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Abstract

State machine replication is a common approach for making a distributed service highly
available and resilient to failures, by replicating it on different processes. It is well-known,
however, that the difficulty of ensuring the safety and liveness of a replicated service
increases significantly when no synchrony assumptions are made, and when processes can
exhibit Byzantine behaviors. The contribution of this work is to break the complexity of
devising a Byzantine-resilient state machine replication protocol, by decomposing it into
key modular abstractions. In addition to being modular, the protocol we propose always
preserves safety in presence of less than one third of Byzantine processes, independently
of any synchrony assumptions. As for the liveness of our protocol, it relies on a Byzantine
failure detector that encapsulates the sufficient amount of synchrony.
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1 Introduction

A state machine is defined by a set of state variables, which encodes its state, and by a
set of remotely accessible commands, which allow to transform its state. Each command is
implemented by a deterministic program and is executed atomically with respect to other
commands. A client issue a request to the state machine, which specifies the execution of a
command; depending on the command, the state machine might return a reply to the client
or not. Requests must be processed by the state machine sequentially, and in an order that
is consistent with Lamport’s causality relationship [10]. Intuitively, this relationship has two
implications. First, the requests of each individual client must be processed in the order they
were issued. Second, if there potentially exists a causal relationship between a request req
made to the state machine by some client, and a subsequent request req′ made by some other
client, then req must be processed before req′.

1.1 Replicating A State Machine

Replication is a convenient approach for making a state machine highly available to its clients
and for making it resilient to failures [10, 15]. It is well-known, however, that ensuring the
consistency and the responsiveness of a replicated state machine is complex to achieve in
presence of failures. This complexity further increases when no restrictions are made on the
failure model, i.e., when assuming a Byzantine model, and when no assumptions are made
on the synchrony of the system, i.e., when assuming an asynchronous model. This due to the
FLP impossibility result1 and to the fact that malicious processes can do whatever they want
to prevent correct replicas from delivering their service.

Contribution. The contribution of this work is to break the complexity of devising a
Byzantine-resilient active replication protocol, by decomposing it into key subproblems and
by solving each one via a separate abstraction. This modularity allows us to identify addi-
tional synchrony assumptions under which the liveness of our protocol is ensured (FLP makes
it impossible to ensure liveness without such additional assumptions). As for safety, our repli-
cation protocol always preserves it.2 Finally, we sketch simple optimizations that make our
protocol more efficient in failure-free runs, without compromising modularity.

Roughly speaking, our state machine replication protocol relies on an Atomic Multicast
primitive which clients use to send their requests to server replicas. The Atomic Multicast
protocol we propose is then decomposed into a Reliable Multicast protocol and a protocol
that solves a new problem that we name Weak Interactive Consistency. This problem is a
variation of the traditional Interactive Consistency problem [5]. Solving Weak Interactive
Consistency in an asynchronous model also lead us to define a new class of failure detectors
adapted to the Byzantine model: such failure detectors are at the heart of liveness issues.
In this paper, however, we only sketch the problems of specifying and implementing failure
detectors in a Byzantine model; a detailed discussion can be found in [3].

1FLP states that no algorithm can solve Consensus in an asynchronous system if one process can crash [4].
2By ensuring the safety and liveness of our active replication protocol, we guarantee the consistency and

responsiveness of the replicated state machine.
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1.2 Related Work

Rampart [12] and SecureRing protocols [7] are two research results on state machine replica-
tion in the Byzantine asynchronous model. A major difference with our work, however, lies
in the fact that these systems heavily rely on membership protocols. Therefore, when some
process is suspected (even falsely), a view change is triggered and the suspected process is
excluded from the new view. By excluding a correct process, the guarantee that all correct
processes remain in the same consistent state cannot be ensured. Indeed, correct processes
that are falsely suspected are forced to become incorrect, and hence no longer need to satisfy
safety. This results in protocols where even safety depends on synchrony assumptions, which
is not the case of our state machine replication protocol.

A research result closer to ours is described in [1]. There, the authors present a state
machine replication protocol based on the idea of sequenced views, but with no exclusion
of processes. In each view, only one process (the primary) is responsible for ordering client
requests. Similarly to ours, the safety of their protocol is ensured independently of synchrony
assumptions. Contrary to our approach, however, liveness issues are not encapsulated in a
well-defined abstraction, i.e., a failure detector. Instead, liveness relies on the use of timeouts
to prevent correct processes from being blocked by a Byzantine primary, and on an assumption
on the sequence of views. This assumption states that there will eventually exist a view
with a correct primary that other correct processes will not time out. Furthermore, the
replication protocol proposed in [1] is monolithic, i.e., with no structural decomposition into
subproblems. This lack of intermediate finer-grain abstractions leads to a protocol that is
difficult to understand or reason about.

1.3 Roadmap

The rest of the paper is organized as follows. Section 2 presents our system model, in particu-
lar it introduces the notion of so-called muteness failures, together with an associated failure
detector. Then, Section 3 presents our Byzantine-resilient state machine replication proto-
col, based on an Atomic Multicast primitive. Section 4 describes how an Atomic Multicast
primitive can be built by composing a Reliable Multicast abstraction and a Weak Interactive
Consistency abstraction. Section 5 details our solution to the Weak Interactive Consistency
problem, while Section 6 discusses safety and liveness issues of this solution. Section 7 closes
the paper with remarks on Byzantine failures detectors and on possible optimizations of our
replication protocol.

2 System Model

We now describe the system model that we assume throughout this work, and which is a key
element in proving the correctness of our modular protocol suite. Note however that not all
the assumptions presented below are necessary to prove the correctness of each and every
protocol. The existence of an adequate failure detector, for example, is only assumed when
devising and proving our Weak Interactive Consistency protocol.

Execution & Communication Model. We consider a distributed system composed of
a set of processes, N of which are servers (state machine replicas), and the remainder are
clients. Processes communicate by message passing via a fully connected network composed
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of reliable point-to-point channels, i.e., if p sends message m to q, and both q and p are correct,
then q eventually receives m. In addition, these channels guarantee FIFO order and preserve
the integrity of messages exchanged between correct processes; in particular, the content of
messages cannot be altered by some active intruder. We assume no bounds on relative process
speeds nor on communication delays, i.e., the system is considered to be asynchronous.

Byzantine Failure Model. We assume a Byzantine failure model with message authenti-
cation [9]. In such a model, processes can fail by crashing (i.e., prematurely stop participating
in the protocol), but can also behave maliciously. An incorrect process can for instance send
garbled and misleading messages, or can refuse to send expected messages. More generally,
Byzantine processes, also known as malicious processes, can exhibit arbitrary behaviors. In
contrast, a correct process executes an infinite number of steps, and respects the specification
of the algorithm it is supposed to execute.

There exist however a limit to the power of malicious processes: thanks to message authen-
tication, a malicious process cannot impersonate correct processes. Message authentication
relies on the following signature unforgeability assumption: if a correct process p does not
send a signed message m, then no correct process ever receives a message m correctly signed
by p. In this paper, we assume that every correct process signs each of its messages before
sending it.3 In addition, we assume that the maximum number of Byzantine processes among
the N servers is f < N/3. There is no restriction on the number of Byzantine clients.

Muteness Failure Detectors. As already suggested, our state machine replication pro-
tocol relies on a set of modular abstractions where distributed agreement plays a central
role. So, in order to circumvent the FLP impossibility result, we augment our asynchronous
distributed system with a so-called muteness failure detector ✸MA [3]. This failure detector
only captures a subset of all possible Byzantine behaviors, namely muteness failures.4 Such
failures are tightly bound to the algorithm A that is executed by correct processes, and they
are at the heard of liveness issues.

Intuitively, muteness failures characterize faulty processes from which correct processes
stop receiving A messages. For example, a muteness failure can occur when a Byzantine
process simply crashes, or arbitrarily decides to stop communicating with some or all correct
processes. More precisely, we say that a process q is mute, with respect to some algorithm A
and some correct process p, if p stops receiving forever A messages from q. We can then
formally specify our muteness failure detector ✸MA, by stating the A-completeness and
Eventual weak A-accuracy properties that it satisfies. In this paper, ✸MA is only used by our
Weak Interactive Consistency protocol, i.e., this protocol plays the role of A in the properties
given below.

Mute A-completeness. There is a time after which every process that is mute to any
correct process p, with respect to A, is suspected to be mute by p forever.

Eventual weak A-accuracy. There is a time after which some correct process p is no
more suspected to be mute, with respect to A, by any other correct process.

3Signature unforgeability can be implemented via public-key encryption techniques such as RSA [13].
4Yet, muteness failures are more general than crash failures.
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3 Byzantine-Resilient State Machine Replication

When devising a state machine replication protocol, two ordering problems must be addressed:
the preservation of causality between client requests, and the implementation of a total order
on the processing of requests by the state machine replicas. Total order is usually ensured by
having the clients use an Atomic Multicast primitive to send their requests to the replicated
state machine; this is the approach that we adopt here. As for causal order, there are basically
two approaches to preserve it. One consists in delegating this problem to the communication
layer, i.e., to devise an Atomic Multicast that additionally ensures causal order. The other
approach consists in delegating it to the application layer, i.e., to let the clients and the state
machine replicas address this problem.

In this work, we adopt the second approach. More precisely, we force each client that
issues a request to the replicated state machine to refrain from any other communication,
as long as it does not receive a response to its current request; this solution was proposed
by F.B. Schneider in [15]. Note that preserving causality between client requests at the
application level has the advantage to avoid unnecessary ordering by the communication
layer. Furthermore, devising a causal order multicast in the Byzantine failure model is still
an open problem and it is not clear whether such a primitive would make sense or not [6].

In rest of this section, we start by formally specifying the Atomic Multicast problem. We
then describe how a state machine replication protocol can be built on top of a primitive that
solves this problem, in presence of malicious failures. A modular protocol to implement such
an Atomic Multicast primitive in the Byzantine failure model is described in the next section.

3.1 Atomic Multicast

In this paper, we consider an Atomic Multicast primitive that allows clients to send messages
to some static group g of N server replicas; this conforms to our system model assumptions.
Furthermore, we assume that clients do not belong to g and that only replicas in g deliver the
clients’ messages. Each message m sent by a client contains the following fields: seq(m), and
op(m). Field seq(m) is a unique identifier associated with m and is composed of the client’s
identifier seq.id(m) plus a sequence number, e.g., the local clock of the client. Consequently,
the identity of a message is defined by the client that issues it. Finally, field op(m) specifies
the operation (including parameters) that the client wants to execute on the replicated state
machine. Formally, Atomic Multicast is defined by two primitives: A multicast and A deliver,
which allow to send and deliver messages according to the following properties.

• Validity. If a correct client c A multicasts a message m to g, then some correct replica
in g eventually A delivers m.

• Agreement. If a message m is A delivered by some correct replica in g, then all correct
replicas in g eventually A deliver m.

• Integrity. For any message m, every correct replica p A delivers m at most once. Fur-
thermore, if client q of m is correct, then no correct replica A deliver m unless q has
previously A multicast m.

• Total Order. If correct replicas p and q both A deliver messages m and m′, then p
A delivers m before m′ if and only if q A delivers m before m′.
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3.2 A Protocol for State Machine Replication

Based on the above Atomic Multicast communication primitive, our state machine replication
protocol is rather simple. To execute some operation op on the replicated state machine, a
correct client c A multicasts a signed message m containing op to all processes in g. Then,
c waits for f +1 correctly signed reply messages from distinct replicas in g, all with the same
result. Waiting for f + 1 similar replies ensures that at least one reply was sent by a correct
replica and hence is valid. Until then, c does not issue any other communication.

On the server side, each correct state machine replica delivers the request message using
the A deliver primitive, and executes the operation op contained in this message. Then, a
reply message containing the result of op’s execution is sent to the client from which the
request message was issued, i.e., seq.id(m).

4 A Modular Atomic Multicast Protocol

We now propose a modular Atomic Multicast protocol based on two Byzantine-resilient ab-
stractions: Reliable Multicast and Weak Interactive Consistency (noted hereafter WIConsis-
tency). The modularity of our approach is illustrated by the layered architecture depicted in
Figure 1. The role of the Muteness Failure Detector, which is only used by the WIConsis-
tency layer, will be explained in Section 5. In the following, we first present each abstraction
independently and then we show how they cooperate to solve Atomic Multicast.
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Figure 1: A Modular Composition of Atomic Multicast

4.1 Reliable Multicast

Reliable Multicast is defined by two primitives: R multicast and R deliver, which enable to
send and deliver messages according to the validity, integrity and agreement properties given
in Section 3.1, when replacing A multicast and A deliver with R multicast and R deliver re-
spectively. Our Reliable Multicast algorithm and the associated proofs are given in Appendix.

4.2 Weak Interactive Consistency

The WIConsistency problem is a variation of the original Interactive Consistency problem [5].
In the latter, each correct process proposes its initial value, and then each correct process
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must decide on the same vector of initial values with an element for each process; the ele-
ment corresponding to a given correct process must be the initial value of this process. The
WIConsistency problem has a weaker specification: each correct process proposes its initial
value, and processes must eventually decide on the same set of initial values which contains
at least one value corresponding to the initial value of a correct process.

A correct process launches an instance of WIConsistency by invoking the propose primi-
tive with its initial value. When an instance of WIConsistency is completed for some correct
process p, we say that p decides and the decision value is the value returned by the propose
primitive. More precisely, the problem is characterized by the properties given below. Sec-
tion 5 presents our WIConsistency protocol.

• Agreement. No two correct processes decide differently.
• Validity. The decided set contains at least one initial value of a correct process.
• Termination. Every correct process eventually decides.

4.3 Composing Atomic Multicast Protocol

We now describe how, in presence of Byzantine failures, the two above abstractions can
be transformed into an Atomic Multicast protocol. The principle of this transformation is
inspired from the structure of [2] that transforms Consensus and Reliable Broadcast into
Atomic Broadcast in the crash model. The complete proofs of Atomic Multicast are given in
Appendix.

Client Side. As conveyed by Algorithm 1, to A multicast a request message m, a correct
client c simply invokes R multicast(m),

Algorithm 1 Atomic Multicast Protocol: A multicast Primitive
A multicast for a correct process c occurs as follows:
R multicast(m)

Server Side. Algorithm 2 describes our implementation of the A deliver primitive. Roughly
speaking, the A deliver primitive consists in a sequence of WIConsistency, each instance of
WIConsistency being responsible for atomically delivering a batch of requests. Every correct
replica in g executes concurrently Task 1 and Task 2 to A deliver requests received from
clients. These tasks manipulate three sets of messages:

• R delivered. This set contains the messages delivered to replica p via primitive R deliver.
In Task 1 (lines 6-7), each time a correct replica p R delivers a message, it inserts it
into R delivered.

• A delivered. This set contains messages that have been atomically delivered, i.e., using
primitive A deliver (line 16).

• A undelivered. This set contains the messages that have been reliably delivered, i.e.,
R delivered, but not yet atomically delivered.

In Task 2 (lines 8-16), when a correct process p notices that the set A undelivered is not
empty, p launches a new instance of WIConsistency with A undelivered as p’s initial value,
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and k as a sequence number that disambiguates concurrent executions of WIConsistency
(line 11). Then p waits for the decision value which is the set DecideSet (line 12). Having set
DecideSet, process p collects the union of all messages that appear in this set (∪iDecideSet[i]).
Then, p removes all garbage messages, i.e., messages that are either not correctly signed or
messages which have the same sequence number but different content (line 13).

Removing non correctly signed messages avoids to A deliver messages whose senders can-
not be authenticated. This prevents a Byzantine process to mislead other processes by im-
personating the identity of other correct processes. In addition, removing messages that have
the same sequence number but different contents contributes to ensure the semantics of at
most one of Atomic Multicast. Note that, such misleading messages can be safely removed
because no correct process sends non correctly signed messages or different messages with
identical sequence number. Finally, if some messages that are already A delivered are present
in the resulting SetDecide, they are also removed (line 14). Then, p A delivers all messages
that remain in DecideSet according to some deterministic order (line 15), and adds them to
A delivered (line 16).

Algorithm 2 Atomic Multicast Protocol: A deliver Primitive
1: Initialization
2: R delivered← ∅
3: A delivered← ∅
4: k ← 0
5: A delivers for a correct process p ∈ g occurs as follows:
6: when R deliver(m) {Task1}
7: R delivered ← R delivered ∪ {m}
8: when R delivered−A delivered �= ∅ {Task2}
9: k ← k + 1
10: A undelivered← R delivered−A delivered
11: propose(k, A undelivered)
12: wait until decide(k, DecideSet)
13: DecideSet ← ∪iDecideSet[i] − {DecideSet[i] | (DecideSet[i] is not correctly signed) ∨

(∃DecideSet[j] : seq(DecideSet[i]) = seq(DecideSet[j]) ∧DecideSet[i] �= DecideSet[j])}
14: A deliverk ← DecideSet−A delivered
15: atomically deliver messages in A deliverk in some deterministic order
16: A delivered← A delivered ∪A deliverk

5 A Weak Interactive Consistency Protocol

The full version of WIConsistency is given by Algorithm 3. This algorithm processes in asyn-
chronous rounds and relies on the rotating coordinator and the failure detector paradigms.5

Before proceeding with the description of the algorithm, we first define the key notion of
certificate.

Certificates. Certificates are introduced to cope with so-called invalid messages. To define
the notion of invalid messages, we introduce the relationship ≺̇ between two events. Let e1
be the event of receiving a set of messages sm1 by a process p, and let e2 be the event of
sending some message m2 by the same process p. We say that e1 precedes e2, noted e1≺̇e2,

5This algorithm is inspired by a decentralized version of Consensus devised for the crash model [14].
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if the event e2 of sending m2 is conditioned by the event e1 of receiving set sm1.6 From
an algorithmic viewpoint, this definition can be translated as follow: “if receive sm1 then
send m2”. In a trusted model, i.e., one that excludes malicious behaviors, when some process
performs an event e2, such that e1≺̇e2, it is trivially ensured that (1) e1 happened before
e2, and (2) sm1 was correctly taken into account to compute m2. In contrast, this is no
longer guaranteed in a Byzantine model. A Byzantine process may perform e2 either without
hearing about e1, or without taking into account the occurrence of e1. The resulting message
m2 sent by a Byzantine process is referred to as an invalid message.

The validity of some message m2 is proved by exhibiting, in the certificate appended
to m2, that the reception of set sm1 has indeed occurred. Then, based on set sm1, any
correct process can check if sm1 was correctly taken into account to compute m2. In other
words, having set sm1 and knowing how sm1 should be taken into account to generate m2,
each correct process can check the validity of m2. Therefore, the structure of any certificate
consists in a collection of signed messages that compose sm1.7

Detailed Algorithm

The algorithm starts with a preliminary phase during which a set of f+1 values collected from
different processes is constructed. Then, after this phase, two concurrent tasks are launched
(Task 1 and Task 2) to allow correct processes to eventually decide on the same set of values.
In the following, p is any correct process executing Algorithm 3, while q is another process
(correct or not) with which p interacts.

Preliminary Phase. (lines 3-6) During this phase, process p sends all processes its
initial value in a signed message. Then, p collects f +1 correctly signed values from different
processes. This set of values setp is the estimate with which p participates in Task1.

Task 1. Task 1 is divided in two phases. In Phase 1, every correct process tries to decide
on the estimate of the current coordinator cp (see Phase 1 of Figure 2). If cp is suspected by
at least 2f + 1 processes, then p proceeds to Phase 2 before moving to the next round (see
Phase2 of Figure 2). Throughout Task 1, a local predicate Byzantinep(q) is associated to
every process q by p; initially, this predicate is false. As soon as p detects some misbehavior
exhibited by q, like sending invalid messages or sending an estimate that is not a set of values,
p sets its local predicate Byzantinep(q) to true, which means that p suspects q.

• Phase 1 (lines 10-27). During Phase 1, current coordinator cp uses a centralized Echo
Broadcast [16, 12] to send its estimate to all processes. The Echo Broadcast protocol
prevents a Byzantine coordinator from sending different estimates to different correct
processes; this is an instance of the well-known Byzantine Generals Problem [9]. So,
first cp sends its estimate setcp in a signed Initial message to all processes (line 11).
When process p receives this message for the first time, p checks if it is a valid message,
i.e., with an estimate composed of f + 1 values, and if so, it sends an Echo message
to cp (lines 13-15). Finally, once cp collected 2f + 1 Echo messages, it sends a Ready

6Note that the precedence relationship used here is slightly different from that of [10], in that it involves a
message and a set of messages (rather than two messages).

7At the beginning of the protocol, i.e., r = 1, some messages m2 may not carry any certificate because
there is no previous sm1 was received. In such a case, m2 is validated by an empty certificate.
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Algorithm 3 Byzantine-Resilient WIConsistency Algorithm
1: function propose(ep) {Every process p executes Task 1 and Task 2 concurrently}
2: InitialCertifp ← ∅
3: setp ← ∅ {Preliminary Phase}
4: send (p, ep) to all
5: wait until (f + 1 processes q : received (q, eq))
6: setp ← {(q, eq) | p received (q, eq) from q}
7: loop { Task 1}
8: CurrentRoundTerminatedp ← false; ReadyCertifp ← ∅; GoPhase2Certifp ← ∅
9: DecideCertifp ← ∅; coordSuspectp ← false; cp ← (rp mod N) + 1; phasep ← 1
10: if cp = p then
11: send (Initial, p, rp, setp, InitialCertifp) to all

12: while not (CurrentRoundTerminatedp) do
13: when receive Valid (Initial, q, setq, InitialCertifq) from q
14: if (q = cp) ∧ (no Echo message was sent in rp by p) then
15: send (Echo, p, rp, setq) to cp

16: when (cp = p) ∧ (for 2f + 1 distinct processes q: received (Echo, q, rp, setp))
17: ReadyCertifp ← {(Echo, q, rp, setp) | p received (Echo, q, rp, setp)from q}
18: send (Ready, p, rp, setp, ReadyCertifp) to all

19: when receive Valid (Ready, q, rp, setq, ReadyCertifq)
20: DecideCertifp ← DecideCertifp ∪ {(Ready, q, rp, setq, ReadyCertifq)
21: if (first Ready message received) ∧ (p �= cp) then
22: ReadyCertifp ← ReadyCertifq

23: setp ← setq
24: send (Ready, p, rp, setp, ReadyCertifp) to all
25: else if 2f + 1 Ready messages received from distinct processes then
26: send (Decide, p, rp, setp, DecideCertifp) to all
27: return(setp)

28: when (cp ∈ ✸MA ∨ Byzantinep(cp)) ∧ (not coordSuspectedp)
29: send (Supicion, p, rp) to all
30: coordSuspectedp ← true

31: when (phasep = 1) ∧ (for 2f + 1 distinct processes q: received (Supicion, q, rp))
32: GoPhase2Certifp ← {(Supicion, q, rp) | p received (Supicion, q, rp) from q}
33: send ((GoPhase2, p, rp, setp, ReadyCertifp), (GoPhase2Certifp)) to all
34: phasep ← 2; InitialCertifp ← ∅

35: when receive Valid ((GoPhase2, q, rp, setq, ReadyCertifq), (GoPhase2Certifq))
36: if phasep = 1 then
37: phasep ← 2; InitialCertifp ← ∅
38: send ((GoPhase2, p, rp, setp, ReadyCertifp), (GoPhase2Certifq)) to all
39: InitialCertifp ← InitialCertifp ∪ (GoPhase2, q, rp, setq, ReadyCertifq)
40: if 2f + 1 GoPhase2 messages received from distinct processes then
41: (setp, ReadyCertifp)← Last Successfully EchoCertified(InitialCertifp)
42: currentRoundTerminatedp ← true
43: rp ← rp + 1

44: when receive Valid (Decide, q, r, set, DecideCertifq) {Task2}
45: send (Decide, q, r, set, DecideCertifq) to all
46: return(set)
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Figure 2: Task 1 of Weak Interactive Consistency

message to all processes (lines 16-18). At this point the Echo Broadcast protocol is
completed. When cp sends a valid Ready message, we say that cp has successfully echo
certified its estimate. Then, when process p receives a valid Ready message for the first
time, it adopts setcp and relays the Ready message to all processes (lines 19-24). Once
p received 2f +1 Ready messages containing cp’s estimate, p sends a decide message to
all processes and decides on setp (line 25-27).

• Phase 2 (lines 28-43). Phase 2 ensures that if any process decides on some estimate
set during Phase 1 of round r, then every correct process that starts round r +1 starts
it with its estimate equal to set. To proceed to Phase 2, a correct process must learn
that at least 2f + 1 processes have suspected the current coordinator (lines 28-30). So,
once 2f + 1 Suspicion messages were received by p, a GoPhase2 message is sent to
all (lines 31-33). This message carries the last valid estimate delivered by p, i.e., the
last successfully echo certified estimate delivered by p. When the reception of a valid
GoPhase2 occurs at p, if p is still in Phase 1, it proceeds to Phase 2. Then p waits for
the reception of 2f +1 valid GoPhase2 messages (lines 34-40). Among the 2f +1 valid
GoPhase2 messages received, process p looks for the last estimate that was successfully
echo certified (line 41). If such value exists, p adopts it, otherwise it does not updates
its estimate. Then p proceeds to the next round (lines 42-43).

Task 2 (lines 44-46). This task handles the reception of Decide messages by process p.
If the Decide message is valid, then first p relays it to all processes, and second it decides on
the value carried by the Decide message.

6 Safety & Liveness of Weak Interactive Consistency

The WIConsistency is at the heart of the safety and liveness of our state machine replication
protocol. For this reason, this section sketches how these two properties are ensured in the
WIConsistency protocol proposed in Section 5. The formal proofs of all the Protocols used
in building the modular machine replication protocol are given in Appendix.

Safety. The safety of WIConsistency encompasses both agreement and validity. Agreement
relies on the Echo Broadcast protocol, on the locking of the decision value, and on certificates.
The Echo Broadcast protocol preserves agreement within a round. When a decision is made
on some estimate set, we have at least f + 1 correct processes that delivered set. Once set
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is delivered by f + 1 correct processes, there is no other estimate that can be delivered by
correct processes from that time onward; this is what we mean by “locking” the decision
value. Certificates prevent Byzantine processes from misleading correct ones into deciding on
different estimates, which would result in violating the agreement property.

Regarding the validity property, no process can successfully echo broadcast an estimate
that does not match the expected format, i.e., not composed of f+1 correctly signed messages
(q, eq). So, any decided estimate is a set of f+1 values. In the presence of at most f Byzantine
processes, this set contains at least one initial value of a correct process. In conclusion, notice
that the safety properties (agreement and validity) are preserved whatever the assumptions
on system synchrony, i.e., the outputs of failure detector.

Liveness. The liveness of WIConsistency corresponds to its termination property. The
correctness of this property is based on the presence of at least 2f + 1 correct processes, on
reliable and FIFO communication channels, and on the properties of failure detector ✸MA.
The presence of at least 2f + 1 correct processes and of reliable communication channels
ensures that when 2f + 1 messages are expected, they are eventually received, thus avoiding
any blocking wait in our algorithm. The Mute A-completeness of ✸MA prevents Byzantine
processes from stopping the progress of the protocol, by suspecting mute processes. Indeed,
the malicious processes that can prevent the progress of the WIConsistency protocol are those
that crash or arbitrarily decide to stop sending messages.

Furthermore, Eventual weak A-accuracy expresses the ability of ✸MA to eventually stop
falsely suspecting some correct process. This property prevents correct processes from always
moving to the next round without deciding, i.e., it allows them to reach some round with no
suspected correct coordinator; the protocol can then terminate. Note that a Byzantine process
could stop sending expected messages but continue sending other messages, like Suspicion
messages (line 29). For our failure detector, such a process is not mute. Furthermore, some
messages sent by such a process could be always be valid since they do not need a certificate.8

We solve this problem by using the FIFO property of our communication channels and by
using the fact that, in any round, every correct process only sends a bounded number nb of
messages. Consequently, if a correct process p expects in round r a message from some process
q, it periodically checks if it receives more than nb ∗ r messages from q without receiving the
expected message. With this test, Byzantine processes that skip expected messages without
being mute are detected.

7 Concluding Remarks

In this paper, we advocate the divide-&-conquer approach for reducing the complexity of
Byzantine-resilient replication protocols. More precisely, we proposed a modular approach
for devising a state machine replication protocol, based on a set of well-defined abstractions.
Our modular approach allowed us to identify the synchrony assumptions under which the
liveness of our protocol is ensured; as for safety, it is always ensured in presence of less than
one third of Byzantine processes. Synchrony assumptions are encapsulated in a Byzantine
failure detector ✸MA, which differs from the original definition of [2] in that its specification
is not orthogonal to the algorithm using it. More precisely, ✸MA captures processes that
stop sending algorithmic messages. In a Byzantine model, one cannot avoid the dependency

8Not all messages in our algorithm need certificate to be valid, e.g., Suspicion messages.
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between a failure detector and the algorithm using it, because incorrect processes exhibiting
a crash-like behavior are not only those that really crash, but may also be processes that
arbitrary decide to stop sending algorithmic messages. All Byzantine failure detectors specifi-
cations we know of are, in one way or another, linked to the algorithm that uses them [11, 8].
Interestingly, even in [1] where no failure detector is used, timeouts are set to detect the
non-reception of algorithmic messages.

Regarding performance issues, some optimizations can be introduced in our protocol to
make it more efficient in failure-free runs without suspicions. First, to send its requests, a
client can aim only at the first coordinator via a point-to-point communication, rather than
using a Reliable Multicast. If the client suspects some misbehavior, e.g., if it gets no reply
after some time, a Reliable Multicast can then be used to send the request to all replicas.
Second, rather than deciding on a set of values, the replicas can start by deciding only on
one value. That is, initially a simple Consensus is used rather than WIConsistency. Again,
if some client suspects that its request is not being treated, WIConsistency can be launched.
With such optimizations and with the use of a decentralized Echo Broadcast, our protocol
becomes as efficient as the monolithic protocol of [1], without compromising modularity.
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Appendix

Reliable Multicast Protocol & Correctness Proofs

Algorithms 4 and 5 give a simple implementation of Reliable Multicast based on a diffusion
mechanism. We then prove that these algorithms satisfy Reliable Multicast properties.

Algorithm 4 Reliable Multicast: R multicast Primitive
R multicast for a correct process c occurs as follows:
send(m) to all processes in g

As conveyed by Algorithm 5, the R deliver primitive, performed by correct process, is based
on a diffusion mechanism. That is, every correct process p in g that receives for the first time
a correctly signed message m relays m to all processes in g.

Algorithm 5 Reliable Multicast: R deliver Primitive
R deliver for every correct process p ∈ g occurs as follows:
when receive (m)

if (m is correctly signed) ∧ (first reception of m) then
send m to all processes in g
R deliver (m)

Correctness Proofs

Theorem 7.1 Algorithms 4 and 5 satisfy the Reliable Multicast properties.

Proof: We consider the three properties separately.

• Validity:(If a correct process R multicasts a message m, then some correct process in g
eventually R delivers m.)
By assumption, a correct process c R multicasts only correctly signed messages m. From
Algorithm 4, an R multicast aims at sending m to all processes in g. By the reliability
property of the channels, some correct process p ∈ g eventually receives the correctly
signed message m and hence R delivers it.

• Agreement: (If a message m is R delivered by some correct process in g, then all correct
processes in g eventually R deliver m.)
Let p and q be any two correct processes in g, such that p R delivers message m. We
must show that q also eventually R delivers m. By Algorithm 5, if p R delivers m,
then m is a correctly signed message that p must have relay to all other processes in g.
Therefore, by the reliability property of the channels, process q eventually receives m
and, being correct, R delivers m.

• Integrity: ( For any message m, every correct process p in g A delivers m at most once.
Furthermore, if the sender of m, say q, is correct, then no correct process in g R delivers
m unless q has previously R multicast m)
From Algorithm 5, any correct process p ∈ g R delivers m only if this is the first
reception of m. Furthermore, we must show that if p R delivers m, then if the sender
of m is a correct process q, then q has in fact R multicasts m. From Algorithm 5,
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process p R delivers m only if m is correctly signed by some process q in the system.
If q is correct, then by the message unforgeability property, q is the only process that
originates m. Being correct, q has performed an R multicast of m.

✷

Correctness Proofs of Atomic Multicast Protocol

Here we prove that Algorithms 1 and 2 satisfy Atomic Multicast properties. In the following,
when we refer to some variable, say v, that belongs to process p, we use the notation vp (e.g.,
R deliveredp).

Lemma 7.2 Consider any two correct processes p and q both in g, and any message m. If
m ∈ R deliveredp, then eventually m ∈ R deliveredq .

Proof: Trivially follows from the agreement property of Reliable Multicast. ✷

Lemma 7.3 For any two correct processes p and q both in g, and all k ≥ 1:

1) If p executes propose(k, ∗), then q eventually executes propose(k, ∗).
2) If p A delivers messages in A deliverk

p , then q eventually A delivers messages in A deliverk
q ,

and A deliverk
p = A deliverk

q .

Proof: The proof is by simultaneous induction on 1) and 2).

Lemma part 1, k = 1: We prove that if p ∈ g executes propose(1, ∗) then q ∈ g will even-
tually execute propose(1, ∗). Since A deliveredp is initially empty, R deliveredp must
contain some message m, when p executes propose(1, ∗). Then by Lemma 7.2, m is
eventually in R deliveredq for every correct process q ∈ g. Since A deliveredq is ini-
tially empty for every correct process q, R deliveredq − A deliveredq �= ∅ eventually
holds. So, every process q eventually executes propose(1, ∗).

Lemma part 2, k = 1: We prove that if p A delivers messages in A deliver1
p , then q eventu-

ally A delivers messages in A deliver1
q such that A deliver1

p = A deliver1
q . If p A delivers

messages in A deliver1
p , then it has previously executed propose(1, ∗). By part 1 of

lemma 7.3, every correct process in g eventually executes propose(1, ∗). By termination,
validity and agreement properties of WIConsistency, all correct processes in g eventually
decide on the same set of messages DecideSet1. That is DecideSet1p = DecideSet1q . Let
GarbageSet1p be the subset (possibility empty) of DecideSet1p such that all messages in
GarbageSet1p are either not correctly signed or/and composed of different contents and
similar sequence number. By assumption, every correct process knows the identities
(public keys) of all other processes (we remind that there is a static group of processes).
Furthermore, relying on the public key diffusion mechanism, we assume that all correct
processes obtain the same public key for every process in the system. As a consequence,
if some message m in SetDecide1 is considered by some correct process p ∈ g as a no
correctly signed message, then every correct process q ∈ g consider m as a no correctly
signed message. Hence GarbageSet1p = GarbageSet1q for any two correct process p and
q in g. Therefore, removing GarbageSet1 from DecideSet1 results in the same new
DecideSet1 for all correct processes. Since A delivered1

p and A delivered1
q are initially

empty, and DecideSet1p = DecideSet1q then A deliver1
p = A deliver1

q .
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Lemma part 1, k = n: We assume that the lemma holds for all k such that 1 ≤ k < n. We
prove that if p ∈ g executes propose(n, ∗), then eventually q ∈ g executes propose(n, ∗).
If p executes propose(n, ∗), then there is some message m ∈ R deliveredp and m �∈
A deliveredp. Thus, m is not in ∪n−1

k=1A deliverk
p . By, the induction hypothesis, for

all k, we have A deliverk
p = A deliverk

q . So, m is not in ∪k=n−1
k=1 A deliverk

q . Since
m is in R deliveredp, by lemma 7.2, m is eventually in R deliveredq . Therefore, for
every process q R deliveredq − A deliveredq �= ∅ eventually holds. So, each process q
eventually executes propose(n, ∗).

Lemma part 2, k = n: We prove that if p ∈ g A delivers messages in A delivern
p , then q ∈ g

eventually A delivers messages in A delivern
q such that A delivern

p = A delivern
q . If p

A delivers messages in A delivern
p , then p has previously executed propose(n, ∗). By

part 1 of this lemma, eventually each correct process in g executes propose(n, ∗). By the
termination, validity and agreement properties of WIConsistency, all correct processes
in g eventually decide on the same set of messages DecideSetn. Consequently, we have
DecideSetnp = DecideSetnq . For similar reasons to those stated in part 2 of Lemma 7.3,
removing GarbageMsgn from DecideSetn results in the same new DecideSetn for
all correct processes. Note that, A delivern

p = SetDeciden − ∪k=n−1
k=1 A deliverk, and

A delivern
q = SetDeciden −∪k=n−1

k=1 A deliverk. By the induction hypothesis for all 1 ≤
k < n, we have A deliverk

p = A deliverk
q . Since in addition SetDeciden

p = SetDecideqn,
then A delivern

p = A delivern
q .

✷

Theorem 7.4 Algorithms 1 and 2 satisfy the agreement and total order properties of Atomic
Multicast (Agreement and Total Order).

Proof: From Lemma 7.3, all correct processes in g decide on the same batch of messages.
Then, the same deterministic order is followed by all correct processes in g to deliver messages
in the decided batch. Thus, the agreement and total order are ensured.

✷

Theorem 7.5 If a correct process A multicasts a message m, then some correct process in g
eventually A delivers m (Validity).

Proof: The proof is by contradiction. Assume that a correct process q A multicasts a message
m, and some correct process p ∈ g never A delivers m. By Lemma 7.4, we know that if some
correct process p ∈ g does not A deliver m, then no correct process q ∈ g A delivers m.

By Algorithm 2, we know that, to A multicast a message m, a correct process executes a
R multicast of m (m is previously correctly signed by q). Therefore, thanks to validity and
agreement properties of Reliable Multicast, eventually every correct process p ∈ g R delivers
m in Task 1, i.e., eventually m ∈ R deliveredp. On the other side, since no correct process
p ∈ g never A delivers m, so no process p inserts m in A deliveredp.

From Algorithm 2, there exists a constant k, such that for all l ≥ k, every process p
has m ∈ R deliveredl

p − A deliveredl
p, i.e., m ∈ A undeliveredl

p. Then, every process p

launches its lth instance of WIConsistency, with A undeliveredl
p as the proposed value. By

termination and agreement of WIConsistency, we infer that every correct process eventually
decides on the same DecideSetl. By the validity property of WIConsistency, we know that

16



DecideSetl contains the proposed value of at least one correct process s, i.e, A undeliveredl
s.

Therefore, we have m ∈ DecideSetl. Since m is sent by a correct process, then m is a correctly
signed message and q being correct associates one sequence number per message. Therefore,
no correct process removes m from DecideSetl. Since the decision is on the union of all
messages in DecideSetl, except garbage ones and those which are already A delivered, then
m is eventually A delivered by all correct processes: this contradicts our initial assumption.
✷

Theorem 7.6 For any message m, every correct process p in g A delivers m at most once.
Furthermore, if the sender of m, say q, is correct, then no correct process in g A delivers m
unless q has previously A multicast m (Integrity).

Proof: Every message is identified by its sequence number that should be unique. In some
stage k of Atomic Multicast, all messages that have similar sequence number but different
contents are removed from the set to A deliver. Therefore, in some stage k a message m is
A delivered at most once. Moreover, when p A delivers a message m, then p inserts m in its
set of delivered messages A deliveredp. So, from Algorithm 2, process p delivers m at most
once.

Now, we have to prove the second clause of the integrity property. If a correct process p
A delivers a message m at some stage k of Atomic Multicast, then it has previously decided
on DecideSetk . Therefore, m was proposed by some process s during the kth instance of
WIConsistency. Here, we distinguish two cases:

• Process s is correct: To propose m process s should have previously R deliver m. From
the integrity property of Reliable Multicast, if the sender of m is a correct process q,
then q has R multicast m. Being correct q has A multicast m.

• Process s is Byzantine: In this case, since s is a Byzantine process we cannot infer
that s has R deliver m. However, process p does not deliver m if m is not a correctly
signed message. Thus, if p A delivers m, then p has authenticated the sender q of m.
Therefore, from the message unforgeability property, if process q is correct no process
except q has sent m. Since q is a correct, then q has R multicast m and hence has
A multicast m. ✷

Correctness Proofs of WIConsistency Protocol

Here we prove that Algorithm 3 solves WIConsistency in presence of Byzantine failures. The
correctness proofs aim at showing that Algorithm 3 preserves the agreement, validity and
termination properties. For simplicity, we assume that N = 3f +1, which does not contradict
the assumption of at most f < N/3 Byzantine processes among the N servers.

Lemma 7.7 In any round r, the coordinator (correct or not) of r cannot successfully echo
certify two different estimates set1 and set2.

Proof: The proof is by contradiction.
Assume that in round r the associated coordinator, say process p, successfully echo certify

two estimates set1 and set2. Consequently, process p constructs: (1) a Ready message for set1,
with a ReadyCertif composed of 2f +1 messages (Echo, pj , r, set1), and (2) a Ready message
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for set2, with ReadyCertif composed of 2f + 1 messages (Echo, pj , r, set2). Therefore, in
round r, two sets of 2f + 1 processes sent Echo messages for two distinct estimates set1 and
set2. With N = 3f +1 and at most f Byzantine processes, the previous statement is correct
only if at least one correct process sent two Echo messages one for set1 and one for set2.
Since each correct process sends at most one Echo message then, this statement cannot be
true. So, p cannot construct two valid ReadyCertif in the same round r for two different
estimates set1 and set2. As a consequence, no two different estimates can be successfully
echo certified in the same round: a contradiction. ✷

Lemma 7.8 Let r be the smallest round for which at least f + 1 correct processes delivered
an estimate set1 that was successfully echo certified. Then, no other value set2 �= set1 can be
successfully echo certified in any subsequent round r′ (i.e., r′ ≥ r).

Proof: The proof is split in two cases.

Case 1 (r = r′) : Immediate from Lemma 7.7.

Case 2 (r′ > r): The proof is by contradiction. Assume that l is the first round for which
the lemma does not hold: in round l there is at least one correct process q that delivers
an estimate set2 �= set1.

So, in round l, q has received set2 in a valid Ready message, i.e., a Ready with a
ReadyCertif that is composed of 2f +1 signed Echo messages (Echo, pi, l, set2). Thus
there is at least f +1 correct processes that sent an Echo message for set2 to pl the coor-
dinator of round l. That means these correct processes have received a valid Initial mes-
sage from pl. That is, they received an Initial message with a certificate InitialCertif
composed of 2f +1 signed GoPhase2 messages (GoPhase2, pi, l−1, seti, ReadyCertifi)
such that the estimate seti with the last ReadyCertif corresponds to set2 or all
ReadyCertif are empty. Let ProcessSet1 be such a set of 2f + 1 processes that send
their GoPhase2 messages to pl in round l − 1.

By assumption, we know that the lemma holds for all rounds k such that r ≤ k ≤ l− 1.
Hence, until round l − 1 no estimate set2 �= set1 was successfully echo certified. In
addition, we know that there is at least f + 1 correct processes in the system that
delivered set1. Let ProcessSet2 be this set of correct processes. With N = 3f + 1,
we have |ProcessSet1| ∩ |ProcessSet2| �= ∅. Therefore, there is at least one correct
process s that belongs to both ProcessSet1 and ProcessSet2. So, some correct process
s participates to the construction of CertifInitial of process pl. Being correct, process
s sends to pl a GoPhase2 message with its current valid estimate, i.e., set1. Since in all
rounds k such that r ≤ k ≤ l− 1, there is not an other value that was successfully echo
certified, then set1 is the last one. Thus, pl cannot construct a valid Initial message
for any estimate set2 �= set1: contradiction.

✷

Theorem 7.9 No two correct processes decide differently (Agreement).

Proof: The proof is by contradiction. Assume that two correct processes, say p and q, decide
on two different estimate, set1 and set2 respectively, during rounds r and r′ such that r ≤ r′

(the same proof holds if r′ ≤ r). To decide each correct process must receive at least 2f + 1
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Ready messages for the same estimate ( if it either decides in Task 1 or Task 2). Therefore,
when p decides on estimate set1, in round r , there is at least f + 1 correct processes that
deliver the same value set1 in some round k ≤ r. Consequently, from Lemma 7.8, there is
no other value set2 different than set1 that could be successfully echo certified in any round
r′ ≥ k. Consequently, the correct process q could not decide on some set2 �= set1. This
contradicts our assumption, i.e., q decides set2 �= set1. ✷

Lemma 7.10 If one correct process decides, then every correct process eventually decides.

Proof: Let p be a correct process that decides either in Task 1 or Task 2. In both cases, p
sends a valid Decide message to all before deciding. By the assumption of reliable channels,
every correct process that has not yet decided eventually receives the valid Decide message,
which is handled by Task 2, and then decides. ✷

Lemma 7.11 With a failure detector ✸MA that satisfies Mute Completeness, Algorithm 3
ensures that if no correct process decides in round r eventually all correct processes proceed
to round r + 1.

Proof: The proof is by contradiction. Let r be the smallest round for which the lemma does
not hold: no correct process decides in round r, and some correct process never reaches round
r + 1. As r is the smallest of such rounds, each correct process eventually reaches round r.
We show the contradiction by proving the following successive results:

1) At least one correct process eventually reaches Phase 2 of round r.

2) Each correct process eventually reaches Phase 2 of round r.

3) Each correct process eventually reaches Phase 1 of round r + 1.

Proof of 1): Assume that no correct process decides in round r, and no correct process
reaches Phase 2 of round r. We consider two cases: the coordinator pc of round r (a) sends at
least one valid Ready message to some correct process, or (b) does not send any valid Ready
message to any correct process.

Case (a): process pc sends at least one valid Ready message to some correct process p. So,
p receives this valid Ready message and relays it to all. Each correct process q is by
assumption in Phase 1. So, q delivers the valid Ready message received from p and
then, reissues the message to all. By the assumption of reliable channels and f < N/3,
all correct processes eventually receive 2f + 1 valid Ready messages. Thus eventually
some correct process receives at least 2f +1 messages Ready and then decides in round
r: a contradiction with the fact that no correct process decides in round r. So only case
(b) remains to be considered.

Case (b): process pc does not send any valid Ready message to any correct process p. This
means that either (1) pc is mute to p, and by the mute completeness of ✸MA process
p eventually suspects pc, or (2) pc sends a non valid Ready message or a non valid
estimate to p, or pc skips the Ready message, which leads in both cases the predicate
Byzantinei(pc) to become true. In any case, each correct process eventually suspects
pc and sends a Suspicion message to all. Thus, at least one correct process p receives
2f+1 Suspicion messages. Then, p sends a GoPhase2 message and proceeds to Phase 2:
contradiction with the fact that no correct process reaches Phase 2 of round r. ✷
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Proof of 2): By (1), at least one correct process, say p, eventually reaches Phase 2 of round
r, after sending to all a valid GoPhase2. Every correct process still in Phase 1 receives this
message and, in turn, reaches Phase 2.

Proof of 3): By (2), all correct processes reach Phase 2 of round r. Then each correct
process sends a valid GoPhase2 message to all. Thus each correct process receives at least
2f + 1 messages GoPhase2. This allows Phase 2 of round r to be completed. Consequently,
each correct process proceeds to next round, i.e., r + 1. ✷

Theorem 7.12 With a failure detector ✸MA that satisfies Weak Accuracy, every correct
process eventually decides (Termination).

Proof: By the eventual weak accuracy property of ✸MA, there is a time t after which
some correct process p is not suspected by any correct process to be mute. Let r be a round
such that (1) p is the coordinator of r, and (2) every correct process enters round r after t (if
such a round does not exist, then by Lemma 7.10, one correct process has decided in a round
r′ < r, and so, by Lemma 7.10 every correct process decides, and the termination property
holds). As f < N/3 and no correct process suspects p in round r. Thus no correct process ever
proceeds to Phase 2 of round r. Process p sends its valid Initial message. As p is correct, each
correct process eventually receives and delivers its Initial message and then sends an Echo
for the received message. So, p eventually receives 2f + 1 messages Echo message needed to
successfully echo certified its estimate. By the reliable channel, each correct process receives
a valid Ready message and then relays it to all. Therefore, every correct process will receive
enough valid Ready messages to decide. ✷

Theorem 7.13 The decided set contains at least one initial value proposed by some correct
process (Validity).

Proof: By the Echo Broadcast protocol introduced in Algorithm 3, no coordinator (correct
or not) can construct a valid Ready message for an estimate, which is not a set of f +1 signed
messages (p, ep). Since any decided estimate should be carried by a valid Ready message,
then any decided value is a set of f + 1 signed messages (p, ep). In presence of at most f
Byzantine processes in any decided value there is at least one initial value of a correct process.

✷
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