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Introduction

Recent developments in computational modeling of human ar-
teries have opened the possibility of performing subject-specific
analyses on increasingly larger numbers of subjects. This
achievement will eventually lead to a better understanding of the
role of geometry and hemodynamics in the initiation and devel-
opment of vascular disease. The availability of data from popu-
lation or longitudinal studies raises the problem of quantitatively
comparing distributions of geometric and hemodynamic quanti-
ties among different models. This task is made difficult by the
fact that modeled arterial segments typically comprise bifurca-
tions and regions of high curvature.

A technique for comparing surface distributions among real-
istic models of the carotid bifurcation has been recently pro-
posed in [1]. In that work, surface mesh nodes were classified
as belonging to semi-automatically defined quadrilateral patches,
and nodal quantities of interest averaged over each patch. This
avoided node-to-node comparison and the need for registration.
However, patch definition required user interaction and was thus
subject to operator-variability.

In this work we present a fully automated technique for param-
eterization and patching of the surface of bifurcating vessels. The
method is based on robust and objective schemes aimed at pre-
serving the consistency of the parameterization over a wide range
of bifurcating geometries, allowing quantitative comparison of
surface distributions in presence of high anatomic variability.

Methods

The parameterization of three dimensional surface meshes of
bifurcating vessels is accomplished with a series of successive
steps, summarized in the following:

Computation of centerlines. Centerlines are obtained with the
approach presented in [2], in which a minimal action path prob-
lem is solved over an approximation of the medial axis of the sur-
face. The resulting centerlines are smooth lines traced between
the inlet and the outlets of the model (Figure 1). Each center-
line point is the center of a maximal inscribed sphere of known
radius. The method requires the specification of centerline end-
points, which are automatically identified from the surface mesh
and classified according to their relative position.

Definition of the bifurcation reference system. Based on the
computed centerlines, a local reference system is defined at the
bifurcation, as shown in Figure 1. Four reference points are first
defined on the centerlines: A,B are the points in which each cen-
terline intersects the union of the maximal inscribed spheres de-
fined on the other centerline; C,D are the centers of the spheres
touching A,B defined on the upstream tracts of the respective cen-

terlines. The bifurcation origin O is then defined as the barycen-
ter of the reference points weighted with the squared radii of the
associated spheres. The bifurcation normal, which defines the bi-
furcation plane, is defined as the normal of the polygon ABDC
computed at O, and the bifurcation up-normal as the normalized
sum of vectors AC and BD. At this point, the model can eventu-
ally be registered to an absolute reference system.

Figure 1: Left: centerlines, reference points (A,B,C,D) for a re-
alistic model of carotid bifurcation. The union of maximal in-
scribed balls defined on the left centerline is shown in green.
Right top: bifurcation reference system (O, cross-hairs). Right
bottom: definition of the splitting lines.

Splitting of bifurcation branches. The bifurcating vessel is
then split into its three constituent vessels. The splitting scheme
employs the same four reference points used in defining the bi-
furcation reference system. First, centerlines are split into the
tracts defined from points A,B,C,D to the respective endpoints.
Successively, the power distance of mesh nodes to each of the



sphere unions defined by the split centerlines is computed. The
splitting lines are then defined over the surface as the zero-level
lines of the pairwise differences of the computed power distances
(see Figure 1).

Longitudinal parameterization. After splitting, the individual
branches are parameterized in the longitudinal direction by solv-
ing a Laplacian equation over the surface, with boundary con-
ditions equal to 0 on the splitting lines and 1 on the inlet and
outlet boundaries. Since the metric over a 3D surface is in gen-
eral non-Euclidean, the Laplacian equation is written employing
the Laplace-Beltrami operator. The resulting partial differential
equation is approximated over the surface mesh using a finite-
elements / finite-volumes discretization. The resulting linear sys-
tem is solved using the BiCStab iterative method. The param-
eterization is finally stretched in order to reflect the centerline
abscissa with respect to the bifurcation origin.

Circumferential parameterization. The paramterization in
the circumferential direction is generated on the basis of center-
line tortuosity. First a reference system (tangent, normal and bi-
normal) is defined along the centerlines using a parallel transport
approach (for which zero-torsion is imposed between adjacent
reference systems) and referred to the bifurcation normal. The
circumferential parameterization, ranging from 0 to 2π, is then
computed as the angle between the position vector of each mesh
node relative to the correspondent centerline point and the cen-
terline normal in that point.

Flattening and patching. Once longitudinal and circumferen-
tial parameterizations are defined, the surface of each branch is
flattened and patched in the parameter space, as shown in Fig-
ure 2.

Figure 2: Left: wall shear stress (WSS) distribution on the sur-
face of the model in Figure 1 flattened onto the parameter space.
Right: WSS distribution patched in the parameter space (patch
size: 1.5mm longitudinally and π

4 circumferentially).

Results & Discussion

Figure 3 (left) shows the shape of patches on the model in Figure
1. The stability of patch shape and position (and henceforth of the
underlying parameterization) to variability in surface geometry is
demonstrated by comparison with Figure 3 (center and right).

Figure 3: Left: patched surface in Figure 2 refolded in the 3D
space. Center and right: result of patching models reconstructed
from two additional independent acquisitions of the same sub-
ject. The models have been registered based on the bifurcation
reference system. As in Figure 2, WSS distributions are shown.

The method proposed is fully automated and is based on ob-
jective criteria. Conversely to existing techniques, our method
doesn’t rely on the identification of the bifurcation apex, whose
reconstruction accuracy is affected by imaging and segmentation
artifacts. Preliminary results show how the technique is robust
to changes in surface geometry and produces consistent results
over a wide range of bifurcating geometries (see Figure 4). The
method can also be readily extended to handle more complex
configurations comprising more than one bifurcation.

Figure 4: Result of registering, splitting and patching two ex-
treme cases of carotid bifurcation geometry. Surface distributions
of local radii are shown.
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