
PAN: Providing Reliable Storage in Mobile Ad Hoc
Networks with Probabilistic Quorum Systems ∗

Jun Luo Jean-Pierre Hubaux Patrick Th. Eugster
School of Computer and Communication Sciences

Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

{jun.luo, jean-pierre.hubaux, patrick.eugster}@epfl.ch

ABSTRACT
Reliable storage of data with concurrent read/write accesses
(or query/update) is an ever recurring issue in distributed
settings. In mobile ad hoc networks, the problem becomes
even more challenging due to highly dynamic and unpre-
dictable topology changes. It is precisely this unpredictabil-
ity that makes probabilistic protocols very appealing for
such environments. Inspired by the principles of probabilis-
tic quorum systems, we present a Probabilistic quorum sys-
tem for ad hoc networks (Pan), a collection of protocols
for the reliable storage of data in mobile ad hoc networks.
Our system behaves in a predictable way due to the gossip-
based diffusion mechanism applied for quorum accesses, and
the protocol overhead is reduced by adopting an asymmet-
ric quorum construction. We present an analysis of our Pan
system, in terms of both reliability and overhead, which can
be used to fine tune protocol parameters to obtain the de-
sired tradeoff between efficiency and fault tolerance. We
confirm the predictability and tunability of Pan through
simulations with ns-2.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.2 [Computer-Communica
tion Networks]: Network Protocols; C.2.4 [Computer-
Communication Networks]: Distributed Systems; C.4
[Performance of Systems]: Fault Tolerance, Reliability;
I.6 [Simulation and Modeling]: Modeling Methodologies

General Terms
Algorithms, Design, Experimentation, Performance, Relia-
bility

∗The work presented in this paper was supported
(in part) by the National Competence Center in Re-
search on Mobile Information and Communication Sys-
tems (NCCR-MICS), a center supported by the Swiss Na-
tional Science Foundation under grant number 5005-67322.
(http://www.terminodes.org)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’03, June 1–3, 2003, Annapolis, Maryland, USA.
Copyright 2003 ACM 1-58113-684-6/03/0006 ...$5.00.

Keywords
Mobile Ad Hoc Networks, Quorum Systems, Reliable Data
Storage, Replication, Gossiping, Multicast

1. INTRODUCTION
As in any traditional distributed setting, reliable storage

of data with concurrent read/write (query/update) accesses
still appears to be a challenging problem in mobile ad hoc
networks. In this paper, we aim at making, at a reasonable
cost, small data objects highly available to nodes in an ad
hoc network. This need arises in various data sharing ser-
vices. Mobility management [1, 2, 3], for instance, continu-
ously tracks locations of mobile nodes and serves requests to
these data. The distributed management of cryptographic
keys or certificates [4, 5, 6] represents another class of ap-
plications. In addition, a distributed naming or addressing
service [7, 8, 9] is essential in order to provide each mobile
node with an unambiguous name or IP address, or to con-
vert the former to the latter. Due to the peculiarities of
these applications, we consider a relaxed consistency model.

The “classic” academic approach to providing highly avail-
able data objects, the state-machine approach [10], consists
in synchronizing a set of server replicas, each hosting a copy
of the data, to handle all updates and queries in the same
way (“write all – read one”). This approach provides per-
fect guarantees in theory, yet is expensive to implement even
in wired networks. In particular, the atomic broadcast [11]
protocol ensures that each server replica obtains all updates
and in the same order, but it comes with a prohibitively
large overhead. Clearly, with an underlying highly dynamic
ad hoc network, the synchronism required for state ma-
chine replication becomes unpracticable. Even with weaker
consistency guarantees (e.g., without ordering guarantees),
state machine replication leads to poor performance in ad
hoc networks. Further sacrificing safety guarantees such as
atomicity through the use of a probabilistic dissemination of
updates (e.g., probabilistic broadcast [12]) is indeed an op-
tion, yet the incurred overhead is not low enough to address
a broad application context. A more drastic shift seems to
be necessary.

Such a step has been initiated (again first in wired net-
works) through the introduction of quorum systems [13].
This approach improves the efficiency of the replication of
the stored data by better balancing the load between up-
dates and queries. A quorum system is, roughly, a set
of quorums, each consisting of a subset of server replicas.
By ensuring that the intersections of quorums meet certain

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147915799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

properties, it is guaranteed that by issuing queries, as with
updates, to individual quorums only, the most recent value
is obtained. Hence, in contrast to the state machine ap-
proach, this approach is also referred to as “write many –
read many”. Through the way quorums, and in particular
their intersections, are formed, one can trade fault tolerance
(reliability) against protocol efficiency (overhead). A sim-
ilar approach applied for mobility management in ad hoc
networks appeared in [2]. Unfortunately, “original” quorum
systems, also termed strict quorum systems, do not apply
well to highly dynamic environments [3]. This is because
the very construction of these quorums is not a trivial task,
as their outcome is strongly subject to membership changes.

Probabilistic quorum systems [14], thanks to their less
strict design rules, seem to be more appropriate for highly
dynamic environments. By introducing probabilities for the
intersection of individual quorums, the construction rules
for these quorums are relaxed, and more freedom is left for
trading protocol overhead for reliability. As this smoother
tradeoff has constituted the driving force behind probabilis-
tic quorum systems, it also turns out that the resulting
reduced determinism makes such an approach more viable
than a strict approach for ad hoc networks. However, it is
not exactly clear whether a direct application of probabilis-
tic quorum systems for wired networks adapts well to ad
hoc networks (e.g., [3]) without specific protocols designed
for quorum accesses. Furthermore, the traditional symmet-
ric construction of quorum systems (i.e., the same size for
all quorums), is not suitable for all replication systems, for
instance when the arrival rates of queries and updates, re-
spectively, diverge strongly.

In this paper, we first define the problem of probabilistic
reliable data storage in ad hoc networks, as well as metrics
for a solution. We then present our protocol suite, called
Probabilistic quorum system for ad hoc networks (Pan)1,
as a solution. Innovating on the principles of probabilistic
quorum systems, Pan applies an asymmetric quorum con-
struction scheme for efficiency and relies on a gossip-based
multicast protocol (rather than a multicast primitive from
the network layer, e.g., MAODV [15], ODMRP [16], CAMP
[17]) for quorum accesses in order to improve the robustness
and to combat the high probability of channel failures due
to node mobility. We present analytical results predicting
the performance of Pan in terms of message overhead and
reliability degree. We then compare these results with sim-
ulation results obtained with the ns-2 simulator to confirm
the predictability of Pan. The work presented in this paper
is part of the Terminodes [18] Project.

The remainder of this paper is structured as follows. Sec-
tion 2 details the problem to be solved and the system model.
Section 3 presents our Pan system. Section 4 analyzes Pan
in terms of reliability degree and message overhead. Sec-
tion 5 compares those values with simulation results, and
also investigates other aspects of Pan. Section 6 discusses
our contributions and overviews related work. Finally, Sec-
tion 7 concludes the paper.

1Pan is a god from Greek mythology usually represented
as having the legs, horns, and ears of a goat. As protector
of pastures and flocks, Pan is in particular worshipped by
shepherds. In our setting, a quorum system can be thought
of as a flock of mobile nodes.

2. GOALS AND ASSUMPTIONS
This section states the problem to be solved and models

the considered environment.

2.1 Problem Statement
We consider an ad hoc network consisting of a set N of

nodes, where reliable access to shared data is required by
mobile nodes. Let Ω ⊂ N be a storage entity and ρ be a set
of access protocols for Ω. Given access rates λu and λq for
updates and queries, respectively, the access protocol set ρ
is probabilistic in nature if a query access ρR(Ω, λq) obtains,
with a certain probability, the latest version of a data object
resulting from an update access ρW (Ω, λu). Two metrics for
ρ are:

• Reliability Degree Rd: The probability that a query
operation acquires the most recent update of the corre-
sponding data object, considering both node and chan-
nel failures.

• Network Load Nl: The average number of mes-
sage×hop per unit time to achieve a certain Rd. This
definition is adapted to ad hoc networks by taking into
account the number of hops to route a particular mes-
sage. Nl takes into account only the load generated
by our protocols, which is independent of the different
possible networking implementations.

Our goal is to design a set of access protocols ρ that
achieve a high reliability degree Rd even under large ac-
cess rates λu and λq, while incurring reasonable overhead
Nl. We target relatively large scale networks, i.e., networks
with tens or even hundreds of nodes, with a random mobil-
ity pattern. The optimal performance with respect to both
metrics does not exist, since one can always be sacrificed to
improve the other. Hence, we will study the trade-off be-
tween the two metrics and show how to fine tune parameters
to trade Rd with Nl, or the other way around.

2.2 Model

2.2.1 Network Model
We assume that every node i ∈ N has a unique phys-

ical address or id. Nodes may fail only by crashing, i.e.,
stopping to function. Failures are not permanent and can
be recovered from.2 All communications between different
nodes are assumed to rely on the underlying unicast proto-
col. We use DSR [19] as an example in this paper but, in
practice, our solution can be made to work with any unicast
routing protocol. We also assume that all messages for our
protocols have relatively small sizes such that they can be
fit into single network packets. This requirement is justified
by considering the applications we aim at. For example,
a public key is only hundreds of bits long and location in-
formation might be just a three-dimension coordinate. We
further require that each message be uniquely identified by
its identifier mid, which is a tuple [source ID (sid), object

2This failure model also captures the case where nodes are
deliberately switched off (e.g., for the purpose of battery
replacement or operating system rebooting, or because the
users do not intend to make use of their devices for a while).

2

ID (oid), version no. (ver)]3, and that there is a way to
establish a FIFO order among mids4.

2.2.2 Replication and Consistency Model
We assume that a subset of network nodes are elected to

hold shared data in a replicated fashion. This set, an imple-
mentation of the storage entity Ω upon which our quorum
systems are built, is termed Storage Set (StS). An StS can
be predefined before the network initialization by choosing
relatively powerful nodes [20], or it can be dynamically as-
signed with a specific distributed algorithm [21, 22, 23]. The
membership of an StS is subject to changes due to the join-
ing and leaving of nodes . The algorithm used to initialize
and maintain an StS will not be discussed here since it is
out of the scope of this paper. Any node i ∈ StS is termed
server, whereas the rest of the nodes are termed clients of
the StS. It is not necessary that either a server or a client
has a full membership view on the StS, but a proper lower
bound on the view size is needed to guarantee the perfor-
mance of our protocols. It is not the goal of this paper to find
the optimal size for an StS, but we note that generally, the
larger the size, the heavier the network is loaded, whereas
the load on individual servers becomes smaller. Fig. 1 shows
an example of an StS.

18

9

3

12

20
6

15

13

16

19

7

5

2

14 8

10

4

17

1

11

Figure 1: An STS in an ad hoc network (the servers
are in black whereas the clients are in white).

To reduce the complexity of our protocols, we consider
a relaxed consistency model for the replicated data. More
precisely, our protocols do not commit themselves to any
message ordering, except FIFO order. The shared-private
[24] model can be a good example of the relaxed consis-
tency. This type of data object is owned by a particular
node. It can only be modified by that node but be shared
with, i.e, read by, any other node. We can find many appli-
cation examples of such a model in ad hoc networks, such as
key management, that justify the resulting trade-off between
data consistency and protocol complexity.

3. PAN SYSTEM ARCHITECTURE
Our Pan system includes two protocols: a client protocol

and a server protocol, as shown in Fig. 2. In both cases of
update and query, a client sends a request to an arbitrary
server in the StS. This server, termed agent for that client,

3The two elements sid and oid stand for the ID of the mes-
sage sender and the ID of the data object to be queried or
updated, respectively.
4mid1>mid2 implies that mid1.sid=mid2.sid ∧
mid1.oid=mid2.oid ∧ mid1.ver>mid2.ver.

then performs a corresponding operation of the server proto-
col. Schemes, by which some servers are known to a certain
client, may vary with different implementations of the StS
maintenance algorithm. For example, if an StS is elected
as a set of cluster heads resulting from a particular cluster-
ing algorithm, a cluster member, also a client of the StS,
knows its cluster head or even other heads of neighbor clus-
ters. Otherwise certain request mechanisms can always be

S ST

S ST
client

client

client

client

server

server

update

query

update

query

client

agent

agent

agent

agent

reply

server

reply

Figure 2: The message exchanges for updating and
querying the STS in PAN.

applied to reach a predefined StS. Since the client protocol
can always implement certain mechanisms (e.g., ARQ [25])
to ensure reliability, we will not consider this protocol in our
analysis and simulations later. In the rest of this section we
focus on the server protocol.

The server protocol maintains a quorum system building
upon the StS. We distinguish two types of quorums within
the quorum system. A quorum can be a write quorum, ac-
cessed by an update, or a read quorum in the case of an
access by query. Throughout the presentation, as well as
the analysis and simulations of the server protocol we will
use two symbols ξ? and ξ̂? to represent nominal quorum size
and real quorum size, where “?” can be “W” or “R” depend-
ing on if the quorum is a write quorum or a read quorum.
The nominal size is the number of servers supposed to be
accessed by a certain update or query, while the real size is
the result of the access.

3.1 Server Update Protocol
In the case of an update, the agent diffuses the update

message within the StS, with assistance from other servers.
For this purpose, each server keeps three records. The first
two are used for the data management part of the protocol.
midList stores the mids of the most recent updates, while
Buffer temporarily stores these updates. The third record,
View, is for the membership management of the protocol.
It is composed of three fields: (1) AView stores the ids
of known servers, whose corresponding routing or location
information is known; (2) PView stores the ids of known
servers, whose corresponding routing or location informa-
tion is currently unavailable; and (3) RView stores the ids
of servers having indicated their willingness to leave the StS.
In addition, each record has a maximum size, noted |R|M ,
for a given record R. We will show later that this seemingly
complicated scheme provides a robust membership track-
ing in highly dynamic environments. Fig. 3 provides the
pseudo-codes of the protocol.

Each server receiving a new update, including the agent,
puts the update message into its Buffer and the correspond-

3

procedure Leave
leaveFlag ← true

task Update /* Executed every T ms */
if leaveFlag = true then

m.rmb ← id

DS (1) ← set ⊂< AView such that |set| = F (2)

for all id ∈ DS do
Send(m, id)

else
while Buffer 6= ∅ do

m ← entry ∈ Buffer
Buffer ← Buffer \ {entry}
m.rmb ← entry ∈< RView
m.mb ← entry ∈< AView ∪ PView

DS ← set ⊂< AView such that |set| = F
for all id ∈ DS do

Send(m, id)

(1) DS stands for destination set.
(2) A subscript < stands for random selection.

(a) Update/Leave emission

upon receiveUpdate(m) do
/* Step 1: Update Buffer with new messages */
if 6 ∃ entry ∈ midList such that entry ≥ m.mid then

Buffer ← Buffer ∪ {m}
for all entry ∈ midList such that entry < m.mid do

midList ← midList \ {entry}
midList ← midList ∪ {m.mid}
Commit(m)

/* Step 2: Remove obsolete server from view */
AView ← AView \ {m.rmb}
PView ← PView \ {m.rmb}
RView ← RView ∪ {m.rmb}
while |RView | > |RView |M do

RView ← RView \ {entry ∈< RView}
/* Step 3: Add new server to view */
if m.mb 6∈ (AView ∪ PView) then

if ∃ routing/location info. for m.mb then
AView ← AView ∪ {m.mb}

else
PView ← PView ∪ {m.mb}

(b) Update reception

Figure 3: Data update and membership management at node i

upon Query(mq) /* mq infused by client query */ do
if ∃ entry ∈ midList such that entry > mq.mid then

mq.ver ← entry.ver
Countermq ← 0

DS ← set ⊂< AView such that |set| = ξR − 1
for all id ∈ DS do

Send(mq , id)
timerid ← 0 /* set a timer for the id */

upon receiveQuery(mq) do
if ∃ entry ∈ midList such that entry > mq.mid then

mq.mid ← entry

mq.data ← queried data object(3)

Send(mq , idagent)

(3) The data object is retrieved from the upper layer with certain
callback procedures.

(a) Query emission and reception

upon receiveQueryReply(mq) ∨ timer = timeout do
Countermq ← Countermq + 1
if 6 ∃ entry ∈ midList such that entry ≥ mq.mid then

for all entry ∈ midList such that entry < mq.mid do
midList ← midList \ {entry}

midList ← midList ∪ {mq.mid}
Commit(mq)

if Countermq = ξR − 1 then
Invoke the client query protocol

(b) Reply reception at an agent

Figure 4: QUERY operation and the responses to it

ing mid into the midList. The Commit primitive delivers
the message to the upper layer. Periodically (every T ms),
a task named Update is executed to disseminate messages
stored in the Buffer. The parameter fanout (F), key to the
performance of Pan, denotes the number of receivers cho-
sen by each sender, or forwarder, within the Update task.
The server update protocol is gossip-based [12, 26] in na-
ture since these receivers are randomly chosen. At last, all
servers that effectively receive a message make a write quo-
rum. The size of the quorum, ξ̂W , is predictable thanks to
the epidemic nature of the gossip-based protocol. The Send
primitive is a direct call to the underlying unicast protocol.

While performing the message dissemination, the server
update protocol also takes the responsibility of tracking the
membership. Due to the node mobility and frequent mem-
bership changes, it is not practical to have a full membership
view at each server. In fact, even if it is possible to have
the ids of all servers, there is no guarantee that the corre-
sponding routing or location information is available. Our

routing/location oriented membership management scheme
tries to provide each server a partial view, approximately
random in nature, by exchanging membership information
between servers. The underlying principle is that the scheme
has a similar effect as the reshuffling of the partial view, to-
gether with sporadic losses and discoveries of the routing or
location information5.

Considering the fact that the locality of the traffic can
reduce the network load, we apply a general optimization by
raising the awareness of topology. This optimization is based
on the assumption that the underlying routing protocol can
provide partial topological information, e.g., we can have the
path length information from the routing table of DSR, or
the mobility management service itself can provide distance
information. Our heuristics, in the case of DSR, works like

5The information could be lost due to the node mobility or
the timeout of route cache timer. On the other hand, a node
can also obtain new information by requesting it or tapping
it from packets under transmission.

4

49

48

47

46

43

42

41

40

39

38

36

34

33

30

32

31

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

5

3

2

1

0

44

35

45

37

6 4

client server server queryserver update diffusion37 0 client request

Figure 5: Illustration of an operation pair within a network of 50 nodes located in a square area of 1km2

(aspect ratio is not kept for the sake of space). When node 25 wants to perform an update, it sends a request
to its agent, node 1. The request of this update is diffused to other servers by node 1, using gossip-based
scheme (Only the valid transmissions are shown here. Duplicated transmissions are omitted to simplify the
visualization.). If node 27 wants to access the data, it also requests its agent, node 0. Node 0 in turn requests
other servers, nodes 8, 10, and 12. In this case, node 12 is the intersection of the read and write quorums.
It is able to reply the requested data of node 25 to node 27. The query reply is omitted here for simplicity.

this: for a given server, different weights are assigned to
the servers in AView according to the length of the routing
paths to them, i.e., the longer the path the lower the weight,
such that it chooses a “near” server with higher probability
to forward an update. A simple way to implement this is
to choose weights inversely proportional to the length of the
corresponding routing paths. This server update protocol
is inspired by the Route Driven Gossip (RDG) protocol in
[27], with modifications to the usage of some records (e.g.,
Buffer and midList). More detailed implementation can be
found in that paper.

3.2 Server Query Protocol
In the case of a query, we apply the scheme traditionally

implied for quorum systems, i.e., the agent directly uses the
unicast protocol from the network layer to disseminate the
query message to ξR−1 other servers. Since we consider that
the arrival rate of queries is higher than that of updates in
most cases, it is justifiable to have a relatively small read
quorum, with a simple access scheme.6 Fig. 4 provides the
pseudo-codes of the protocol.

After receiving a query message from a client, the agent
sends it to other servers immediately, with the version num-
ber of the corresponding local data object. Each server be-
longing to the read quorum, upon receiving the message,
responds with its own copy of the data object, if its version
is more recent than the one of the agent. The agent always
Commits a new update returned from other servers. It in-
vokes the corresponding client protocol after every request
either yields a reply or times out.

The topology-awareness optimization used for the update
protocol is also applied here. Depending on the protocol

6Depending on different application requirements, it is pos-
sible for Pan to either behave the other way around, i.e.,
exchanging the accessing schemes for read and write, or to
access both quorums with a gossip-based protocol.

complexity that a particular application can afford, two fur-
ther optimizations can be applied are: (1) using an overlay
tree for the message diffusion [28], or (2) applying the con-
cept of expanding ring search when choosing the value of ξR,
i.e, instead of having the large value of ξR at the beginning,
it is assigned a relatively small value. The value is increased
for another search only if the results of the previous search
are not satisfactory.

Fig. 5 illustrates a simple execution of our Pan system in
a network of 50 nodes.

4. ANALYSIS
In this section, we show that the two metrics, Rd and Nl

(defined in Section 2.1), are predictable given certain de-
sign parameters and information about the network. These
analytical results are confirmed by simulations in the next
section.

4.1 Model
We consider only the server protocol (including both up-

date and query protocols) for analysis. The StS is assumed
to consist of n servers. Query and update accesses arrive
randomly at an arbitrary server, following Poisson processes
with the intensity of λq and λu, respectively. By further
assuming these two processes are independent, the overall
access rate is given by λo = λq + λu.

For the server update, the diffusion process is emulated by
a recurrence relation derived from epidemic theory [29]. Ac-
cording to the terminology of epidemiology, a server that has
received a certain update message is termed infected, other-
wise susceptible. An infected server attempting to forward
the corresponding message to others is called infectious. As
the diffusion process finishes, all infected servers form a write
quorum with real size ξ̂W following a certain probabilistic
distribution. We also assume that infectious servers forward
a new message in synchronous rounds (every Tms, identical

5

for all servers). The influence of particular network condi-
tions is represented by pf , the probability of packet loss for
a certain link. Since the diffusion process is relatively short
in time, we approximate pf by considering only the effects
of node mobility, buffer overflow, and packet collision, but
omitting packet loss due to node crashes.

We consider only the second query to a data object mod-
ified by the most recent update, while considering the first
query as happening before the update.7 For example, as
shown in Fig. 6, only the pairs of (update β, query β2) and

time axis

update � update �

query �1 query �2 query �1 query �2

update �

Figure 6: The occurrence of events in terms of ab-
solute time.

(update γ, query γ2) are considered, whereas queries β1 or
γ1 are supposed to request previous updates (i.e., updates
α and β, respectively). This assumption makes sense when
we consider the time with respect to a server where updates
and queries arrive, and also the property of a Poisson pro-
cess shown in Fig. 7. Since there is always some delay for
the message dissemination, the probability that the actual
events occurrence will follow the order of our assumption at
that server is very high, according to different distributions
of time interval between two events within a Poisson process.
This makes the present analysis a “viable” lower bound. We

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

t

p

2 4 6 8 10 12 14

0.05

0.1

0.15

0.2

t

p

(a) (b)

Figure 7: The distributions of time interval be-
tween two events. (a) exponential distribution for
consecutive events; (b) Erlang distribution for non-
consecutive events.

continue using pf to represent the network condition, but an
empirical value pe is used to represent the server unavailabil-
ity due to failure, at any time instant. One might argue that
the server failure should be treated as a random process with
the time as its parameter [3], this is however not justifiable
with a failure recovery model, which is a general case in ad
hoc networks (e.g., nodes switching off for the purpose of
battery replacement or operating system rebooting).

4.2 Stochastic Behavior of PAN System
We convey the predictability of the metrics for Pan, Rd

and Nl, in two subsections. Certain preliminary results pre-
sented in [27] are omitted for conciseness.

7The time of an event is when it happens at an agent.

4.2.1 Reliability DegreeRd

According to the definition and the protocol description,
this value is in fact the probability that a read quorum in-
tersects the most recent corresponding write quorum. More
precisely, we are looking for the probability that two subsets
with sizes ξ̂W and ξ̂R, taken from a set of n servers, inter-
sect. Note that ξ̂R is defined as the number of servers that
effectively reply to the query back to its forwarding agent.

We use ξ̂r
W and ∆ξ̂r

W = E[ξ̂r
W − ξ̂r−1

W] for the values of
real quorum size after r gossip rounds accomplished by the
server update protocol and the average increment of this size
within round r, respectively. According to the analysis in
[27], ξ̂r

W is estimated with the following recurrence relation:

νT
r+1 = νT

r Pδ (1)

where νr(i) = P (ξ̂r
W = i) is the ith element of the column

vector νr, with the initial value ν0(1) = 1. There exists an r̄
for which the diffusion process is finished, i.e., no new server
is infected afterwards, when r ≥ r̄. We denote ξ̂r

W |r≥r̄ by

ξ̂W with distribution ν. Here Pδ is the transition matrix
with its element p(i,j)δ expressed as follows:

p(i,j)δ = P (ξ̂r+1
W = j|ξ̂r

W = i, ∆ξ̂r
W = δ)

=

{ (
n−i
j−i

)
(1− qδ)j−iqδ(n−j) j ≥ i

0 j < i
(2)

where q = f(F, pf), a function of fanout F and pf , is the
probability that a certain server is not infected in a given
gossip round. The detailed computation of q is omitted here.

Based on the assumption of synchronization, we divide the
time axis after a given update event β into r̄ + 1 intervals,
as shown in Fig. 8. A read quorum, resulting from a query

time axis

update �

query �2

r=1 r=2 r=3 r=r
r=0

�
W

^

�
W

�^

�
W

�^

�
W

�^

�
R

s-1

s

� �
R

�
R
=s

^

� �
R

�
R
=s-1

^

� �
R

�
R
=s-1

^

^

� �
R

�
R
=1

^

... ...
..

.

1

write quorum

read quorum

Figure 8: Incremental processes of read and write
quorum size: ξ̂W increases round by round, while
ξ̂R increases with the amount of queries sent by an
agent.

happening in-between two consecutive gossip rounds r and
r + 1, would have to intersect a write quorum of size ξ̂r

W

with a distribution νr. In order to find the probability of
intersection, we need to calculate the read quorum size ξ̂R

(with the distribution µ) and pr, the probability that the
query event occurs in-between rounds r and r + 1.

The distribution of ξ̂R, conditioned on ξR = s, is calcu-
lated according to the following recursive procedure, with
an initial value P (ξ̂R = 1|ξR = 1) = 1 and the convention

6

that P (ξ̂R = k|ξR = s) = 0 if s < 0, k ≤ 0 or k > s :

µ(k) = P (ξ̂R = k|ξR = s)

= P (ξ̂R = k − 1|ξR = s− 1) · p
+ P (ξ̂R = k|ξR = s− 1) · (1− p) (3)

k = 1, · · · , s

where p = EH [(1−pf)2H](1−pe) is the probability that the
agent forwarding a query receives the reply from a server
belonging to the corresponding read quorum. Here H is
defined as a random variable representing the length of an
arbitrarily chosen routing path. The distribution of this
value is discussed in [27]. The estimation of µ is somewhat
conservative because servers with relatively old version data
do not reply to a query.

The time interval between an update and the second query
to it is characterized by an Erlang distribution λ2

qte
−λqt,

with the assumption that the event arrival is described by a
Poisson process. Therefore, we have

pr =

{ ∫ tr+1
tr

λ2
qte
−λqtdt r < r̄∫∞

tr
λ2

qte
−λqtdt r = r̄

(4)

Now, the probability of intersection, i.e., Rd, is expressed
by taking an average over all possible cases:

Rd =

r̄∑
r=0

n∑
i=1

ξR∑
j=1

(1−

(ξ̂R

n−ξ̂r
W

)
(

ξ̂R
n

))µ(j)νr(i)pr (5)

4.2.2 Network LoadNl

For a certain Rd with its parameter pair F and ξR, we
evaluate the corresponding Nl by averaging the load over a
certain time unit (e.g., 1s), taking into account the arrival
rate of updates and queries.

The loads generated by a single update and query are
calculated separately, and then Nl is obtained by summing
products of the loads of the individual operations and their
corresponding arrival rates:

LW =

n∑
i=1

∑
h

(ξ̂W · F · h)P (H = h)ν(i)

= E[ξ̂W] · F ·E[H] (6)

LR =
∑

h

(2 · ξR · h)P (H = h)

= 2 · ξR ·E[H] (7)

Nl = λuLW + λqLR (8)

This estimation is conservative in the same sense as we men-
tioned before. Again, it is relatively rough compared with
the one for Rd, because we do not take into account the
following two facts: (1) many packets get dropped before
reaching their destinations, and (2) packets, especially those
eventually dropped, may travel quite a long way due to stale
routing information. We will show with simulation that the
former factor has a dominating effect in most cases, but
these factors tend to offset each other in some cases.

5. SIMULATION
This section presents the simulation results of our Pan

system. Some results are compared with the corresponding
analytical ones, to confirm our claim that both the reliability

degree Rd and the network load Nl of Pan are predictable.
The flexibility of Pan, as well as its sensitivity to server
failures, are also investigated by simulations in different set-
tings.

5.1 Model and Parameters
The simulator we use is ns-2 [30] with the Monarch Project

wireless and mobile extensions. It provides both implemen-
tations of DSR and wireless MAC, based on the Lucent
WaveLAN IEEE 802.11 product, with a 2Mbps transmission
rate and a nominal range of 250m. We adopt the two-ray
ground reflection model [31] as the radio propagation model.

We simulate ad hoc networks with 50 and 100 nodes in
a square area of 1km2. The movement pattern is defined
by the “random waypoint” model [32] where the following
process is repeated: nodes randomly choose a destination,
move towards it at a speed uniformly distributed between
zero and a maximum speed, and upon reaching the desti-
nation stay there for some pause time. In our simulations,
each node has a maximum speed of 2m/s, 5m/s, 10m/s, and
20m/s, and a corresponding average pause time of 10s, 20s,
40s, and 80s, respectively. We pair the two simulation pa-
rameters in order to make the scenario more realistic, since
it is a common knowledge that low speed nodes, like pedes-
trians, tend to be more restless than high speed nodes, like
cars.

The StS contains half of the network nodes. We do not
justify this number, but only use it as an example. The
servers in the StS are assumed to be predefined in order
to simplify the simulation.8 The client protocol is omit-
ted to reduce side effects. There is a Poisson traffic source,
generating packets of 128 bytes, attached to each server to
emulate the arrivals of queries or updates. If there is an
update message, the server diffuses it with the update pro-
tocol (the gossip period is set to T = 200ms), otherwise the
message is disseminated by the query protocol. The impact
of the overall access rate λo on the performance of Pan is
first investigated, then an appropriate value is taken for all
simulations. We further assume that λo = aλu. Due to
space limitations, we use a = 8 for most simulations, and
change to a = 4 in Section 5.5 in order to show the fact
that Pan is tunable. As the last simulation parameter, pe

is first set to 1%, and then varied to show the sensitivity of
Pan to server failures in Section 5.6. For some cases, i.e.,
certain values for the network size, maximum speed, pause
time, and other simulation parameters, we vary the design
parameters F and ξR in order to show the trade-off between
the two metrics Rd and Nl.

Pan is operated over 400 seconds of simulated time. The
first 50 seconds of the simulation are used for system initial-
ization. Then each traffic source continues generating traffic
according to the predefined intensity until the end. Each
simulation was carried out 10 times with different scenario
files created by ns-2.

5.2 Impact of λo on PAN Performance
Fig. 9 shows the performance of Pan with respect to λo,

the overall access rate. We observe that Pan performs in a

8Although the clustering algorithm is a popular way to elect
some representatives of the network, introducing such an
algorithm into our simulation may only bring more overhead
to this task, without any help to show the essence of our
system.

7

R
el

ia
b
il

it
y

D
eg

re
e

(P
es

si
m

is
ti

c)
�

�

�o (s
-1

)

R
el

ia
b
il

it
y

D
eg

re
e

�
�

(O
p
ti

m
is

ti
c)

(a) Pessimistic reliability degree (b) Optimistic reliability degree (c) Network Load

N
et

w
o
rk

L
o
ad

�
�

(m
sg

h
o
p
/s

)
�

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Speed
max

=2m/s

Speed
max

=5m/s

Speed
max

=10m/s

Speed
max

=20m/s

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.88

0.90

0.92

0.94

0.96

0.98

1.00

Speed
max

=2m/s

Speed
max

=5m/s

Speed
max

=10m/s

Speed
max

=20m/s

�o (s
-1

)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

10

20

30

40

50

60

70

80

90

Speed
max

=2m/s

Speed
max

=5m/s

Speed
max

=10m/s

Speed
max

=20m/s

�o (s
-1

)

Figure 9: Reliability degree Rd vs. overall access rate λo for 50 nodes networks in a 1km2 square, with F = 2
and ξR = 4.

R
el

ia
b
il

it
y

D
eg

re
e

�
�

N
et

w
o
rk

L
o
ad

�
�

(m
sg

h
o
p
/s

)
�

maximum speed (m/s)

(a) Reliability degree (b) Network load

maximum speed (m/s)

Analysis

Simulation of optimized P (Pessimistic)AN

Simulation of P (Pessimistic)AN

Simulation of optimized P (Optimistic)AN

Simulation of P (Optimistic)AN

Analysis

Simulation of optimized PAN

Simulation of PAN

0 2 4 6 8 10 12 14 16 18 20 22
0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0 2 4 6 8 10 12 14 16 18 20 22

30

32

34

36

38

40

42

Figure 10: Comparisons between optimized and non-optimized PAN for 50 nodes networks in a 1km2 square,
with F = 2 and ξR = 4.

relatively stable way for 1.5s−1 ≤ λo < 3s−1, and Rd begins
to degrade if we further increase λo, since the request arrival
rate becomes larger than the service rate that Pan can pro-
vide. It is also natural to see that Nl increases linearly with
λo by Equation (8). However, it may seem somewhat odd
to observe that Rd is very low in high mobility scenarios,
when λo < 1.5s−1. The main reason for this is the increased
amount of stale routing information. In practice, this effect
does not appear in the presence of background traffic. This
problem can also be solved actively by requiring each StS
server to send control packets during idle time in order to
keep routing information fresh. Based on these observations,
we apply λo = 2s−1 for all other simulations.

The evaluations of Rd are presented in two ways. The
“pessimistic”Rd refers to the probability that a query reaches
the most recent update (with the same assumption as in Sec-
tion 4.1 about the event order), whereas for the “optimistic”
one, we consider a query to be successful even if it only re-
trieves the result of an update that occurred right before the
most recent update. This second evaluation makes sense be-
cause, in practice, there are different data objects stored in
an StS, and the probability that a queried data object has
been modified by the most recent update is quite low. We
will use these two notations for all graph illustrations in this
section.

5.3 Optimization vs. Non-optimization
As described in Section 3.1 and 3.2, raising the topology

awareness improves the performance of Pan. Fig. 10 high-
lights this point. It shows that the optimized version has
nearly the same Rd as the non-optimized one (the differ-
ence is around 1%), but with a remarkable reduction (up to
20%) on Nl. Therefore, we will provide simulation results
of the optimized version throughout the rest of this section.

We also observe that Nl diminishes when the node speed
increases. This is not a surprise because the definition of Nl

considers not only the number of messages sent but also the
number of hops that each message travels. As a result, Nl

decreases as more and more packets get lost due to increased
channel failure probability in high mobility scenario. The
abnormal increase of Nl in very high speed scenario is a
direct result of the second factor explained in Section 4.2.2.

5.4 Comparisons between Analytical and Sim-
ulation Results

Fig. 11 shows comparisons between simulation and analyt-
ical results for networks of normal density, i.e., 50 nodes in
an area of 1km2, and high density, i.e., 100 nodes in an area
of 1km2. The maximum speed and pause time are varied to
test the impact of mobility on the performance of Pan. The
design parameters F and ξR are adjusted to cope with the
increased network size. We note that a real number x.y for
the value of F means that each server, when gossiping the
update, takes F = x with probability 1−y/10 and F = x+1
with probability y/10.

The following conclusions can be drawn: (1) the simu-

8

R
el

ia
b
il

it
y

D
eg

re
e

�
�

maximum speed (m/s)

R
el

ia
b
il

it
y

D
eg

re
e

�
�

maximum speed (m/s)

R
el

ia
b
il

it
y

D
eg

re
e

�
�

maximum speed (m/s)

(a) Normal density network, andF=2 =4�
R

(b) High density network, andF=2 =4�
R

(c) High density network, andF=2.2 =5�
R

N
et

w
o
rk

L
o
ad

�
�

(m
sg

h
o
p
/s

)
�

maximum speed (m/s) maximum speed (m/s)

N
et

w
o
rk

L
o
ad

�
�

(m
sg

h
o
p
/s

)
�

maximum speed (m/s)

N
et

w
o
rk

L
o
ad

�
�

(m
sg

h
o
p
/s

)
�

2 4 6 8 10 12 14 16 18 20

0.90

0.92

0.94

0.96

0.98

1.00

Analysis

Simulation (Pessimistic)

Simulation (Optimistic)

2 4 6 8 10 12 14 16 18 20

30

32

34

36

38

40 Analysis

Simulation

2 4 6 8 10 12 14 16 18 20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Analysis

Simulation (Pessimistic)

Simulation (Optimistic)

2 4 6 8 10 12 14 16 18 20

30

35

40

45

50

55

60
Analysis

Simulation

2 4 6 8 10 12 14 16 18 20
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Analysis

Simulation (Pessimistic)

Simulation (Optimistic)

2 4 6 8 10 12 14 16 18 20
35

40

45

50

55

60

65

70

75
Analysis

Simulation

Figure 11: Analytical and simulation results for reliability degree Rd and network load Nl vs. mobility

lation and analytical results of Rd match very well. This
confirms the predictability on Rd; (2) the analytical results
of Nl are quite rough due to the reason we stated in Sec-
tion 4.2.2, as well as the optimization we apply, but they
still provide certain information about the system overhead
such as the trend of its changes in different situations; (3)
the optimisticRd is always much higher than the pessimistic
one. This basically means that the potential of Pan is much
higher than what could be expected from the analytical re-
sults; (4) as the network size and the maximum node speed
grow, design parameters have to be adjusted to maintain
a good performance of Rd, at a cost of increased system
overhead.

5.5 Adapting PAN to a New Environment
We simulate a new application environment by setting

a = 4, i.e., increasing the update rate and decreasing the
query rate. Intuitively, one would expect that shrinking the
write quorum (decreasing F) and enlarging the read quorum
(increasing ξR) would reduce Nl, while still maintaining Rd.
We investigate this hypothesis with simulations shown in
Fig. 12.

The first set of design parameter adjustments (changing
F from 2 to 1.7 and ξR from 4 to 5) results in a reduction of
Nl (more than 5%) with virtually no expense of Rd. Further
parameter adjustments (reducing ξR to 4) yield significant
reduction on Nl (up to 25%), but with a modest degrada-
tion of Rd (less than 5%). These results confirm what our
intuition suggested.

5.6 Sensitivity to Server Unavailability pe

According to the simulation results shown in Fig. 13, the
sensitivity of Pan to pe increases as the maximum node

speed grows. In addition, the sensitivity of Pan consider-
ing optimistic Rd is lower than the sensitivity considering
pessimistic Rd.

We also observe that the increase of pe leads to an im-
provement of Rd in some cases. This paradox indeed sug-
gests a way to optimize our Pan system, i.e., a server belong-
ing to a certain read quorum does not always try to reply to
a query back to its agent, even if the server is “alive” and
has a new version of the queried data object. With such a
behavior, Pan can avoid that more than one server replies
to an agent with the same data object, thereby reducing
the probability of packet collisions and, in turn, improving
Rd. However, we do not put it as a formal optimization of
Pan, because it is not as stable as the topology-awareness
optimization in dynamic environments.

6. DISCUSSION AND RELATED WORK
In this section, we summarize the novelties of the design

of our Pan system and overview relevant work on quorum
system designs and data management schemes.

6.1 Characteristics of PAN
We explain the three main characteristics of Pan as fol-

lows:

We have proposed a gossip-based protocol for quo-
rum access to cope with the “hostile" environment and
to avoid the need for a global membership tracking for
quorum systems. The design of access protocols and mem-
bership management schemes for quorum systems was not
well covered in previous literature. This problem, however,
has to be explicitly tackled in ad hoc networks for the follow-
ing reasons: (1) Unicast protocols, as one choice to access

9

R
el

ia
b
il

it
y

D
eg

re
e

(P
es

si
m

is
ti

c)
�

�

R
el

ia
b
il

it
y

D
eg

re
e

�
�

(O
p
ti

m
is

ti
c)

(a) Pessimistic reliability degree (b) Optimistic reliability degree (c) Network load

N
et

w
o
rk

L
o
ad

�
�

(m
sg

h
o
p
/s

)
�

maximum speed (m/s) maximum speed (m/s) maximum speed (m/s)

0 2 4 6 8 10 12 14 16 18 20 22
0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98
F=2 =4�

R

F=1.7 =5�
R

F=1.7 =4�
R

0 2 4 6 8 10 12 14 16 18 20 22

0.95

0.96

0.97

0.98

0.99

F=2 =4�
R

F=1.7 =5�
R

F=1.7 =4�
R

0 2 4 6 8 10 12 14 16 18 20 22
34

36

38

40

42

44

46

48

50
F=2 =4�

R

F=1.7 =5�
R

F=1.7 =4�
R

Figure 12: Reliability degree Rd and network load Nl vs. maximum speed with a = 4, for 50 nodes networks
in a 1km2 square.

R
el

ia
b
il

it
y

D
eg

re
e

(P
es

si
m

is
ti

c)
�

�

pe

R
el

ia
b
il

it
y

D
eg

re
e

�
�

(O
p
ti

m
is

ti
c)

(a) Pessimistic reliability degree (b) Optimistic reliability degree (c) Network Load

N
et

w
o
rk

L
o
ad

�
�

(m
sg

h
o
p
/s

)
�

Speed
max

=2m/s

Speed
max

=5m/s

Speed
max

=10m/s

Speed
max

=20m/s

Speed
max

=2m/s

Speed
max

=5m/s

Speed
max

=10m/s

Speed
max

=20m/s

Speed
max

=2m/s

Speed
max

=5m/s

Speed
max

=10m/s

Speed
max

=20m/s

0.01 0.1 1

0.86

0.88

0.90

0.92

0.94

0.96

0.98

0.01 0.1 1
0.94

0.95

0.96

0.97

0.98

0.99

1.00

pe

0.01 0.1 1

27

28

29

30

31

32

33

34

35

pe

Figure 13: Reliability degree Rd and network load Nl vs. server unavailability pe for 50 nodes networks in a
1km2 square, with F = 2 and ξR = 4.

quorum systems, are not as stable as those for wired net-
works; Even worse, the performance of the unicasting can
hardly be predicted due to node mobility and packet col-
lision, which invalidates the commitment made by quorum
systems. (2) Multicast protocols for ad hoc networks (e.g.,
MAODV), as another choice, always have a relatively large
overhead for maintaining the multicast group, and are there-
fore not suitable for delivering packets in several groups with
memberships that change frequently, such as probabilistic
quorum systems. (3) It is a main purpose of ad hoc net-
works to refrain from any centralized membership tracking
that is an often made assumption for quorum systems. Our
gossip-based protocol, as demonstrated before, behaves in
a predictable way, while requiring no separate membership
tracking.

As a consequence of gossip-based access protocol, the
design of quorum systems becomes more straightfor-
ward. According to the theory of probabilistic quorum sys-
tems [14], the ξ is designed to meet the requirement of a
certain intersection property ε in a replication system with
n servers. However, as any unreliable access protocol is con-
cerned, the difference between ξ and ξ̂ does exist. Also, it is
ξ̂ that is essential to the estimation of reliability. Our design
is more straightforward in the sense that we directly obtain
ξ̂, probabilistic in nature, from the access protocol. Our
approach is friendly to quorum systems in ad hoc networks

since it does not require any global membership tracking in
order to design ξ, a function of n and ε, beforehand.

An asymmetric quorum construction is applied, with a
flexibility to fine tune design parameters, in order to
have different sizes for individual quorums. An impor-
tant factor that limits the application of traditional quo-
rum systems is their symmetric construction (i.e., the same
size for each quorum). By considering the shared-private
data model, for instance, it becomes clear that the arrival
rate of queries could be quite higher than that of updates,
since the number of potential clients that may send a query
is much larger than the number of the update generator,
which is basically one for each data object. Therefore, in
order to reduce the Nl required for achieving a certain Rd,
it is reasonable to have a large write quorum, but a rela-
tively small read quorum. The flexibility of tuning quorum
sizes improves the adaptability of our Pan system to various
application requirements.

6.2 Probabilistic Quorum Systems
Probabilistic quorum systems were first proposed in [14].

The authors demonstrate that, compared with strict quo-
rum systems, probabilistic quorum systems yield a substan-
tial improvement on the load while keeping high fault toler-
ance. A simple construction of a probabilistic quorum sys-
tem, called ε-intersecting quorum system, is also proposed.

10

The construction shows that the probability of nonintersec-

tion between two arbitrary quorums is less than ε = e−l2 by
taking ξ = l

√
n servers as a quorum in a system of n servers.

The load considered in [14] is the charge of computation for
an individual server. We define the load in a different way
by focusing on the charge of network resources, since com-
putation is much cheaper than communication in wireless
networks.

Haas and Liang [3] first introduced probabilistic quorum
systems into ad hoc networks for mobility management, un-
der the name of randomized database groups. They propose
a very interesting way to express both fault tolerance and
load as costs of their system, and optimize those costs nu-
merically. Considering the similarity between their system
and Pan, it is unfortunate that there are no simulation re-
sults provided to evaluate the system performance and to
confirm the precision of the numerical analysis in [3], oth-
erwise making comparisons between the two systems would
have been desirable.

6.3 Data Management in Ad Hoc Networks
The 7DS system presented in [33] shares certain features

of our Pan system with respect to the diffusion scheme used
for data spreading. However, since the two systems are de-
signed for different network environments (7DS assumes a
rarely connected network, whereas Pan considers networks
of relatively high density), the underlying diffusion mecha-
nisms are quite different. 7DS passively exploits node mo-
bility to relay data from one node to the other, which re-
sults in a considerable delay for data spreading but has a
potential to improve power and bandwidth usages (a recent
research work [34] applies a similar scheme to exchange se-
curity data), whereas Pan more actively “pushes” data to
other nodes with a gossip-based protocol. As a result, the
analytical models for the two diffusion processes are also
different (diffusion controlled process for 7DS and epidemic
model for Pan).

The work of Hara [35] assumes that all mobile nodes can
carry a set of data replicas, which would be a special case
for Pan with its StS being the whole network. In order
to guarantee data accessibility upon network partitioning,
their work focuses on optimizing the location of data replicas
within a network, based on the assumptions that (1) the
memory space on nodes are limited, (2) data items are not
updated, and (3) access frequencies to data items from each
node are known and fixed. Although it is interesting to
consider the impact of memory space on data allocation, the
other two assumptions are too strong to capture the reality
of mobile networks, hence limiting the application scope of
their protocol.

Similarly to [35], Wang and Li [36] consider the problem
of replica allocation. However, their approach is more prac-
tical in the sense that it takes into consideration topology in-
formation (e.g., connection stability) when replicating data,
while data replication only happens when necessary accord-
ing to certain partition detection schemes. As far as system
models are concerned, the problem we solve is somewhat
orthogonal to theirs. The mobility model they propose as-
sumes strong correlations between different nodes such that
nodes in a network are organized into mobility groups, which
might lead to frequent network partitions. Whereas we con-
sider a purely random mobility pattern, in which network

partitions seldom happen and mobility prediction can hardly
make sense.

7. CONCLUSIONS
In this paper, we are concerned with the high availability

of relatively small data objects in mobile ad hoc networks.
We have defined the problem of probabilistic reliable data
storage and two performance metrics that take the peculiar-
ities of ad hoc networks into account. We have proposed our
Pan system, based on the principle of probabilistic quorum
systems, as a solution to this problem. The performance of
Pan has been analyzed by making use of, notably, epidemic
theory. The evaluation and investigation of Pan have also
been carried out by simulations in ns-2.

The probabilistic reliability problem and corresponding
metrics that we have defined can be considered as a general
framework for evaluating protocols designed to address sim-
ilar issues. As one solution to the probabilistic reliability
problem, our Pan system diffuses updates to a random set
(write quorum) in a storage entity StS. It also accesses a
random set (read quorum) in the StS, upon queries, to get
the most recent update. The main contributions we have
made on the design of Pan can be summarized in three as-
pects, namely (1) gossip-based quorum access protocol, (2)
straightforward quorum systems design, and (3) asymmetric
quorum construction.

We have proposed an analytical model to predict the per-
formance of our Pan system. The validity of predictions
is evaluated by simulations. The results show that our an-
alytical model provides quite accurate predictions on the
reliability degree Rd, while the prediction on the network
load Nl is relatively rough due to various factors. We are in
the process of improving this model by further investigat-
ing the effects of those factors. In addition, it would also
be interesting to have an analytical model based on random
graph theory, as in [37].

In addition to confirming the predictability of our Pan
system, we have also investigated other aspects of it with in-
tensive simulations. Our simulation results show that, even
under frequent topology changes, the reliability degree of
our Pan system is high enough to guarantee its quality of
service. These results also confirm the robustness of Pan,
in the sense that it can sustain a large access rate λo, differ-
ent network sizes, and a certain amount of server failures.
Finally, the results illustrate the tunabilty property of Pan,
by which the system can adapt to various application envi-
ronments. It is a part of our future work to further study
the performance of Pan under different access rates and to
propose an upgraded Pan that adapts itself well to changes
of access rate.

8. REFERENCES
[1] G. Pei and Mario Gerla, “Mobility management for

hierarchical wireless networks,” ACM/Kluwer Mobile
Networks and Applications (MONET), vol. 6, no. 4,
pp. 331–337, 2001.

[2] Z.J. Haas and B. Liang, “Ad hoc mobility
management with uniform quorum systems,”
IEEE/ACM Trans. on Networking, vol. 7, no. 2, pp.
228–240, Apr 1999.

[3] Z.J. Haas and B. Liang, “Ad hoc mobility
management with randomized database groups,” in
Proc. of ICC’99, 1999, vol. 3, pp. 1756–1762.

11

[4] L. Zhou and Z.J. Haas, “Securing ad hoc networks,”
IEEE Network, vol. 13, no. 6, pp. 24–30, 1999.

[5] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang,
“Providing robust and ubiquitous security support for
mobile ad-hoc networks,” in Proc. of ICNP’01, 2001,
pp. 251–260.

[6] J.-P. Hubaux, L. Buttyán, and S. Čapkun, “The quest
for security in mobile ad hoc networks,” in Proc. of
MobiHoc’01, 2001, pp. 146–155.

[7] C.E. Perkins, J.T. Malinen, R. Wakikawa, E.M.
Royer, and Y. Sun, IP address autoconfiguration for
ad hoc networks, July 2002, Internet-Draft,
draft-ietf-manet-autoconf-01.txt. Work in progress.

[8] N.H. Vaidya, “Weak duplicate address detection in
mobile ad hoc networks,” in Proc. of MobiHoc’02,
2002, pp. 206–216.

[9] S. Nesargi and R. Prakash, “MANETconf:
configuration of hosts in a mobile ad hoc network,” in
Proc. of INFOCOM’02, 2002, pp. 1059–1068.

[10] F.B. Schneider, “Replication management using the
state-machine approach,” in Distributed Systems,
chapter 6, pp. 169–197. Addison-Wesley, 2 edition,
1993.

[11] V. Hadzilacos and S. Toueg, “Fault-tolerant
broadcasts and related problems,” in Distributed
Systems, chapter 5, pp. 97–145. Addison-Wesley, 2
edition, 1993.

[12] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky, “Bimodal multicast,” ACM
Trans. on Computer Systems, vol. 17, no. 2, pp.
41–88, 1999.

[13] D. Barbara and H. Garcia-Molina, “The reliability of
vote mechanisms,” IEEE Trans. on Computers, vol.
36, no. 10, pp. 1197–1208, 1987.

[14] D. Malkhi, M.K. Reiter, and A. Wool, “Probabilistic
quorum systems,” Information and Computation, vol.
170, no. 2, pp. 184–206, 2001.

[15] E.M. Royer and C.E. Perkins, “Multicast operation of
the ad-hoc on-demand distance vector routing
protocol,” in Proc. of MobiCom’99, 1999, pp. 207–218.

[16] S.J. Lee, M. Gerla, and C.C. Chiang, “On-demand
multicast routing protocol,” in Proc. of WCNC’99,
1999, vol. 3, pp. 1298–1302.

[17] J.J. Garcia-Luna-Aceves and E.L. Madruga, “The
core-assisted mesh protocol,” IEEE Journal on
Selected Areas in Communications (Special Issue on
Ad-hoc Routing), vol. 17, no. 8, pp. 1380–1394, 1999.

[18] J.-P. Hubaux, T. Gross, J.-Y. Le Boudec, and
M. Vetterli, “Toward self-organized mobile ad hoc
networks: the terminodes project,” IEEE
Communications Magazine, vol. 39, no. 1, pp.
118–124, 2001.

[19] D.B. Johnson, D.A. Maltz, and Y-C. Hu, The
dynamic source routing protocol for mobile ad hoc
networks (DSR), February 2003, Internet-Draft,
draft-ietf-manet-dsr-08.txt. Work in progress.

[20] K. Xu, X. Hong, and M. Gerla, “An ad hoc network
with mobile backbones,” in Proc. of ICC’02, 2002,
vol. 5, pp. 3138–3143.

[21] P. Krishna, N.H. Vaidya, M. Chatterjee, and D.K.
Pradhan, “A cluster-based approach for routing in
dynamic networks,” in Proc. of ACM/SIGCOMM
Computer Communication Review, 1997, pp. 372–387.

[22] C.R. Lin and M. Gerla, “Adaptive clustering for
mobile wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 15, no. 7, pp.
1265–1275, 1997.

[23] R. Sivakumar, P. Sinha, and V. Bharghavan,
“CEDAR: a core-extraction distributed ad hoc
routing algorithm,” IEEE Journal on Selected Areas
in Communications (Special Issue on Ad-hoc
Routing), vol. 17, no. 8, pp. 1454–1465, 1999.

[24] A.W. Fu and D.W. Cheung, “A transaction
replication scheme for a replicated database with node
autonomy,” in Proc. of VLDB’94), 1994, pp. 214–225.

[25] L.-G. Alberto and I. Widjaja, Communications
Networks, McGraw Hill Higher Education, 2000.

[26] Z.J. Haas, J.Y. Halpern, and L. Li, “Gossip-based ad
hoc routing,” in Proc. of INFOCOM’02, 2002, pp.
1707–1716.

[27] J. Luo, P.Th. Eugster, and J.-P. Hubaux, “Route
driven gossip: Probabilistic reliable multicast in ad
hoc networks,” in Proc. of INFOCOM’03, 2003.

[28] K. Chen and K. Nahrstedt, “Effective location-guided
tree construction algorithms for small group multicast
in MANET,” in Proc. of INFOCOM’02, 2002, pp.
1192–1201.

[29] J.D. Murray, Mathematical Biology, Springer, Berlin,
2nd edition, 1993.

[30] K. Fall and K. Varadhan, Eds., The ns Manual, The
VINT Project, UC Berkeley, LBL, USC/ISI, and
Xerox PARC, Apr. 2002, Availiable from
http://www.isi.edu/nsnam/ns/.

[31] T.S. Rappaport, Wireless Communications: Principles
and Practice, Prentice Hall, Upper Saddle River, New
Jersey, 2nd edition, 2002.

[32] D.B. Johnson and D.A. Maltz, “Dynamic source
routing in ad hoc wireless networks,” in Mobile
Computing, Tomasz Imielinski and Hank korth, Eds.,
chapter 5, pp. 153–181. Kluwer Academic Publishers,
1996.

[33] M. Papadopouli and H. Schulzrinne, “Effects of power
conservation, wireless coverage and cooperation on
data dissemination among mobile devices,” in Proc. of
MobiHoc’01, 2001, pp. 117–127.

[34] S. Čapkun, J.-P. Hubaux, and L. Buttyán, “Mobility
helps security in ad hoc networks,” in Proc. of
MobiHoc’03, 2003.

[35] T. Hara, “Effective replica allocation in ad hoc
networks for improving data accessibility,” in Proc. of
INFOCOM’01, 2001, pp. 1568–1576.

[36] K.H. Wang and B. Li, “Efficient and guaranteed
service coverage in partitionable mobile ad-hoc
networks,” in Proc. of INFOCOM’02, 2002, pp.
1089–1098.

[37] A.-M. Kermarrec, L. Massoulie, and A. Ganesh,
“Probabilistic reliable dissemination in large-scale
systems,” IEEE Trans. on Parallel and Distributed
Systems (to appear), 2003.

12

