illustrates the main
concepts through the audio streaming scenario. Section 4 presents our perfor-
mance measures. Section 5 positions the FROB computing model with respect
to alternative approaches. Section 6 gathers some final remarks.

2 The FROB Computing Model

2.1 A Static View of a FROB

A FROB conceptually consists of (Figure 2): (1) an external interface (deduced
from the set of behavioral objects), (2) a FIFO-ordered queue of received events,
(3) a set of fine-grained behavioral objects to manipulate the state of the FROB,
and (4) the actual state representation.

Both the state and the behavioral objects of a FROB are contained in named
slots in a data structure within each FROB called a dictionary (see (5) in Fig-
ure 2). The notion of dictionary is similar to that of slots in the Self language [32];
a slot can contain either state or code.
4 The classloader framework is needed to avoid a constant increase in heap size, which

over time follows from the frequent replacement of behavioral objects (and thus load-
ing of classes, allocated in the heap) since Java per default (and in particular J2ME
CLDC) cannot unload classes (only their instances). The choice of Java itself does
not imply that the runtime or our mechanisms are bound to Java nor to any other
particular language or execution platform. Java essentially provides a convenient
implementation basis for deploying software throughout heterogeneous networks.

state

D
ic

tio
na

ry

Incoming,
serialized

events

. . .

”discovery”

”adjust”

”play”

counter

1 2 3

71172

In
te

rfa
ce <event type>

<event type>
<event type>

<behavioral code>
<behavioral code>
<behavioral code>

State

Behavioral Objects

4

5

Fig. 2. Conceptual view of a FROB

The event queue of the FROB (see (2) in Figure 2) is not contained in the
dictionary and is under the sole control of the FROB runtime, i.e., the FROB has
no direct access to it and its only way to consume events is by having adequate
behavior capable of handling the events. This enforces a declarative model of
programming with multiple flows of control.

When receiving events, the runtime places incoming events into the event
queue of a FROB if they match one of the event types in its external interface.
When events are present in the queue of a FROB, the runtime looks up (in the
dictionary) and executes the behavioral object capable of handling the typed
event.

FROBs are encapsulated entities that do not share state (i.e., entries in the
dictionaries) – the behavioral objects always run isolated from each other. This
combination eliminates the need for synchronization on entries in the dictionary.

2.2 Typed Events

Events are the basic entity to which FROBs react, i.e., an event might cause
a behavioral object in a FROB to be executed. They serve as communication
units between multiple FROBs, whether deployed on different devices or on the
same one.

Events are typically published by the FROBs, or possibly by the runtime
itself following some internal event, and distributed between the devices using
the communication infrastructure provided by the FROB runtime. An event is
accepted by a FROB only if the latter has subscribed to the type of that event,
i.e., if the FROB has that event type in its interface. Unlike in many statically
typed systems, FROBs have dynamic types as their capabilities may change
throughout their lifetimes.

FROBs hence communicate through a topic-based publish-subscribe interac-
tion paradigm, where the topic is the type. This event-based scheme is, resource-
wise, a cheap alternative to multi-threading systems that are considered expen-

sive in terms of stack management and over-provisioning of stacks, as well as
locking mechanisms [13].

Although a publish-subscribe scheme is inherently anonymous and asyn-
chronous, it does not preclude coupled forms of interactions. One could easily
encode a point-to-point interaction scheme by having the identifiers of the inter-
acting FROBs as parts of their event type. The actual dissemination of events
in a distributed and mobile environment following a publish-subscribe pattern
is out of the scope of this paper and is a research subject on its own [6].

2.3 Fine-grained Serialization

In order to collaborate, the FROBs first have to discover each other and then
initiate collaboration. FROBs collaborate by exchanging events and by – as part
of the collaboration initiation – exchanging the necessary behavior to interpret
the events, i.e., the FROBs adapt to each other to collaborate. This exchange of
behavior is required as the particular capabilities needed to interpret the events
being sent might not be present on the FROB receiving the events. To perform
this exchange of behavior and data over the network, a serialization mechanism
is required.

In contrast to a resource consuming, general-purpose serialization mecha-
nism typically found in traditional distributed runtimes, as mentioned before,
we consider a fine-grained mechanism where each behavioral object is required
to provide its own (de-)serialization capabilities. As such, each behavioral object
contains the functionalities to deserialize the incoming event type that it handles
and serialize any typed event that it publishes as illustrated in Figure 3.

Behavioral
Code

D
es

er
ia

liz
er

Incoming,
serialized

events

Deserialized
events Outgoing,

serialized
events

Generated
events

Behavioral Object

S
er

ia
liz

er
S

er
ia

liz
er

S
er

ia
liz

er

Fig. 3. Behavioral object with deserializer and serializers

We exploit the very fact that communication between FROBs occurs through
the typed events. As mentioned earlier, each behavioral object is bound to and
its execution is triggered by a particular typed event. The execution of the
behavioral object may, however, cause a number of new typed events to be
generated and published to other FROBs, or even to the FROB itself. In other
words, the (de-)serialization capabilities required for each behavioral object are
limited, static and all known at compile-time.

By bundling the actual (de-)serialization capabilities with the behavioral
objects using them, the specific capabilities, so to say, follow their user, and
thus make up a single, fully functional distribution and deployment unit. With
these units, it is possible to have only the minimal (de-)serialization capabilities
loaded by the runtime. Once some behavior is no longer needed, and thus gets
unloaded by the runtime, its (de-)serialization capabilities get unloaded too.
Thus, the coupling between the fine-grained behavioral representation and the
fine-grained serialization mechanism is a memory-efficient combination suited
for resource-constrained devices.

Conceptually, each behavioral object provides its own (de-)serialization capa-
bilities, a fact which results in a potential memory overhead in situations where
the same capabilities are needed in multiple behavioral objects on the same
device. The runtime can circumvent this potential overhead by transparently
sharing these capabilities between behavioral objects based on the event type,
and thereby only loading a single instance of the functionality.

2.4 Indirectional Reflection

As opposed to a general-purpose class-based reflection scheme, we rather adopt
an indirectional reflection based on a fine-grained representation of every FROB
in the form of a state representation, together with a set of first-class citizens: be-
havioral objects. This fine-grained granularity allows for flexible modification of
the FROB. Through the separation of state and behavior within the FROB, the
behavioral objects are immutable, which at the same time makes them suitable
units of replacement as no state is lost during the replacement.

Each behavioral object has access to the dictionary of the FROB to which it
belongs, and can manipulate it through appropriate primitives (for looking up,
adding and removing entries) during its execution.

The name/value pairs in the dictionary provide a level of indirection which
is key to our reflection capabilities. Using this level of indirection, all references
to state and behavioral objects go through these name/value pairs, which thus
enables the actual values to be easily replaced without replacing the references
as illustrated in Figure 4. In fact, this also enables behavioral objects to cause
their own replacement.

Roughly speaking, a FROB adapts by changing behavior, i.e., what capabili-
ties it can provide, or how it provides them. This behavioral change materializes
in (1) keeping the current set of behavioral objects contained in the dictionary,
but making adjustments to it, or (2) by actually extending, reducing or modify-
ing the behavioral objects within that set.

2.5 Logical Time-Slicing

FROBs are inherently threadless. Instead, threads are assigned to the execution
of FROBs (or rather their behavioral objects) by the runtime in a time-slicing
scheme. In this scheme, an event in some FROB’s queue represents a request

”checkSize”

Dictionary

Behavioral Code

”size”

Behavioral Object

S
er

ia
liz

er
S

er
ia

liz
er

1711
State

Behavioral
Code

{
 // get value of size
 Value v1 = dic.get(”size”);

 // check and replace
 if (v1 > 1000) {
 Value v2 = ...;

 // replace value
 dic.put(”size”, v2);
 }
 …
}

Fig. 4. Dictionary with state and behavioral objects

for some time-slice, which is granted when the behavioral object consuming that
event is executed.

The FROB runtime does not dictate a specific threading model for executing
the behavioral objects. It ensures, however, that (1) a behavioral object, for
which a typed event matching the interface of the FROB has been received,
will eventually be executed on the event, and (2) no two behavioral objects
of the same FROB can execute concurrently. Combined with the time-slicing
scheme, this gives the runtime explicit control points between executions. Besides
concurrency control and resource-profiling motivations, these explicit control
points make it easier to manipulate (i.e., to perform behavioral changes) the
FROB and even leaves the possibility to checkpoint or migrate it. Specifically,
since at any explicit control points no thread is active within the FROB, its state
is well-defined and it can thus easily be captured or manipulated.

Once executed by the runtime, behavioral objects are allowed to run to com-
pletion. The resource requirements of these individual behavioral objects are thus
limited in terms of actual resource amount needed and required duration. These
requirements are associated to each behavioral object expressed in a resource
profile used by the runtime. (We will come back to resource profiling later.) This
scheme of small, short-lived execution units is also promoted by the fact that
the FROB programming model precludes the use of recursive calls, forks, and
synchronization primitives in the behavioral objects. In particular, this prevents
the execution of a behavioral object from thread monopolizing the CPU. In-
stead, the behavioral objects systematically yield the control to the runtime. In

addition, since the computing model defines no blocking primitives, a FROB has
no way to compromise liveness.

2.6 Resource-Profiling

As illustrated in Figure 5, the FROB runtime constantly monitors the availabil-
ity of internal resources such as CPU, memory, bandwidth etc. Upon detecting
significant changes to resource availability, according to some predefined thresh-
old values, the runtime publishes notifications enabling FROBs to possibly react
and change behavior.

Resource
Notification

Event

R
untim

e /
V

irtual M
achine

H
ardw

are

Network MemoryCPU

Q:

Dictionary

Q:

Dictionary

Communication
Infrastructure

Resource Profiling &
Monitoring

FR
O

B

FR
O

B

Fig. 5. Resource profiling and monitoring in the FROB runtime

Attached to each behavioral object is a resource profile which describes the
amount of resources (CPU, memory, bandwidth, etc) the object required during
its execution. These profiles are generated by the FROB runtime by measuring
the actual execution and are attached to the behavioral object subsequently.
Through these resource profiles, the runtime has a prediction of the resource
requirement for a future execution. Throughout the lifetime of a behavioral ob-
ject, its execution pattern might change, e.g., by executing differently (and thus
have different resource requirements) depending on the actual event received.
To try to limit the distorted effects that such execution variations have on the
prediction, the runtime tries to compensate by keeping track of certain histori-
cal executions, and thus the profile gets more and more accurate the more the
behavioral object gets executed.

As part of its event scheduling strategy, the runtime uses the resource profile
associated with each behavioral object to evaluate the ability, at a given point in
time, to execute the behavioral object based on the resource requirement stated
in the profile compared to the resource availability on the device. By comparing

the two, the runtime can determine if there are enough resources to execute a
behavioral object.5 If this is not the case, the execution of the behavioral object
is postponed and an event is published to the FROBs deployed on the runtime,
notifying them about the current resource shortage. Upon receiving such an
event, the FROBs can then try to collaborate by freeing up resources, i.e., by
adapting.

If a FROB desires to adapt to such a notification by actually replacing behav-
ioral objects, the resource profiles can be used by the FROB as an indicator for
finding an alternate behavioral object that uses less resources, or uses resources
differently, e.g., more bandwidth, but less CPU and/or memory, such that the
resource shortage can be lifted.

For instance, if the resource availability is reduced within a device, a FROB
might adapt using strategies that try to either reduce the current resource con-
sumption or tries to find alternative sources of resources. Several strategies are
possible.

1. Unload Behavior – The FROB can try to unload unused or infrequently used
behavioral objects present in the dictionary, in order to try to free resources.
Unloading behavioral objects might have a limited effect on memory, though,
as the behavioral objects themselves are stateless and thus do not carry a
lot of data;

2. Adjust Quality of Service – The FROB can try to offer the same service
at a lower quality in such a way that its resource consumption better fits
with the newly announced resource availability. Specifically, this adjustment
is done by adjusting or replacing behavioral objects using the resource pro-
files attached to the behavioral objects to determine which fit better to the
resource availability;

3. Migrate – The FROB can try to migrate from one device to another following
resource availability changes that motivates the execution to be continued
on another device, e.g., the presence of a more resource-rich computing envi-
ronment, or the reception of a notification that the computing environment
on which the FROB is running is about to close down, e.g., due to power
exhaustion.

3 Illustrating FROBs

To demonstrate the viability of our FROB model, we designed and implemented
an audio streaming scenario involving mobile devices. The scenario does not rely
on any centralized server and poses several challenges in terms of frugality. As
such, the scenario includes resource adaptivity following changes in connectivity,
e.g., when a service disappears and exposes problems inherent to resource aware
devices/runtimes, like, for instance, how the audio provider should react as the

5 The FROB runtime uses best-effort to predict if enough resources are available to
execute a behavioral object. As such, there is no guarantee that the behavioral object
can run to completion without experiencing resource-related errors.

number of requesting audio clients is growing, how to preserve the same stream,
when to degrade, etc.

Though the audio streaming scenario is implemented in J2SE, as mentioned
earlier, and the code excerpts presented in the following thus are exemplified
using the Java programming language, as we pointed out, the FROB model is
not specific to any specific programming language or platform.

3.1 The Audio Streaming Scenario (The Network of FROBs)

coverage area of audio provider

?

on-demand

music stream

Existing wireless
audio receiver

Audio provider

Incoming wireless
audio requestor

collaboration protocol

Fig. 6. The audio streaming scenario

The scenario involves multiple devices running FROBs; one FROB provides
audio streaming capabilities to a number of interested client FROBs wanting to
play the audio stream it provides, as illustrated by Figure 6.

The devices are all connected to some wireless network on top of which they
form an ad-hoc network. Once the networking capabilities have been set up, the
audio provider and client initiates each a discovery protocol.

Having discovered each other, the FROBs start negotiation for collaboration,
i.e., the client FROB requests the audio providing FROB for permission to use
its service – receive the audio stream. Having gained permission, the client re-
ceives the behavioral objects to decode the audio stream after which the audio
streaming starts.

3.2 Request for Collaboration (Behavioral Objects)

Programming in the FROB model consists in programming a set of behavioral
objects, which are present in named entries in the dictionary of a FROB. When
a behavioral object is executed (following the occurrence of an event), it will
typically manipulate entries in the dictionary (that represents other behavioral
objects or state), and generate other typed events which are then published
to other FROBs. This is illustrated in Figure 7, which depicts an excerpt of a

behavioral object from our Java-based implementation responding to requests
for collaboration.

Specifically, Figure 7 shows how the behavioral object uses entries in the
dictionary (line 4 and 9) to store and lookup ongoing collaborations.

1: public void execute(Runtime rt, Dictionary dic, CollaborationRequestEvent event)
throws FROBException {

2: ...
3: // check if collaboration with client already exists
4: if (dic.get(event.getClientId()) != null) {
5: // cancel collaboration request; collaboration exists
6: ...
7: }
8: // create collaboration state
9: dic.put(event.getClientId(), new CollaborationState());

10: ...
11: }

Fig. 7. Excerpt of behavioral object; managing ongoing collaborations through a dic-
tionary

As conveyed by Figure 7, the code of any behavioral object is accessible
to the FROB runtime through a method called execute. Upon receiving the
correctly typed event, this method is invoked by the FROB runtime along with
references to (1) the runtime on which the FROB is deployed (parameter rt),
(2) the dictionary of the FROB (parameter dic), and (3) the event that caused
the execution of the behavioral object (parameter event).

3.3 Responding to a Collaboration Request (Typed Events)

In our Java-based implementation, each event type must implement a marker
Java-interface Event, which acts as our base event type. Through this inter-
face, we provide a set of typed events (and behavioral objects for handling these
events) as part of the standard protocols used by the FROBs, e.g., as a collab-
oration and negotiation protocol.

To publish a (typed) event, a behavioral object is expected to serialize the
event itself using its own fine-grained serialization mechanism. Figure 8 illus-
trates how to achieve this in our Java-based implementation. To publish typed
events, the behavioral object uses the primitive publish, which is accessible to
the behavioral object through the FROB runtime reference (the parameter rt as
seen in Figure 7). Using this primitive, Figure 8 shows how the behavioral object
publishes (line 7) an event that it serialized using its fine-grained serialization
mechanism (line 4 and 5).

As conveyed by Figure 8, when publishing the serialized typed event, we
provide an additional parameter – an indication of the event type being published

1: // create typed event for responding to request
2: CollaborationResponseEvent crpe = new CollaborationResponseEvent(...);

3: // serialize response event
4: CollaborationResponseSerializer ser = new CollaborationResponseSerializer();
5: byte[] ba = ser.serialize(crpe);

6: // publish response event
7: rt.publish(ba, new EventType(CollaborationResponseEvent.class));

Fig. 8. Excerpt of behavioral object; responding to collaboration request

(the EventType) – which is used by the communication infrastructure to match
incoming serialized events against the external interface of the FROBs.

Incoming,
serialized events

1

In
te

rfa
ce LQAudioEvent

ResourceEvent
...

Incoming,
serialized events

1

In
te

rfa
ce HQAudioEvent

ResourceEvent
...

(a) Event types in external in-
terface

D
ic

tio
na

ry

. . .

”HQAudioEvent”

”ResourceEvent”

...

counter
71172

State

Behavioral Object

(b) Corresponding behavioral ob-
jects in dictionary

Fig. 9. Representing the external interface using behavioral objects from the dictionary
(excerpt of Figure 2)

At any point in time, the FROB runtime uses the set of behavioral objects in
the dictionary of the FROBs to create an external interface, which is mapped into
subscriptions for event types that the behavioral objects are capable of handling.
This is illustrated in Figure 9, which shows how the event types defined in the
external interface (Figure 9(a)) corresponds to actual behavioral objects present
in the dictionary (Figure 9(b)).

3.4 Downgrading the Audio Stream Quality (Replacing Behavioral
Objects)

FROBs adapt by changing the set of behavioral objects that they contain in
the dictionary, upon receiving a given typed event representing some change.

Figure 10 illustrates how changing behavioral objects is used to downgrade the
quality of the audio stream provided.

1: // incoming event
2: ResourceEvent re = ...;

3: // downgrade QoS if memory constrained
4: if (re.getMemoryLevel() > 0.9) {
5: // remove current audio streaming behavior
6: dic.remove(”audioStreamer”);

7: // instantiate new audio streaming behavior and install
8: dic.put(”audioStreamer”, new LQAudioStreamingBehavior());

9: // set buffer size in dictionary
10: dic.put(”bufferSize”, new Integer(LQ BUF SIZE));
11: }

Fig. 10. Excerpt of behavioral object; downgrading a behavior following notification

Changes made to the set of behavioral objects of a FROB is reflected im-
mediately in its dynamic interface such that its subscriptions for typed events
match its capabilities in terms of behavioral objects. The effect on the dynami-
cal interface following the behavioral change (seen in Figure 10) is illustrated in
Figure 11.

Incoming,
serialized events

1

In
te

rfa
ce LQAudioEvent

ResourceEvent
...

Incoming,
serialized events

1

In
te

rfa
ce HQAudioEvent

ResourceEvent
...

(a) Before behavioral change

Incoming,
serialized events

1

In
te

rfa
ce LQAudioEvent

ResourceEvent
...

Incoming,
serialized events

1

In
te

rfa
ce HQAudioEvent

ResourceEvent
...

(b) After behavioral change

Fig. 11. Behavioral change reflected in external interface of FROB - Excerpt of Figure 2

3.5 The Audio Quality of Service (Putting Frugality to Work)

To evaluate the feasibility of the overall scenario, we conducted some measure-
ments of the memory consumption of our audio client and audio provider FROBs
when collaborating (both running on J2SE).

In the example, a voluntarily very simple and deterministic resource manage-
ment policy is used, with the intention to focus on and illustrate the ability of

FROBs to adapt asynchronously and in a fine-grained manner, thereby showing
a level of adaption normally not available in other programming models.

Audio Provider. We measured the memory consumption of the audio provider
and its ability to adapt its quality of service when put under an increasing work-
load, i.e., clients to feed streams of audio. Upon receiving a client connection,
the audio provider allocates a buffer into which it reads a chunk of audio data
that it feeds to the client.

For the sake of the example, we simulated resource shortage notifications
on every third connection of a peer, such that the audio provider could react
accordingly, by gradually downgrading its quality of service.

 140

 150

 160

 170

 180

 190

M
em

or
y

C
on

su
m

pt
io

n
(K

B
)

1 2 3 4 5 6 7 8 9

Time

2 KB5 KB 3 KB

Fig. 12. Memory consumption of audio provider over time with increasing number of
audio clients (1-9) and flexible quality of service

The audio provider has been programmed to initially allocate a buffer of size
5 kilobytes per connecting client for the audio data. For the first resource event
it receives, the audio provider reduces the sizes of the buffers to 3 kilobytes
for every existing client connection, and when receiving the second resource
events, it reduces the buffer sizes to 2 kilobytes. The memory consumption from
performing this test is depicted in Figure 12, which shows how the audio provider
uses resources as nine clients connect with a time interval of approximately 30
seconds between each connection. It can be seen that when the audio provider is
idle, the memory consumption is 147 kilobytes, of which the audio server itself
is accountable for 8 kilobytes.

Figure 12 shows how each connecting client (marked with shade/non-shade)
puts additional resource constraints on the audio provider, but also how the
audio provider adapts its quality of service and through that reduces its memory
consumption (after the garbage collection by the virtual machine) following the
connection of client number three and six.

Figure 12 also shows, by the decreasing angle of the stippled lines, how the
relative cost of adding additional audio clients is reduced every time the audio
provider adapts following a notification from the resource oracle. This of course
is due to the reduction in the buffer size allocated for each connected client
following the adaptation by the audio provider.

Audio Client. We measured the memory consumption of the audio client dur-
ing the playback of the audio stream as well as the change in memory consump-
tion following the (1) loading of behavioral objects needed to receive and play the
audio stream, and (2) unloading of the behavioral objects as collaboration ends.
In other words, we measured the memory consumption following the fine-grained
adaptivity of behavior. The measurements are seen in Figure 13.

 100

 150

 200

 250

 300

 350

M
em

or
y

C
on

su
m

pt
io

n
(K

B
)

Time

Runtime

Audio Client

Collaboration Duration

Fig. 13. Memory consumption of audio client over time following loading/unloading
of behavioral objects during collaboration

Figure 13 shows how the memory consumption of the audio client increases
significantly during the duration of the collaboration with the audio provider
(shaded area). Before commencing collaboration, the memory consumption of
the audio client is 145 kilobytes, of which the client itself uses of 6 kilobytes. The
memory increase is caused by the fact that the audio client receives behavioral
objects necessary for retrieving and playing the audio stream from the audio
provider. As such, these behavioral objects make use of the Java sound system,
which is thus loaded during the collaboration. After having played the stream
and collaboration terminates, the audio client unloads all the partial behavior
(and the sound capabilities used), and memory consumption goes back to the
default level, as also indicated in Figure 13.

4 Overheads

In the following, we evaluate the overhead of the key mechanisms underlying
our model (both implemented in J2SE): indirectional reflection and fine-grained
serialization. Then we convey some results from implementing resource profiling
in the virtual machine of J2ME CLDC (KVM).

4.1 Runtime Footprint Overhead

The runtime in which we experimented our mechanisms consists of 61 classes
taking up 125 kilobytes of memory on disk. Of this amount of memory, 45 kilo-
bytes can be attributed to classes relating to networking. As mentioned earlier,
J2ME CLDC does not have these capabilities built in. However, compared to
the Java J2ME CDC 1.0.1 platform, targeted at devices that are slightly less
resource-constrained, in which the object serialization and reflection class files
in respectively the java.oi and java.lang.reflect packages occupy approx-
imately 200 kilobytes, we have a memory footprint reduction of approximately
40%. When the runtime is loaded into the virtual machine, but idle with no
FROBs deployed on it, the total memory consumption is 139 kilobytes, of which
87 kilobytes are attributed to the Java virtual machine itself.

4.2 Indirection Overhead

To measure the performance overhead due to the level of indirection we add
within the FROBs, we conducted two experiments. First, we measured the raw
performance overhead, i.e., the overhead of the indirection when invoking meth-
ods without functionality. Second, we measured the practical overhead, i.e., the
overhead of the indirection when invoking methods with functionality from our
scenario. In both cases, the results were compared to invoking the equivalent
methods directly, i.e., without indirection.

Our experiments indicate that the level of indirection causes a raw overhead
of a factor of 5-8 when compared to performing direct invocations. This is at-
tributed to the actual lookup in the java.util.HashMap, which is used as a
foundation for our dictionary.

However, our experiments also indicate that (when invoking methods contain-
ing functionality used) in the audio streaming scenario, this overhead becomes
insignificant compared to the total time spent executing the functionality. For
instance, when invoking methods with functionality from the scenario the over-
head only accounts for approximately 0.5%, which, we believe is, insignificant at
this level of prototyping.

4.3 Fine-Grained Representation Overhead

Representing the components using fine-grained behavioral objects stored in a
dictionary induces an overhead compared to traditional object-oriented repre-
sentations, where the functionality of the behavioral object would typically be
represented as instance methods on some class as illustrated in Figure 14.

 public class HelloWorld {

 private String text = ”Hello”;

 public void foo() {
 …
 text = ”World”;
 …
 }
 }

. . .

”text”

”foo”

”Hello”

 …
 dic.put(”text”, ”World”);
 ...

Dictionary

Instance of class

Instance of class

(a) Object-oriented repre-
sentation

 public class HelloWorld {

 private String text = ”Hello”;

 public void foo() {
 …
 text = ”World”;
 …
 }
 }

. . .

”text”

”foo”

”Hello”

 …
 dic.put(”text”, ”World”);
 ...

Dictionary

Instance of class

Instance of class

(b) Fine-Grained behavioral
representation

Fig. 14. Component representations

To measure this overhead, we built different sets of components from our
scenario using (a) our fine-grained behavioral object representation and then
(b) a traditional object-oriented representation; we then compared both.

Whereas the overhead from our fine-grained behavioral object representation
in terms of total size of class files on the disk is roughly a factor 2, the over-
head on the heap size is roughly a factor of 8. For instance, compared to the
56 bytes of an object-oriented representation, the fine-grained behavioral rep-
resentation of the audio provider takes 432 bytes. The reason for this overhead
is mainly due to the use of a dictionary (which in itself accounts for 120 bytes
when having no entries). In addition, each entry in the dictionary also requires
a java.lang.String as key, which also accounts for heap space – an empty
instance of java.lang.String requires 40 bytes with the J2SE virtual machine
we employ. The overhead caused by our intensive use of the heap, instead of the
call stack, is a well known issue that can be mitigated through various techniques
such as escape analysis [9].

4.4 Resource Profile Generation Overhead

Conceptually, generating resource profiles for a behavioral object is done by the
runtime. The FROB runtime does actually measure bandwidth by counting the
number of bytes taken up by the events that the behavioral object publishes.
However, because J2ME does not offer the possibility of controlling resources
(CPU and memory) through the virtual machine, we had to augment the KVM
(J2ME CLDC virtual machine) with functionalities to be able to count executed
bytecodes and memory usage. The virtual machine has been extended in order
to count the number of bytecodes executed and the number of bytes allocated in
memory for a given behavioral object. Basically, two counters were added in the
virtual machine: a bytecodeCounter, which is incremented everytime a bytecode
is executed, and a memoryCounter, which is incremented by the size (in bytes)

of every memory allocation. These counters are reset and queried by two Java
classes extending the CLDC API.

The size of the KVM shows a negligible increase of 0.3% (for a total of 102
kilobytes) and the growth of the API is 0.5% (for a total of 147 kilobytes). Note
that our modified KVM, compiled on linux (gcc 3.4.5) and romized (CLDC
API inlined in the executable) is only 203 kilobytes large after having stripped
unnecessary sections out of the object file and becomes thuns less than 0.5%
larger than the orginial one.

As counters are incremented at runtime on every bytecode execution and
memory allocation, the overall execution speed of an application is slower. We
have tested the modified KVM with two types of applications that simulate the
worst cases for both bytecode and memory accounting.

The first test program executes a very large number of times bytecodes that
are translated into the least hardware instructions possible (NOP bytecodes), in
order to maximize the cost of the bytecode counting itself. This situation results
in the worst possible case, with respect to overall execution speed and bytecode
counting. The second program allocates memory as often as possible, maximizing
the number of times the virtual machine must count memory allocations, thus
again, resulting in the worst case possible, with respect to overall execution speed
and memory allocations counting. Results show that the modified KVM is at
most 7% slower than the original one, which is very acceptable at this level of
prototyping.

5 Related Work

We position in this section our FROB model with respect to some representa-
tive distributed systems and distributed computing models that are (1) resource-
cautious, meaning that they were designed to generate a small footprint, (2) resource-
aware, meaning that they provide hints about resource consumption and/or
availability to the applications they host, or (3) adaptive, meaning that they
provide adaptation mechanisms, e.g., dynamic code replacement, migration etc.,
to the applications they host.

Most distributed systems that are marketed for mobile devices focus on one
or the other of these dimensions, while leaving the others out of scope. The chal-
lenge addressed by FROBs is precisely that of providing a computing model for
the development of adaptive and resource-aware programs running on resource-
cautious systems.

5.1 Resource-Cautious Models

Computing models currently considered by the industry for building mobile ap-
plications on resource-constrained devices, such as Java CLDC [33] and .Net
Compact Framework [26], are merely descendants of programming models used
to build traditional applications for more static environments. Neither the mod-
els, nor their runtime support, provide the constructed applications with ade-
quate ability of combined adaptivity and resource-awareness.

To save memory footprint, runtime platforms for resource-constrained de-
vices, such as Java J2ME CLDC [33] and OSVM [14], typically sacrifice reflec-
tion, usually key to adaptivity and resource-awareness. In fact, another conse-
quence of the lack of reflection is the lack of general-purpose object serialization
mechanisms obstructing the ability to communicate easily.

For very resource-constrained devices, the most notable research project
following direction is TinyOS [18], which is centered around sensor networks.
Like TinyOS, the FROB model is based on an event-based interaction scheme.
TinyOS is resource-cautious in the sense that it has been designed to be conser-
vative in its resource consumption; but it cannot in any way adapt to changes
in the levels of resource by changing behavior.

TinyOS does not support adaptivity because once the code is linked and
deployed on a device, it cannot be changed. The Maté [22] project addresses the
replacement issue of TinyOS by providing a virtual machine for TinyOS devices
on which very small blocks of code, capsules of 24 instructions, can be replaced.
However, limited to small blocks of code, this solution is still very inflexible
compared to the FROB model. [19], on the other hand, enables a whole image to
be redeployed remotely on a node, which helps the dissemination at deployment
time but does not enable non- interrupted runtime code replacement. In fact, the
node loses its state as the deployment acts as a stop/restart with a new image.
The FROB model, on the contrary, inherently provides fine-grained means for
non-interrupted runtime code replacement.

More generally, Instead of proposing a scaled down variant of a modern
computing model, the FROB model goes back to the roots of the seminal work
of Dijkstra on guarded commands [12] and its derivatives [7]. The underlying
idea is to divide a program into a set of atomic behavioral objects protected by
predicates. A predicate determines the exact conditions under which a certain
behavioral object can be executed. In the FROB context, resource profiles, as
amount of resources (CPU, Memory, Bandwidth) that a behavioral object will
presumably require, act as a condition to fulfil before starting the execution of
the behavioral object.

5.2 Resource-Aware Models

There is no broadly accepted programming model for resource management,
and, a fortiori, resource awareness. Several prototypes have been proposed, using
Java (Standard Edition) as execution platform, such as the Aroma VM [36],
KaffeOS [5] and the Multi-tasking Virtual Machine (MVM) [11], which all keep
or extend the standard Java computing model and are not targetted at mobile
devices.

An important obstacle that researchers in resource management typically face
is that efficient resource management also requires appropriate isolation (such as
Unix processes) between the supervised entities, in order to prevent unwanted
interferences such as deadlocks when a misbehaving entity is sentenced to be
throttled or killed. It is planned that standard Java will provide such a facility
in a future release [10].

On the other hand, resource management in the FROB model does not suffer
the same problems that standard Java is facing. This is because the behavioral
objects of a FROB are executed isolated from each other. Therefore, the re-
source management scheme is not only capable of reliably measuring resource
consumptions of current executions, but also of usefully exploiting this data to
predict upcoming executions, in a simple, resource-efficient way.

SEDA [37] promotes an event-based approach which focuses, like we do,
on designing systems that behave gracefully even under severe load. However,
whereas SEDA proposes a rather fixed architecture for Internet servers, FROBs
aim at representing a more general-purpose computing model for mobile devices.

5.3 Adaptive Models

Many of the early distributed computing models provided a fully reflective and
hence adaptive execution scheme [24, 3, 25, 1, 8]. None of those however was de-
signed with resource-constrained devices in mind.

Like Emerald [20], the FROB computing model supports migration of run-
ning processes. However, unlike Emerald, the FROB model does not support
migration of the process’ thread. The FROB model is threadless, and thus main-
tains a loose coupling between the behavioral objects and the thread executing
them. The threads are assigned to the execution of behavioral objects by the
runtime in a time-slicing scheme. Given this time-slicing scheme, and the fact
that, within any FROB, only one behavioral object at a time is executed, the
checkpointing of the runtime state of a running process between two behavioral
object executions is straightforward.

Other projects, such as [13, 28], have also addressed adaptivity – though
still somewhat inflexible – with predefined service levels and infrastructure re-
sponsibility to actually initiate the possible changes. In SOS [16], the ability
to reconfigure a node can lead to corrupt the consistency of the application,
caused by intermodule dependencies and should be seen as a way to update an
application slightly and for long term, and not as a way to adapt the quality of
service of a node. In addition, unlike Contiki [13] the FROB platform also allows
mobility as part of the adaptation to changes in resource availability. As such,
FROBs can adapt to resource changes by requesting the runtime to be migrated
to another devices, where it better can exploit remote resources.

From the adaptive and control flow perspective, our FROB model is close
to the actor model [17, 1] (and more precisely its ActorSpace [2] variant with
anonymous event-based communication, itself inspired by [21]).

Unlike many concurrent computing models [20, 4, 38], but just like the actor
model, only one behavioral object at a time is executed by a FROB, and behav-
ioral objects do not contain synchronization statements.6 In particular, remote
procedure calls, be them completely synchronous, or semi-synchronous through
the use of futures [31] or promises [23], are precluded within behavioral objects.
6 Besides the underlying issues of thread and CPU management, such statements

(e.g., wait, fork/spawn) significantly complicate code upgrading, concurrency control,
and resource-based reasoning.

If needed, they are programmed through events across several behavioral object
executions.

There are, however, three important differences between the FROB and
the actor model. Whereas an actor is an immutable object (state changes are
achieved through the creation of new actors - become statement), a FROB is on
the contrary expected to change its state and behavior. This has a direct impact
on the programming style but also, and may be more importantly, on the run-
time management of object identities and memory allocation. The development
of such strategies using only send and become statements of the actor model
clearly leads to the explosion of a program into many independent actors, which
hampers resource-based reasoning and code upgrading. Third, FROBs have a
type oriented notion of interface. At any point in time, the set of event types
that a FROB can handle is precisely defined, and this facilitates code reuse,
prevents casting errors and enables cheap fine-grained serialization.

6 Concluding Remarks

This paper presents a candidate model for computing on mobile resource devices.
We have chosen a name (FROB) for our computing model that hopefully conveys
its experimental nature, rather than names of dead mathematicians like Pascal,
Occam, Euclid or Erlang.

On the basis of a prototype running on the Java platform for resource-
constrained devices, we demonstrated the feasibility of our model through a
demanding example of ad-hoc mobile computing, and we also gathered some
encouraging deployment figures from our implementations.

Further experiments are needed and many FROB aspects need to be refined.
Among these aspects, abstractions for code reuse have not been discussed and
further research is needed to explore how (abstract) classes, (open) interfaces
and inheritance could be appropriately used in our context. Also, it is not yet
clear to us how to deal, within behavioral objects, with loop constructs that can-
not be statically analyzed. Specifically, such constructs complicate prediction of
resource consumption of a behavioral object, and may to some extend compro-
mise liveness. One proposal would be to require loops that cannot be statically
analyzed to be explicitly unfolded, such that each iteration is expressed in terms
of an event published to the behavioral object itself, which could possibly be
done with some language construct. Another aspect that also requires further
investigation is some form of lightweight authentication that could be realistic
to integrate within FROBs, for some applications might preclude FROBs from
accepting a new behavior (or even an event) without appropriate accreditations.

Acknowledgements

This work is conducted under the PalCom project, financed by the European
Community under the Future and Emerging Technologies initiative. We are very

grateful to our partners in the project for many interesting discussions, in par-
ticular Peter Andersen, Lars Bak, Erik Ernst, Monique Calisti, Steffen Grarup,
Dominic Greenwood, Kasper V. Lund, Ole Lehrman Madsen, Boris Magnusson,
Martin Odersky, and Reiner Schmidt.

References

1. G. Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, 1986.

2. G. Agha and C. J. Callsen. ActorSpace: an open distributed programming
paradigm. In Proceedings of the 4th ACM SIGPLAN symposium on Principles
and Practice Of Parallel Programming (PPOPP’93), pages 23–32, San Diego, May
1993.

3. M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting object
interactions using composition filters. In Workshop on Object-Based Distributed
Programming (ECOOP’93), pages 152–184, Kaiserslautern, June 1993.

4. J. Armstrong. The development of Erlang. In Proceedings of the 2nd ACM SIG-
PLAN international conference on Functional programming (ICFP’97), pages 196–
203, Amsterdam, June 1997.

5. G. Back, W. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation, resource man-
agement, and sharing in Java. In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation (OSDI 2000), San Diego, October 2000.

6. S. Baehni, C. S. Chabra, and R. Guerraoui. Frugal event dissemination in a mo-
bile environment. In Proceedings of the ACM/IFIP/USENIX 6th International
Middleware Conference (Middleware 2005), Grenoble, November 2005.

7. H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages for dis-
tributed computing systems. ACM Computing Surveys, 21(3):261–322, September
1989.

8. J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and distribution in object-
oriented programming. ACM Computing Surveys, 30(3):291–329, September 1998.

9. J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape analysis
for java. In Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’99), pages 1–19,
Denver, November 1999.

10. G. Czajkowski and L. Daynès. Multitasking without compromise: A virtual ma-
chine evolution. In Proceedings of the 16th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2001),
pages 125–138, Tampa Bay, October 2001.

11. G. Czajkowski, S. Hahn, G. Skinner, P. Soper, and C. Bryce. A resource manage-
ment interface for the Java platform. Software Practice and Experience, 35(2):123–
157, November 2004.

12. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453–457, August 1975.

13. A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and flexible operating
system for tiny networked sensors. In Proceedings of the 1st IEEE Workshop on
Embedded Networked Sensors, Tamba Bay, November 2004.

14. Esmertec. OSVM. http://www.esmertec.com.
15. P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of

publish/subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.
16. C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A dynamic operating

system for sensor nodes. In Proceedings of the 3rd International Conference on
Mobile systems, applications and services (Mobisys 2005), pages 163–176, Seattle,
June 2005.

17. C. E. Hewitt. Viewing control structures as patterns of passing messages. Journal
of Artificial Intelligence, 8(3), June 1977.

18. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System ar-
chitecture directions for networked sensors. SIGOPS Operating Systems Review,
34(5):93–104, December 2000.

19. J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for
network programming at scale. In Proceedings of the 2nd International Conference
on Embedded networked sensor systems (SenSys 2004), pages 81–94, Baltimore,
November 2004.

20. E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald
system. ACM Transactions on Computer Systems, 6(1):109–133, February 1988.

21. W. A. Kornfeld and C. E. Hewitt. The scientific community metaphor. IEEE
Transactions on Systems, Man, and Cybernetics, 11(1):24–33, January 1981.

22. P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. In
Proceedings of the 10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-X), pages 85–95, San José,
October 2002.

23. B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In Proceedings of the ACM SIGPLAN con-
ference on Programming Language design and Implementation (PLDI’88), pages
260–267, Atlanta, June 1988.

24. C. V. Lopes and G. Kiczales. D: A language framework for distributed program-
ming. Technical Report SPL97-010, P9710047, Palo Alto, February 1997.

25. H. Masuhara and A. Yonezawa. An object-oriented concurrent reflective language
ABCL/R3: Its meta-level design and efficient implementation techniques. In J.-P.
Bahsoun, T. Baba, J.-P. Briot, and A. Yonezawa, editors, Object-Oriented Paral-
lel and Distributed Programming, pages 151–165. HERMES Science Publications,
Paris, 2000.

26. Microsoft. Microsoft .NET framework. http://www.microsoft.com/net.
27. Microsoft. DCOM Technical Overview (Microsoft White Paper), 1999.
28. A. Mukhija and M. Glinz. A framework for dynamically adaptive applications in

a self-organized mobile network environment. In Proceedings of the 24th Interna-
tional Conference on Distributed Computing Systems Workshops - W2: DARES
(ICDCS 2004), pages 368–374, Tokyo, March 2004.

29. OMG. The Common Object Request Broker: Architecture and Specification, Febru-
ary 1998.

30. K. Raatikainen. A new look at mobile computing. In Proceedings of Academic
Network for Wireless Internet Research in Europe (ANWIRE) Workshop, Athens,
May 2004.

31. J. Robert H. Halstead. MULTILISP: a language for concurrent symbolic computa-
tion. ACM Transactions on Programming Languages and Systems, 7(4):501–538,
October 1985.

32. R. B. Smith and D. Ungar. Programming as an experience: The inspiration for Self.
In Proceedings of the 9th European Conference on Object-Oriented Programming
(ECOOP’95), pages 303–330, Aarhus, August 1995.

33. Sun Microsystems. Java 2 Platform, Micro Edition, Connected Limited Device
Configuration (CLDC). http://java.sun.com/products/cldc.

34. Sun Microsystems. Java 2 Platform, Standard Edition. http://java.sun.com/.
35. Sun Microsystems. Java Remote Method Invocation – Distributed Computing for

Java (Sun Microsystems White Paper), 1999.
36. N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, R. Jeffers, T. S.

Mitrovich, B. R. Pouliot, and D. S. Smith. NOMADS: toward a strong and safe
mobile agent system. In Proceedings of the 4th International Conference on Au-
tonomous Agents (AGENTS 2000), pages 163–164, Barcelona, June 2000.

37. M. Welsh and D. Culler. Overload management as a fundamental service design
primitive. In Proceedings of the 10th ACM SIGOPS European Workshop, Saint-
Emilion, September 2002.

38. A. Yonezawa and M. Tokoro. Object-oriented concurrent programming. MIT Press,
Cambridge, 1987.

