
Distributed Subtyping

Sébastien Baehni
I&C EPFL

Switzerland

João Barreto
INESC-ID/IST

Portugal

Rachid Guerraoui
I&C EPFL & CSAIL MIT

Switzerland & USA

ABSTRACT
One of the most frequent operations in object-oriented pro-
grams is the instanceof test, also called the subtyping test
or the type inclusion test. This test determines if a given
object is an instance of some type. Surprisingly, despite a
lot of research on distributed object-oriented languages and
systems, almost no work has been devoted to the implemen-
tation of this test in a distributed environment.

This paper presents the first algorithm to implement the
subtyping test on an object received through the wire, with-
out having to download the full code of the object type,
nor to deserialize the object. We use a slicing technique
that encodes a (multiple-subtyping) hierarchy using as lit-
tle memory as the best known centralized implementation of
the subtyping test. Our slicing technique is however different
than centralized ones and allows for the dynamic addition
of types without global reconfiguration.

We convey the practicality of our algorithm through per-
formance measures obtained from a fully distributed imple-
mentation of our algorithm which we experiment on stan-
dard Java hierarchies. In particular, we show that we can
perform a subtyping test between 3 and 12 times faster than
the code downloading approach without hampering the time
taken for deserialization. Moreover, we require the same
subtyping time as a string-based approach while reducing
the encoding length by a factor of 50.

1. INTRODUCTION
Testing if a type of an object is a subtype of another type is
traditionally called a subtyping test, or sometimes a type in-
clusion test. Usually, object-oriented languages implement
this test via native language keywords or specific methods.
For instance, Java and C# use respectively the instanceof
and is keywords, whereas Smalltalk uses the isKindOf: method.1

1For the sake of presentation simplicity, and as in [16, 17],
we do not make the distinction between a type, a class, an

A common assumption made in object-oriented languages
is that the code of the type of the object is available when
performing a subtyping test. This assumption has been car-
ried over in all object-oriented distributed systems we know
of, including CORBA [12], JMS [5], MSMQ [9], and more
generally, in any distributed Java [6] or Microsoft .NET [10]
application we encountered.

Relying on the code of the type of an object to accom-
plish any subtyping test involving the object is problematic
in distributed environments where objects are remotely ex-
changed. This is for instance the case in increasingly popular
event-based [11, 2] (also called publish/subscribe [4]) systems.
In such systems, whenever an object is received (in the form
of an event), a type inclusion test might need to be per-
formed. This is key for a node to throw away objects it is
not interested in. If the received object is of an unknown
type, its code has to be downloaded and the object has to
be deserialized before the subtyping test can be performed.
This is particularly cumbersome, especially if the probabil-
ity that the received object is of interest to the node is low.
Instead, it makes more sense to incorporate some (encoded)
type information with the object and use this to perform
the subtyping test without having to deserialize the object
and thus without needing the code of the object.

In fact, several encoding schemes have been devised in the
literature [14, 3, 7, 8, 1, 16, 17] to support efficient subtyping
tests in centralized environments. These however cannot be
ported to a decentralized setting as they typically require a
global reconfiguration when new types are added. Whereas
global reconfiguration might be considered reasonable in a
centralized system where the addition of a new type would
go through recompiling the type hierarchy anyway (and gen-
erating a new encoding), it is clearly unacceptable for long-
lived distributed systems.

Efficiently encoding type hierarchies in a distributed con-
text is not a trivial task. Ideally, the encoding should use a
minimal representation to be sent with the object over the
wire, just like in a centralized setting. To avoid reconfigura-
tion, the encoding of the core type hierarchy, i.e., of the set
of types present at the initialization of the system, should

interface and a signature. These differences are irrelevant
for the problem we address. Consequently, the terms multi-
ple inheritance, multiple subtyping and multiple subclassing
can be used interchangeably in our context. We also focus
on languages with a nominal subtyping relation (e.g., Java,
C#) and we simply identify a type with its name.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147915756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

remain the same throughout the lifetime of the system even
when new types are added at runtime.

This paper presents an algorithm for performing subtyping
tests in a dynamic distributed environment. The algorithm,
which we denote by DST, does not require downloading the
full code of the object type, nor deserializing the object. It
also supports multiple subtyping as well as the addition of
new types at runtime without requiring any global reconfig-
uration. Subtyping tests can even be performed with objects
of new dynamically added types against the original types
of the core type hierarchy.

The idea underlying our encoding scheme consists in split-
ting the type hierarchy into smaller disjoint sequences of
types called slices (we will explain in the paper how the de-
composition into slices is actually performed). Each type is
then assigned an identifier corresponding to its position in
the slice (i.e., its position in the sequence). The identifier
of a type t, together with the intervals of the identifiers of
its super-types (simply called the intervals of t), represent
the encoding of t. To test if a type t is a subtype of a type
u, we simply check if the identifier of u is contained in the
intervals of t. The addition of new types is then handled by
extending an existing slice or adding a new one.

A distributed implementation of our DST algorithm (using
Java 1.5) is available at http://lpdwww.epfl.ch/baehni/dst.tgz.
The algorithm is provided in the form of a comprehensive
set of Java APIs, together with a set of wrapper classes
around the standard Java serialization APIs. Our perfor-
mance measurements, conducted through standard Java hi-
erarchies (1.5, 1.4 and 1.2), convey the fact that DST per-
forms a subtyping test between 3 and 12 times faster than
a standard code downloading approach without hampering
the time taken to deserialize the object. Moreover, DST
requires the same subtyping test time as a straightforward
string-based encoding approach (that does not require global
reconfiguration when new types are added), in which the
type of an object is encoded via the name of the type to-
gether with the name of its super-types; with respect to this
approach however, we reduce the encoding length by a fac-
tor of 50. We also show, for completeness, that DST is com-
parable, in terms of encoding length, to the best currently
known centralized subtyping algorithm [16]. Yet, and as we
pointed out, DST is designed for a dynamic distributed envi-
ronment where new types can be added at runtime without
global reconfiguration.

The rest of the paper is organized as follows. Section 2
overviews several alternatives to address the subtyping prob-
lem. Section 3 describes the encoding generated by the DST
algorithm. Section 4 presents DST. Section 5 presents the
key elements underlying our implementation of DST. Sec-
tion 6 presents performance results. Section 7 summarizes
the main contribution.

2. DESIGN ALTERNATIVES
Consider a process pi, representing a physical node in a dis-
tributed system, receiving a given object O of type u. The
subtyping problem consists for pi to determine whether O
is of (a subtype of) a type t. We say that pi performs a
subtyping test with O (or u) against t.

Clearly, the simplest way to perform the test is for pi to
use the native subtyping instruction of the language, e.g.,
instanceof and is keywords of respectively Java and C#. In
other words, pi would rely on the centralized implementation
of the subtyping test. However, in a distributed system where
O is received over the wire, to retrieve its type u, O has to
be deserialized and the code of u (e.g., the bytecode in Java
or IL in .NET) has to be loaded in memory. That is, pi has
to get the code of O and deserialize it. Hence, either the
code of the type of O must be sent within O or downloaded
afterwards. In any case, this means a clear waste of CPU
and bandwidth if pi turns out not to be interested in objects
of type t.

A simple approach to prevent code downloading consists in
representing the identifier of the type and all its super-types
by a string. To construct this string identifier, we would
for instance follow a top-down approach. For each level of
the type hierarchy, we would add the identifier of the super-
types of the object until the actual type of the object is
reached. For instance, an encoding of type k in the hier-
archy of Figure 1 would be ”/abc/def/hi/k” (the circles in
Figure 1 represent the types of the hierarchy). Each object
O would transport the encoding of its type. When receiving
O, process pi simply checks if the string identifier of type t
is contained in the string associated with O. This approach
clearly reduces the amount of necessary information that has
to be transferred in order to perform subtyping tests with
respect to the code downloading solution. However, the size
of the encoding and the time to perform the subtyping tests
directly grow with the size of the type hierarchy.

d e f

g h i j

a cb

k

Figure 1: Example of a type hierarchy

There are indeed more efficient approaches to encoding type
hierarchies [8, 7, 1, 16, 17, 13] but, as we will discuss below,
these are centralized approaches that typically require global
reconfigurations when new types are dynamically added to
the system (which is usually not an issue in a centralized
system). In fact, this reconfiguration is required even if
no subtyping tests need to be performed against these new
types.

With bit-vector encoding [8], the type hierarchy is embed-
ded in a lattice of subsets of 1,...,k. The encoding of a type
t is a vector of k bits (vect) [8]. A type i is a subtype of
a type j if veci ∧ vecj = vecj . With range compression en-
coding [1], the type hierarchy is split into single inheritance
trees and types are enumerated using a post-order transver-
sal algorithm. The encoding of a type t consists of (1) its

identifier as well as (2) a set of intervals. The smallest, re-
spectively highest, value of an interval of a type t contains
the smallest, respectively highest, identifier of the subtypes
of t while ensuring that only the subtypes of t are inside
the considered interval. If it is not possible to encode all
subtypes of t inside an interval, a new one is created. If the
identifier of a type i is contained in the intervals of a type
j then i is a subtype of j. With these approaches [8, 1],
whenever a new type is added at runtime, the entire type
hierarchy is reconstructed.

With Packed-Encoding [7] (PE), a hierarchy of N types is
represented by a matrix with N lines and P columns called
buckets (P is determined by the algorithm). The encoding
of each type t is given by (1) the identifier of the bucket
in which t is contained (pt), (2) the identifier of t in this
bucket (idt) and, (3) an array in which the <index,value>
pair corresponds respectively to the identifier of a bucket
i and the identifier of the super-type of t into i (in order
to support multiple subtyping, two super-types cannot be
in the same bucket). Bit-Packed Encoding (BPE) enhances
Packet-Encoding by permitting two or more buckets to be
represented by a single byte. In both approaches, no global
reconfiguration is needed. However, the number of buckets,
and hence the size of the arrays, grows with the number of
common ancestors in the type hierarchy.

With PQ-Encoding [16] (PQE), the relative numbering (each
type is encoded by an interval) is combined with the tech-
niques used in PE or BPE. In PQE, the type hierarchy T
is split into subsets of types, called slices. Each slice si

contains the maximal number of types such that, for each
type t ∈ T , the subtypes of t in si can be arranged in a
contiguous interval. Consequently, the encoding of a type
t in PQE consists of: (1) the slice identifier of t, (2) an
identifier idt of t, and (3) for each slice, an interval which
smallest, respectively highest, values corresponding to the
smallest, respectively highest, identifiers of the subtypes of
t contained in the specific slice. Subtyping consists in test-
ing if the identifier of i belongs to the interval of the slice
of j. PQ-Encoding provides the best encoding length out
of all centralized algorithms we know about. With PQE, it
is however impossible to add new types at runtime without
having to re-encode the entire type hierarchy.2 With R&B
encoding [13], ranges and slices are used for encoding in con-
stant time, in an incremental way and with a small encoding
length. The algorithm uses the range numbering technique
of Schubert [14]. The algorithm supports the addition of new
subtypes at runtime, assuming the algorithm of [7]. A com-
plete renumbering is however sometimes needed, in which
case the encoding of the type hierarchy needs to entirely
change.

Our approach can be viewed as a combination of [16] and [7]
with a fundamental difference: we order the ancestors of a
type instead of its descendants. This is key to avoiding
global configuration while using very little memory for the
encoding. As we show through our experiments, our DST al-
gorithm is comparable, in terms of performance, to the best

2The authors present in [17] a variant of the algorithm
(BTS) that overcomes this difficulty in certain situations.
There are however cases where the algorithm still has to
re-encode again some parts of the type hierarchy.

known centralized subtyping algorithm [16]. Yet DST is de-
signed for a dynamic distributed environment where new
types can be added at runtime without global reconfigura-
tion. As we pointed out in the introduction, DST allows for
subtyping tests with objects of newly added types against
the original types of the core hierarchy.

3. TYPE ENCODING
This section describes the encoding we consider to represent
type hierarchies and how this can be used in a distributed
subtyping test. We will show in the next section how our
DST algorithm generates such encoding.

3.1 Types and Subtypes
We first recall here some subtyping notations and definitions
that are needed to describe our encoding scheme.

A type hierarchy is a partially ordered set S = (T,≺), where
T is a set of types {t, u, ...} and ≺ is the reflexive, transitive
and anti-symmetric subtyping relation. Type u is said to
be a subtype of a type t if u ≺ t: t is in this case said to
be a super-type of u. The hierarchy of types present at the
initialization of the system is called the core type hierarchy,
and is denoted by a unique identifier cth(S). Every type
that is later added to the system is attached to one core
type hierarchy.

Figure 1 depicts a type hierarchy S = (T,≺), in which T =
{a, b, c, d, e, f, g, h, i, j, k}; the arrows represent ≺ relations.
For instance, d is a subtype of a, c and d while k is a subtype
of a, b, c, d, e, f, h, i and k. As a consequence, a is a super-
type of d and k, among others.

The following definitions, from [16], capture useful subtyp-
ing information (these are formally defined in Figure 2):

1. A type u is a descendant of a type t if u ≺ t. We denote
by D(t,S) the set of all the descendants of t in S. In
Figure 1, we have for instance: D(a,S)={a,d,e,g,h,i,k}.

2. A type u is an ancestor of a type t if t ≺ u. We denote
by A(t,S) the set of all the ancestors of t in S. In
Figure 1, we have: A(g,S)={a,c,d,g}.

3. A type u is a child of a type t if t 6= u∧u ≺ t and there
is no type v (v 6= u and v 6= t) that is both a subtype
of t and a super-type of u. We denote by C(t,S) the
set of all children of t in S. In Figure 1, C(a,S)={d,e}.

4. A type u is a parent of a type t if t is a child of u. We
denote by P(t,S) the set of all parents of t in S. In
Figure 1, P(g,S)={d}.

5. A root type u of a type hierarchy S is a type that does
not have any parent. We denote by R(S) the set or
root types of a type hierarchy S (a type hierarchy can
have multiple root types). In Figure 1, R(S)={a,b,c}.

6. The level L(t, S) of a type t in a type hierarchy S is
the greatest level of its parents plus one. The level of
the root types is zero. In Figure 1, L(g,S)=2.

Descendants: D(t,S = (T,≺))
def
= {u ∈ T | u ≺ t}

Ancestors: A(t,S = (T,≺))
def
= {u ∈ T | t ≺ u}

Children: C(t,S = (T,≺))
def
= {u ∈ T | u ≺ t and u 6= t and (@v ∈ T |v 6= u and v 6= t and u ≺ v ≺ t)}

Parents: P(t,S = (T,≺))
def
= {u ∈ T | t ≺ u and u 6= t and (@v ∈ T |v 6= u and v 6= t and t ≺ v ≺ u)}

Root Types: R(S = (T,≺))
def
= {ti, ..., tn ∈ T | {P (ti, S), ..., P (tn, S)} = {∅, ..., ∅}}

Level : L(t, S = (T,≺))
def
=

(
0, if t ∈ Root(S);

max(L(p, S)) + 1 | p ∈ P (t, S), otherwise.

Figure 2: Notations

3.2 Slicing
A sub-hierarchy, also called a subtype hierarchy, of a type
hierarchy S, is a partially ordered subset Si = (Ti,≺), where
Ti ⊆ T . A slice si in a type hierarchy is a sequence of types
of the hierarchy.3 (Because a slice is a sequence, we will
sometimes talk about the head and the tail of the slice.) A
slicing of a type hierarchy S = (T,≺) is a set of slices such
that: (1) each pair of slices is disjoint and (2) the union of
all the slices is T . By extension, the root types of a slice si

of a subtype hierarchy Si are the root types of Si.

For example, considering Figure 1, S0 = ({f, i, j, k},≺) and
S1 = ({a, c, d},≺) are subtype hierarchies of S. A possible
slicing of the type hierarchy S = (T,≺) is made of s0 =
g; d; a; c; e; b; h and s1 = k; i; f ; j.

We now define the notion of straight slice which is key to
our encoding scheme. A straight slice si of a type hierarchy
S = (T,≺) is a sequence of types such that, for any type t ∈
T , all the ancestors of t are consecutive in the sequence si.
A straight slicing is a slicing in which each slice is straight.

Table 1 describes a possible straight slicing of the type hier-
archy of Figure 1. In this straight slicing, each straight slice
contains one type only. The first column of Table 1 contains
the different types of the type hierarchy, while the first row
contains the different slices of the straight slicing. Each cell
at position i,j (i > 0 and j > 0) contains the sequence of
ancestors of the type at the head of row i for the slice at the
head of column j.

As we will see later, the goal of our algorithm will be to
generate a small number of slices, for this will be the secret
to a frugal encoding. A slicing made of s0 = g; d; a; c; e; b; h
and s1 = k; i; f ; j is much more frugal (Figure 3 and Table 2)
than that of Table 1 (Figure 1). In Table 2, the sequences
of ancestors of any type are consecutive in each slice si. On
the other hand, the following slicing of the type hierarchy
of Figure 1 is not a straight one: s0 = a; b; c; d; e; f , s1 =
g; h; i; j; k. We can clearly see here that the ancestors of type
f are not consecutive in s0 (i.e., c and f are not consecutive
in s0).

3Our terminology slightly differs from the one considered
in [15, 16] in that we consider a slice to be a sequence instead
of a set.

d e f

g h i j

a cb

k

Figure 3: Two straight slices of the type hierarchy
of Figure 1 (depicted by the dashed and plain poly-
gons)

3.3 Encoding
Subtyping tests are not performed directly on the types
themselves but on an encoded representation of them. We
call the latter the encoding of a type. We use the straight
slicing notion to encode types. The encoding of a type t of
a type hierarchy S consists of:

1. The identifier cth(S) of the core type hierarchy of S.

2. The type identifier idt ∈ Z of t. This identifier cor-
responds to the position of t in the straight slice si

to which t belongs and is denoted st
i. Identifier idt is

unique in st
i.

3. The identifier idsi ∈ N of the straight slice si to which
t belongs. This identifier is denoted idt

si
.

4. For each straight slice si, the intervals It
si

correspond-
ing to the smallest, respectively the highest, type iden-
tifier of the ancestors of type t in each straight slice si.

As a straight slicing ensures that the ancestors of any type
t in a specific straight slice are consecutive, there is at most
one interval It

si
for each slice si that corresponds to the

union of the identifiers of the ancestors of the parents of t
(we will see in Section 4.6 that this property might not be
fulfilled when new types are added at runtime to the core
type hierarchy cth(S); we will however explain how we deal
with this situation).

s0 = a s1 = b s2 = c s3 = d s4 = e s5 = f s6 = g s7 = h s8 = i s9 = j s10 = k
a a ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
b ∅ b ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
c ∅ ∅ c ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
d a ∅ c d ∅ ∅ ∅ ∅ ∅ ∅ ∅
e a b c ∅ e ∅ ∅ ∅ ∅ ∅ ∅
f ∅ ∅ c ∅ ∅ f ∅ ∅ ∅ ∅ ∅
g a ∅ c ∅ ∅ ∅ g ∅ ∅ ∅ ∅
h a b c d e ∅ ∅ h ∅ ∅ ∅
i a b c ∅ c f ∅ ∅ i ∅ ∅
j ∅ ∅ c ∅ ∅ f ∅ ∅ ∅ j ∅
k a b c d e f ∅ h i ∅ k

Table 1: A straight slicing of the type hierarchy of Figure 1

s0 = g; d; a; c; e; b; h s1 = k; i; f ; j
a a ∅
b b ∅
c c ∅
d d; a; c ∅
e a; c; e; b ∅
f c f
g g; d; a; c ∅
h d; a; c; e; b; h ∅
i a; c; e; b i; f
j c f ; j
k d; a; c; e; b; h k; i; f

Table 2: A straight slicing of the type hierarchy of Figure 3

We describe in Table 3 the encoding of the straight slicing of
Table 1 for the type hierarchy of Figure 1. For simplicity, we
do not mention cth(S) (which is the same for all types). The
first column contains the different types of the type hierarchy
while the first row depicts the straight slices of the straight
slicing. The second column contains the identifier of the type
together with its slice identifier. The other cells of Table 3
contain the intervals of the identifiers of the ancestors of the
type at the head of the row for the straight slice at the head
of the column. We finally present in Table 4 the encoding
of the slicing of Table 2 for the type hierarchy of Figure 1.
Again, for simplicity, we do not mention cth(S) (which is
the same for all types).

Considering Table 3, we use 13 bits to encode type a (with-
out considering cth(S)). Indeed, ida = 0 is encoded with 1
bit, idt

si
= 0 is encoded with 1 bit and Ia

si
can be encoded

with 11 bits. The biggest encoding is for types i, j and
k and equals 16 bits. To encode the entire type hierarchy,
162 bits are used (without taking into account the length of
cth(S)). Considering Table 4, we simply used 6 bits to en-
code type g. Indeed, idg = 0 is encoded with 1 bit, idg

si
= 0

is encoded with 1 bit and Ig
si

= [0, 3], ∅ can be encoded with
4 bits (1 bit for 0, 2 bits for 3 and 1 for ∅). The maximal
encoding length is for types e and i with a total of 10 bits.
The encoding length of the entire type hierarchy is 86 bits
(we will discuss in Section 5.5 how we can reduce the size of
this encoding further).

3.4 Distributed Subtyping
We show now how our encoding can be used in a distributed
fashion within a system of processes p1, p2,..,pn,... The num-
ber of these processes is not bounded and processes can leave
(e.g., crash) and join the system (e.g., recover) at any time.
Applications running on different processes exchange typed
objects.

To enable distributed subtyping tests, it is not necessary
for a process to send, together with each object, the entire
encoding of the type of the object. It is only necessary to
send (1) the identifier cth(S) (see Section 5) as well as (2)
the intervals of the ancestors (It

si
) of the type of the object

(ordered according to their respective slice identifier). On
the other hand, a process that needs to perform a subtyping
test on a type does not need to maintain the entire encoding
of this type. It only needs to know (1) cth(S) as well as (2)
the set containing, for each type t, the pairs < idt, id

t
si

>.

To test if a type u is a subtype of another type t (respectively
belonging to type hierarchies Su and St), we simply check
the following property:

u ≺ t ⇔ (idt ∈ Iu
st

i
∧ cth(Su) = cth(St)) (1)

We discuss here few examples of subtyping tests considering
first the the encoding of Table 3 and then the one of Ta-
ble 4 (we omit cth(S) in both cases as we consider only one
hierarchy.).

With the encoding of Table 3, when a process p1 receives,
together with an object O1, the encoding information
∅,[0,0],∅,∅,∅,∅,∅,∅,∅,∅,∅, p1 can test if O1 is of type a. This is
performed by checking if ida ∈ Ib

sa
i
, i.e., 0 ∈ Ib

s0 = ∅: O1 is

hence declared not to be of type a. When p1 receives an ob-
ject O2 with [0,0],[0,0],[0,0],[0,0],[0,0],[0,0],∅,[0,0],[0,0],∅,[0,0],
p1 can test if the type of O2 is a subtype of e by checking if
ide ∈ Ik

se
i

i.e., 0 ∈ Ik
s4 = [0, 0]. Hence O2 is declared subtype

of e.

Consider now subtyping tests with the encoding of Table 4.
For instance, if a process p1 receives an object O1 with
[5,5],∅, p1 can test if O1 is of type a by checking if ida ∈ Ib

sa
i
,

idt, idt
si

s0 = a s1 = b s2 = c s3 = d s4 = e s5 = f s6 = g s7 = h s8 = i s9 = j s10 = k

a 0,0 [0,0] ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
b 0,1 ∅ [0,0] ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
c 0,2 ∅ ∅ [0,0] ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
d 0,3 [0,0] ∅ [0,0] [0,0] ∅ ∅ ∅ ∅ ∅ ∅ ∅
e 0,4 [0,0] [0,0] [0,0] ∅ [0,0] ∅ ∅ ∅ ∅ ∅ ∅
f 0,5 ∅ ∅ [0,0] ∅ ∅ [0,0] ∅ ∅ ∅ ∅ ∅
g 0,6 [0,0] ∅ [0,0] ∅ ∅ ∅ [0,0] ∅ ∅ ∅ ∅
h 0,7 [0,0] [0,0] [0,0] [0,0] [0,0] ∅ ∅ [0,0] ∅ ∅ ∅
i 0,8 [0,0] [0,0] [0,0] ∅ 0 [0,0] ∅ ∅ [0,0] ∅ ∅
j 0,9 ∅ ∅ [0,0] ∅ ∅ [0,0] ∅ ∅ ∅ [0,0] ∅
k 0,10 [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] ∅ [0,0] [0,0] ∅ [0,0]

Table 3: The encoding of the type hierarchy of Figure 1 for the straight slicing of Table 1

idt, idt
si

s0 = g; d; a; c; e; b; h s1 = k; i; f ; j

a 2,0 [2,2] ∅
b 5,0 [5,5] ∅
c 3,0 [3,3] ∅
d 1,0 [1,3] ∅
e 4,0 [2,5] ∅
f 2,1 [3,3] [2,2]
g 0,0 [0,3] ∅
h 6,0 [1,6] ∅
i 1,1 [2,5] [1,2]
j 3,1 [3,3] [2,3]
k 0,1 [1,6] [0,2]

Table 4: The encoding of the type hierarchy of Figure 1 for the straight slicing of Table 2

i.e., if 2 ∈ Ib
s0 = [5, 5]. Hence O1 is declared not to be of

type a. On the other hand, if p1 receives an object O2 with
[1,6], [0,2], p1 can test if the type of O2 is a subtype of e
by checking if ide ∈ Ik

se
i

i.e., 4 ∈ Ik
s0 = [1, 6]. Hence O2 is

declared subtype of type e.

4. THE ALGORITHM
This section describes how we obtain a straight slicing of
a type hierarchy through our DST algorithm. The straight
slicing obtained is then used to generate the encoding of the
types that are transferred with the objects exchanged in the
distributed system (as we just explained at the end of the
previous section).

In short, the goal of our DST algorithm is to create a min-
imal number of straight slices that include all types of the
hierarchy. As we will explain, the idea is to start from the
root types, put each within a singleton slice, which is in-
herently straight, and then add other types of the hierarchy
to existing straight slices, as long as the addition leave the
slices straight. If not, new straight slices are added. The
challenge is to minimize the number of new straight slices
that are created. To simplify our presentation, we first as-
sume a static hierarchy and later discuss how to dynamically
add new types.

Our algorithm is decomposed into five main phases (Fig-
ure 4) (1) the bootstrapping, (2) the identification of the
conflicting straight slices of a type (which we explain be-
low), (3) the addition of this type into each of its conflict-
ing straight slices, (4) the concatenation of the conflicting
straight slices in which a type has been added and (5) the
finalization. (The pseudo-code of the overall algorithm is
given in Figure 5):

Both the bootstrapping and the finalization are done once,

respectively at the beginning of the algorithm and at the
end of it, while the other phases are done for each type of
the hierarchy.

Phase 2
Conflicting Slices

Phase 3
Addition

Phase 3
New Slice

Phase 4
Concatenation

Phase 5
Finalization

Phase 1
Bootstrapping

Figure 4: The different phases of DST

4.1 Bootstrapping
During the bootstrapping phase, each root type of the type
hierarchy is added into a new distinct empty straight slice.
The resulting slices, denoted by s0, s

′
0, ..., are initialized with

the same slice identifier (ids0 , ids′
0
, ... = 0) (these eventually

get unique identifiers). For instance, if we consider the type
hierarchy of Figure 1, the three root types, a, b and c, are
put within three different straight slices: s0 = a, s′

0 = b and
s′′
0 = c.

4.2 Identification
After the bootstrapping phase, each type t of the type hier-
archy S, starting from level 1 up to the highest level of S,
is added to each of the straight slices of the set of conflict-
ing straight slices, denoted by confSlices(t) (Figure 6). We
determine this set as follows: we consider all the straight
slices that contain at least one ancestor of t, and we se-
lect those that have the the maximum identifier idsi : the
selected ones are the conflicting straight slices of t. There
might be several of these (which explains why we consider a
set confSlices(t)) because several straight slices might have
the same identifier, in particular after the bootstrap.

1: {The set containing the different straight slices}
2: set sslices = {};

3: {Bootstrapping phase}
4: function boostrapping();
5: for all t ∈ R(S) do
6: new sx; idsx = 0;
7: add t in sx;
8: add sx in sslices;
9: end for

10: end

11: {Finalization phase}
12: function finalize()
13: for all si ∈ sslices do
14: if si contains only root types then
15: append(si,s0); // where ids0 = 0
16: end if
17: end for
18: for all si ∈ sslices do
19: int id = 0;
20: for all t in si do
21: idt = id;
22: idt

si
= idsi ;

23: id++;
24: end for
25: end for
26: for all si ∈ sslices do
27: for all t in si do
28: compute It

si
;

29: end for
30: end for
31: end

32: {DST algorithm}
33: function encode
34: boostrapping();
35: for all level l > 0 of cth(S) do
36: for all t at level l do
37: boolean possibleToAdd = add(t);
38: if possibleToAdd then
39: array slices = [];
40: for all si ∈ confSlices(t) do
41: if t ∈ si then
42: add si in slices;
43: end if
44: end for
45: concat(t,slices);
46: else
47: new sx; idsx = max(idTx ∈ sslices) + 1;
48: add t in sx;
49: add sx in sslices;
50: end if
51: end for
52: end for
53: finalize();
54: end

Figure 5: Encoding a type hierarchy

For instance, if we consider the type hierarchy of Figure 1,
after the bootstrapping phase leading to the creation of
straight slices {s0, s

′
0, s

′′
0}, confSlices(d) is {s0, s

′′
0}. Indeed,

both s0 and s′′
0 contain ancestors of d (respectively a and c)

and their slice identifier (i.e., ids0 and ids′′
0
) is 0.

4.3 Addition
Once the set confSlices(t) has been computed, we add t into
the straight slices si of confSlices(t). The addition of t into
a straight slice si of confSlices(t) is possible only if all the
ancestors in si of any type u in S remain consecutive after
the addition of t.

This condition implies that t can only be added at the head
(resp. tail) of si (remember that the head/tail of a straight
slice corresponds to the first/last element of the correspond-
ing sequence of types). Indeed, if t is squeezed in between
si, t will break the consecutivity between a type u and its
ancestors in si and si will not remain straight.

Adding t at the head (resp. tail) of si implies that the head
(resp. tail) of si must be an ancestor of t (otherwise t is not
consecutive with its ancestors in si as si contains at least
one ancestor of t, see Section 4.2). However, the fact that
the head or the tail of si is an ancestor of t does not imply
that all the ancestors of t are consecutive in si. For instance,
consider the straight slice sf = b; d; e; c; a which corresponds
to the output of the algorithm for the type hierarchy of
Figure 7. Consider a type t which is a subtype of d and c.
Even if the head and the tail of sf are ancestors of t, it is
not possible to add t at the head/tail of sf , because t will
not be consecutive with all its ancestors c, a, b, d as e is in
between d and c. To test this condition, we check if all the
parents of t are consecutive (i.e., if the set of consecutive
ancestors of t in si contains all the parents of t).

At the end of this phase, t has been added into: (1) one
straight slice, (2) no straight slice or (3) several straight
slices. If t has been added into several straight slices of
confSlices(t), we proceed to the concatenation of the straight
slices in which t has been added (see below).4 On the other
hand, if t was not added into any of the straight slices
of confSlices(t) (because the straight slice does not remain
straight), a new straight slice for t is created, its slice iden-
tifier is set to the maximum slice identifier of the straight
slices in the current straight slicing plus one. Finally, in the
case where t has been added into one straight slice only, the
algorithm proceeds with the identification of the conflicting
straight slices of a new type u (i.e., the second phase) and if
all the types of the hierarchy have gone through the addition
phase, proceeds to the finalization phase.

Consider for instance the type hierarchy of Figure 1 where
the straight slicing up to type c corresponds to {s0, s

′
0, s

′′
0} =

{a, b, c} and confSlices(d) contains s0 = a and s′′
0 = c (as

presented above). We can add d into s0 and s′′
0 , as both a

and c are ancestors of d. The resulting straight slices are
s0 = d; a and s′′

0 = d; c.

4Note that if a type t is added to multiple straight slices
of confSlices(t), the resulting straight slicing becomes non
disjoint (as t belongs to more than one straight slice). This
is, however, temporary, as the concatenation phase makes
the slicing disjoint again.

1: {Retrieval of the consecutive ancestors of a type in a
straight slice}

2: function getConsAncestors(t,si)
3: set ancestors = {};
4: int pos = 0;
5: if head(si) = t then
6: while ((pos < sizeof(si)) ∧ (u at position pos in si

∈ P(t,S))) do
7: add u in ancestors;
8: pos++;
9: end while

10: else
11: pos = sizeof(si)-1;
12: while ((pos ≥ 0) ∧ (u at position pos in si ∈

P(t,S))) do
13: add u in ancestors;
14: pos–;
15: end while
16: end if
17: return ancestors;
18: end

19: {Test if a slice is straight}
20: function isSliceStraight(t,si)
21: if (t ∈ si ∧ P(t,si) ∈ getConsAncestors(t,si)) then
22: return true;
23: else
24: return false;
25: end if
26: end

27: {Addition phase}
28: function add(t)
29: boolean result = false;
30: for all si ∈ confSlices(t) do
31: tc new copy of t;
32: if head(si) ∈ A(t,S) then
33: add tc to the head of si;
34: else
35: if tail(si) ∈ A(t,S) then
36: add tc to the tail of si;
37: end if
38: end if
39: if isSliceStraight(tc, si) then
40: result = true;
41: else
42: remove tc from si;
43: end if
44: end for
45: return result;
46: end

Figure 6: Adding a new type t into confSlices(t)

c d

e

a b

Figure 7: A subtype hierarchy that can be concate-
nated

4.4 Concatenation
We consider now the straight slices of confSlices(t) in which
t has been added and we concatenate them, one by one (to
reduce the total number of straight slices). The pseudo-code
of this concatenation is outlined in Figure 8 and explained
below.

We only concatenate two straight slices si and sj if the an-
cestors of any type u in S remain consecutive after the con-
catenation. Therefore, the straight slices si and sj are only
concatenated at their head/tail and we denote this head/tail
by ht (indeed, if sj is squeezed inside si, this will break the
consecutivity between a type u and its ancestors in si). If
we consider the previous example where d was added into
the straight slicing {s0, s

′
0, s

′′
0}, the straight slices that are

concatenated are s0 = d; a and s′′
0 = d; c. In this example,

we concatenate s0 and s′′
0 at their respective heads as this

will not break the consecutivity of types a, b, c, d (as the only
ancestor of a is a, of b is b, of c is c and d is consecutive with
d, a and c).

To check that the concatenation of si with sj at ht does not
break any consecutivity between the ancestors of any type
in si, sj we make sure that: (1) ht is an ancestor of t and
(2) for all types t that are part of the straight slicing (i.e.,
that have been added either in the bootstrapping or in the
addition phase) and that have ancestors in both si and sj

that these ancestors are consecutive with ht.

If the conditions (1) and (2) are fulfilled, the concatenation
of two straight slices si, sj at ht is performed as follows (in
the case where si, sj do not contain only root types and t):

• If ht corresponds to the head (resp. tail) of si and
to the tail (resp. head) of sj , t is removed from sj

(remember that t was added in sj during the previous
phase) and we concatenate sj with si (resp. si with
sj). For instance, if we have two straight slices s0 =
t; u; v and s1 = w; x; t, the concatenation of s0 with s1

is w; x; t; u; v.

• If ht corresponds to the head (resp. the tail) of both
si and sj , t is removed from sj , and we concatenate
reverse(sj) with si (resp. si with reverse(sj)), where
reverse(sj) corresponds to the reversed sequence of sj

(e.g., reverse(a; b; c; d) corresponds to d; c; b; a). For
instance, if we have two straight slices s0 = t; u; v
and s1 = t; w; x, the concatenation of s0 with s1 is
x; w; t; u; v.

1: {Test if it is possible to concatenate two straight slices}
2: function testConcat(u, v, types)
3: for all k ∈ types do
4: if (u /∈ A(k,si) ∨ v /∈ A(k,sj)) then
5: return false;
6: end if
7: end for
8: return true;
9: end

10: {We concatenate different straight slices together}
11: function concat(t,slices)
12: while sizeof(slices) 6= 1 do
13: si = slice[0];sj = slice[1];
14: array types = [];
15: for all si ∈ sslices do
16: for all u ∈ si do
17: if ((A(u,S) ∩ (si ∪ sj)) 6= ∅) then
18: add u in types;
19: end if
20: end for
21: end for
22: if (head(si) ∈ A(t,S) ∧ head(sj) ∈ A(t,S)) then
23: if testConcat(head(si),head(sj),types) then
24: remove t in sj ; si = (reverse(sj);si);
25: else
26: idsj = max(idsx ∈ sslices) + 1;
27: remove sj from slices;
28: end if
29: else
30: if (tail(si) ∈ A(t,S) ∧ tail(sj) ∈ A(t,S)) then
31: if testConcat(tail(si),tail(sj),types) then
32: remove t in sj ; si = (si;reverse(sj));
33: else
34: idsj = max(idsx ∈ sslices) + 1;
35: remove sj from slices;
36: end if
37: else
38: if (head(si) ∈ A(t,S) ∧ tail(sj) ∈ A(t,S))

then
39: if testConcat(head(si),tail(sj),types) then
40: remove t in sj ; si = (sj ;si);
41: else
42: idsj = max(idsx ∈ sslices) + 1;
43: remove sj from slices;
44: end if
45: else
46: if (tail(si) ∈ A(t,S) ∧ head(sj) ∈ A(t,S))

then
47: if testConcat(tail(si),head(sj),types)

then
48: remove t in sj ; si = (si;sj);
49: else
50: idsj = max(idsx ∈ sslices) + 1;
51: remove sj from slices;
52: end if
53: end if
54: end if
55: end if
56: end if
57: end while
58: end

Figure 8: Concatenating straight slices

In the case where both straight slices contain only root types
and t, the concatenation is achieved as follows: (1) t is re-
moved from sj and (2) if t is the head (resp. the tail) of
si, the root types of sj that have another child than t in
the type hierarchy S are concatenated at the tail (resp. at
the head) of si. For example, if we have two straight slices
s0 = t; u; v and s1 = t; w; x (in which u, v, w, x are root types
and w has another child than t) the concatenation of s0 with
s1 is t; u; v; x; w.

At the end of the concatenation, the slice identifier of the
concatenated straight slice is set to the lowest slice identifier
of the straight slices that have been concatenated.

If it is not possible to concatenate two straight slices si and
sj , a unique slice identifier is set for sj . This is important
because sj might be a straight slice containing only a root
type. Remember that after the bootstrapping, all straight
slices are assigned the identifier idsi = 0.

To illustrate the concatenation of two straight slices, con-
sider the straight slices s0 = d; a and s′′

0 = d; c which cor-
respond to the output of the algorithm at the end of the
addition of d into confSlices(d) (as presented above). The
concatenation of s0, s

′′
0 is possible and the new concatenated

slice is s0 = d; a; c. It is then possible to add e in both s0, s
′
0

as both type c and type b are ancestors of e. Hence, at the
end of the addition of e, we end up with: s0 = d; a; c; e and
s′
0 = e; b. It is furthermore possible to concatenate s0 and

s′
0 as the concatenation lets the ancestors of a, b, c, d be con-

secutive in the new straight slice. Indeed, the ancestors of
a, b, c are respectively a, b, c, and d remains consecutive with
d, a, c while e is consecutive with a, b, c, e. The new concate-
nated straight slice s0 corresponds to d; a; c; e; b. If now we
consider adding f , we compute confSlices(f) = s0. It is not
possible to add f in s0 as neither the head of s0 (i.e., d) nor
the tail of s0 (i.e., b) are ancestors of f . Thus a new straight
slice is created: s1 = f .

4.5 Finalization
We first check that there is no straight slice containing only
root types and which slice identifier is equal to 0 (this case
might happen if the type hierarchy contains root types that
do not have any descendants). If such straight slices
su, sv, ..., sn exist, they are appended at the tail of the first
straight slice si that does not contain only root types. If
si does not exist (i.e., the type hierarchy contains only root
types), the straight slices sv,, sn are appended at the end
of su. In this case, appending straight slices at the end
of another straight slice does not break any consecutivity
between the ancestors of any type t of the type hierarchy,
as the straight slices that are appended contain only types
that do not have any descendants.

Then, we construct the encoding of each type of the hierar-
chy, i.e., for each type t we assign: (1) its identifier idt, (2)
its slice identifier idt

si
and (3) for each slice si, its interval

of ancestors It
si

.

To assign an identifier to a type in a straight slice si, we
simply parse the sequence si starting at its head up to its
tail and we assign a unique identifier idt to each item t of si

incrementally. The slice identifier of a type t corresponds to

the slice identifier of the straight slice t belongs to. Finally,
the computation of It

si
consists in the union of the identifiers

of the ancestors of the parents of t.

For example, if the type f was the last type of the type
hierarchy of Figure 1, the encoding of the resulting straight
slicing = {s0, s1} where s0 = d; a; c; e; b and s1 = f would
be the one of Figure 5. For instance, the identifier of f is 0
(because f is at the first position in s1), its slice identifier is
1 and the interval of its ancestors in s0 is [2] and in s1 is [0].

idt, idt
si

s0 = d; a; c; e; b s1 = f

a 1,0 [1] ∅
b 4,0 [4] ∅
c 2,0 [2] ∅
d 0,0 [0,2] ∅
e 3,0 [1,4] ∅
f 0,1 [2] [0]

Table 5: The encoding of the type hierarchy of Fig-
ure 1 up to type f

4.6 Addition of New Types at Runtime
So far, we assumed that a process can only perform subtyp-
ing tests against types in the core type hierarchy cth(S).
Modulo one modification we explain now, DST supports
the addition of new types at runtime and subtyping tests
against those new types. The addition procedure is exactly
the same as before except that we do not concatenate the
straight slices anymore. This is justified by the fact that,
when successful, a concatenation always implies changing
the slice identifier of at least one straight slice. Since we
want to preserve the encoding of the types that belong to
such straight slices, we cannot change the slice identifier.
In practice, this means that we lost the optimization that
gives us the concatenation (in reducing the total number of
straight slices).

If it is possible to add t into a straight slice sj ∈ confSlices(t),
then its slice identifier is idsj and its It

si
is determined by the

union of the intervals of the parents of t for all si in S and, if
si = sj , also with the type identifier of t. The type identifier
of t is the highest type identifier of sj plus one, respectively
to the lowest type identifier of sj minus one, depending if t
is added at the tail, respectively the head of sj . If it is not
possible to add t into an existing straight slice, then a new
straight slice is created (and its slice identifier is set to the
highest slice identifier plus one).

To illustrate the idea, consider the type hierarchy of Fig-
ure 9. In that case, the newly added type l is both a sub-
type of g and k. The conflicting slice of l with the highest
identifier is s1 and, consequently, the new slicing of the type
hierarchy is made of s0 (which remains the same) and s1 =
l; k; i; f ; j.

It is not possible to concatenate s0 and s1 for that would not
preserve the encoding of one of the original straight slices.
Remember that we want to preclude global reconfigurations.
The encoding of l is thus the following: idl = -1, idl

s1 = 1,

Il
s0 = Ig

s0 ∪ Ik
s0 = [0,3] ∪ [1,6] = [0,6], Il

s1 = Ig
s1 ∪ Ik

s1 ∪ idl

= ∅ ∪ [0, 2] ∪ {−1} = [-1,2].

We also add to the type identifier a unique identifier based

d e f

g h i j

a cb

k

l

Figure 9: Addition of a new type l to the type hier-
archy of Figure 1

on the process name. This is necessary as, concurrently,
another process may create another new type u which shares
the same parents with t, and hence is assigned the same
identifier as t. In this case, if a process performs a subtyping
test against t, the subtyping tests would succeed even if the
process receives an object of type u (whereas u is not a
subtype of t). We prevent this using local information based
on the process name.

Through the modification we just presented, it is not only
possible to test if new added types are subtypes of types of
the core type hierarchy cth(S), but also to perform subtyp-
ing tests against those new types. When a new type t is
added into the system, we do not change the encoding of
the types of cth(S), while still ensuring that the identifier of
t is locally unique.

5. IMPLEMENTATION
We implemented a set of (40) Java 1.5 classes (1) to encode
a type hierarchy according to DST, (2) to serialize Java ob-
jects into a standard output stream, along with their type
encoding information and/or with their bytecode, (3) to de-
serialize such objects from a standard input stream as well
as (4) to exchange encoded objects using a type-based pub-
lish/subscribe scheme (which illustrates the possibilities of
distributed subtyping). The complete source code and APIs
can be downloaded at
http://lpdwww.epfl.ch/baehni/dst.tgz and an ant file is avail-
able in the archive.

In the following, we first illustrate, with code examples, how
the DST APIs can be used by Java application program-
mers. We then describe the general design underlying our
implementation of DST and the associated serialization ser-
vices. In particular, we give some details of the most relevant
classes and packages.

5.1 APIs
To serialize and deserialize objects, the programmer creates
a new instance of the basic class DSCTH to construct and
encode the type hierarchy, specified by an array of classes
that includes the leaves of the hierarchy. This is done both
at the sender and receiver sides.

Class[] leaves = {Dummy.class};

DSCTH dscth = new DSCTH();

dscth.constructTypeHierarchy(leaves);

dscth.encode();

Once the type hierarchy is encoded, a process can serialize
an object 5 in order, for instance, to send it through a TCP
socket, sdrSocket. We illustrate this in the following through
a Dummy object (see Figure 10).

Dummy obj = new Dummy();

DSSerializer serial = new DSSerializer(dscth);

OutputStream outStrm = sdrSocket.getOutputStream();

serial.serialize(obj, outStrm);

outStrm.flush();

At the other end of the socket, a receiver process may then
obtain the object, encapsulated in a DSObject, through the
wire (e.g., rcvSocket).

DSSerializer serial = new DSSerializer(dscth);

InputStream inStrm = rcvSocket.getInputStream();

DSObject newEvent = serial.deSerialize(inStrm);

It is then possible, out of the received instance of DSObject,
to perform subtyping test over the encapsulated object:

newEvent.getType().

isSubTypeOf(dscth.getGenericType("Dummy"));

The isSubTypeOf() method returns true or false depend-
ing on whether the object encapsulated in the DSObject in-
stance is of type the one given as a parameter.

A more sophisticated type-based publish/subscribe can also
be performed using our APIs as follows. The publisher ex-
ecutes the following in order to serialize an object (instead
of the previous serialize() method above):

serial.serialize(serFormatTypeObj, obj, outStrm);

A subscriber might express interests in certain types, such
as type b (see Figure 10) by executing the following:

dscth.addInterest(dscth.getGenericType("b"));

A subscriber that receives an object deserializes it by per-
forming the following:

Object newEvent = subSerial.deSerialize(inStrm);

Subtyping tests against the interests of the subscriber are
performed directly during the deserialization phase. If these
tests are successful, the serialized object is returned; other-
wise the deSerialize() method returns null.
5The object must implement the Serializable interface.

5.2 Design Overview
Our implementation is structured into several main pack-
ages: (1) algorithms, (2) serialization, (3) utils and (4) ex-
ceptions. Figure 11 depicts the dependencies between these
packages. The serialization package uses the algorithms
package to serialize new Java objects. The exceptions and
utils packages are used by all the others. We designed our
APIs in a generic way, i.e, using Java interfaces in order not
to be tied to a specific implementation (of the algorithm,
or of the serialization mechanism). We overview now the
packages, together with their classes.

utils exceptions

algorithms

serialization

Figure 11: Dependencies between the packages

5.3 Algorithms Package
This is the main package of our implementation. It contains
the classes used to create a type hierarchy, to encode it and
to perform subtyping tests using these types.

GenericCTH. This is the main class of this package and is
a super-class of StringCTH, DSCTH and AssemblyCTH, as
presented in Figure 12.

GenericCTH

StringCTH DSCTH AssemblyCTH

Figure 12: GenericCTH inheritance tree

The GenericCTH abstract class encodes the core type hi-
erarchy. This is achieved through the constructTypeHierar-
chy() method. The parameter of this method is an array
of Class which represents the leaves of the hierarchy. Dur-
ing the creation process, a set of Levels is created. Each
Level contains an array of Class corresponding to the classes
at the specified level of the type hierarchy. GenericCTH
also exports method getGenericType(). This method is re-
defined in the subclasses and returns a GenericType (see
Figure 13). As we will see below, the different classes re-
defining GenericCTH are responsible for encoding the type
hierarchy. GenericCTH also defines the identifier cth(S)
used during the subtyping tests. This identifier corresponds
to the 128 bits hashcode of the concatenation of the name
of the root types of the hierarchy S.

aa bb cc dd ee ff

jjiihhgg

ll

kk

mm

b c Serializable

Dummy

Figure 10: Type hierarchy of the Dummy class used in our performance tests

It is possible (for a subscriber) to express interest in spe-
cific classes by giving them as a parameter of the addInter-
est() method of GenericCTH. Hence, when the deserializa-
tion happens, the object to deserialize is only returned in
case its type was subscribed to, as described in Section 5.4.

The two following classes are provided for performance com-
parisons.

StringCTH. This class defines the encode() method of Gener-
icCTH, which implements the string encoding alternative
against which we compared our protocol. It also redefines
the getGenericType(), returning an instance of a StringType.
This instance can then be used to check whether a String-
Type is a subtype of another StringType or not.

AssemblyCTH. This class represents the code downloading
alternative and has an empty implementation. Recall that
serialization and deserialization using this alternative does
not require a core type hierarchy to be encoded, since it
relies directly on the native core type hierarchy of Java.

DSCTH. This class implements our DST algorithm, as pre-
sented in Section 4. It handles several data structures, such
as DSEncodingType and DSSlice, explained below. The
main phases described in Section 4 are implemented: the
bootstrapping() method; the finalization() method; the get-
ConfSlices() method, used to get the conflicting straight
slices; the merge() method, used to concatenate the different
straight slices; and the main encoding method, encode().

Throughout the encoding, DSCTH uses DSEncodingType
structures to represent a type in cth(S). However, at the
end of the encoding, only objects of DSType (explained in
the following) are manipulated. Straight slices are repre-
sented and manipulated through DSSlice objects, which we
describe below.

DSEncodingType. This is the most complex data structure
used in our implementation. It basically represents an item
of a modified double linked list. The double linked list is
used for implementing the sequence of types in a straight
slice.

An instance of a DSEncodingType stores the set of its par-
ents, as well as the straight slice (DSSlice) it belongs to.
This is used to implement the different methods for (1) re-
trieving the ancestors of a type, (2) retrieving the ancestor
intervals, (2) retrieving the straight slice to which the type
belongs, and (3) printing its encoding.

DSSlice. A DSSlice object represents a straight slice. It
contains the different types that have been added to this
straight slice and hence can provide useful information: the
head/tail of the straight slice and the root types.

GenericType. This class represents a generic type contain-
ing the necessary information for the subtyping tests. Again,
this class is abstract and redefined by StringType and DSType
which we describe below.

GenericType

StringType DSType

Figure 13: GenericType inheritance tree

StringType. This class represents the generic type used when
the string representation is considered for comparison pur-
poses. It implements the isSubTypeOf() method to compare
the ancestors of one StringType with the others, supplied
as parameters. The ancestors are stored in a string, as ex-
plained in Section 2.

DSType. This class represents a type according to our DST
algorithm. The class stores the cth(S), the identifier of the
type, as well as a Parents data structure (see below). Simi-
larly to StringType, the class implements the isSubTypeOf()
method. This is simply done by checking if the identifier of
the type is contained in the Parents structure of the DSType

given as a parameter.

Parents. This class stores the intervals of the parents of
a type for all the different straight slices. An interval is
basically an array of pairs of integers. During the serializa-
tion process, such integer pairs are converted into shorter
bit arrays using the integer encoding technique described in
Section 5.5.

GenericObject. A generic object represents the data struc-
ture manipulated by the serialization process. The standard
deserialization returns a GenericObject instead of the tra-
ditional typed-object. A generic object, in its initial form,
only stores the thid(S) and a byte array representing the
serialized object. Its subclasses are responsible for storing
the ancestors of the type of the object.

GenericObject

StringObject DSObject Assembly
Object

Figure 14: GenericObject inheritance tree

AssemblyObject. An AssemblyObject contains simply the
Java Object it represents.

StringObject. A StringObject contains the necessary infor-
mation to perform subtyping tests over an object with a
string representation. Basically in addition to the thid(S)
and the data, it stores also a string containing the ancestors
of the type of the object. Moreover this class redefines the
getType() method in returning a StringType.

DSObject. The DSObject class extends the GenericObject
one for supporting the DST algorithm. It stores (with the
thid(S) and the data) the integer intervals of its ancestors.
Moreover it redefines the getType() method to return a
DSType that can be used for the subtyping tests (via the
isSubTypeOf() method).

5.4 Serialization Package
This package contains the classes needed for serializing and
deserializing a Java object, for each of the approaches we
consider: (1) AssemblySerializer (code downloading approach),
(2) StringSerializer (string representation approach) and (3)
DSSerializer. The first two approaches, as we pointed out
earlier, are used in our performance comparisons.

All serializers inherit from the Serializer class (see Figure 15).
This abstract class implements the basic serialize(), and de-
Serialize() methods together with the specific deSerialize()
method used for performing type-based publish/subscribe
interactions.

String
Serializer

Assembly
Serializer DSSerializer

Serializer

Figure 15: Serializer inheritance tree

// Basic (de)serialization methods

boolean serialize(Serializable s,

OutputStream outStream);

GenericObject deSerialize(InputStream inStream);

// Type-based (de)serialization methods

boolean serialize(byte serializationFormat,

Serializable s,

OutputStream outStream);

Object deSerialize(InputStream inStream);

The first method serializes an object that provides the stan-
dard java.io.Serializable interface to an output stream of
bytes, such as the one provided by the getOutputStream()
method of the standard java.net.Socket class. The second
method is then called by a process at the other endpoint of
such a byte stream to deserialize the object into a Generi-
cObject. The two last methods are used for the implementa-
tion of the type-based publish/subscribe: the third method
serializes an object according to a specific serialization for-
mat presented below while the last method returns (a) the
deserialized object in case its type is a subtype of at least
one of the expressed types of interest, or (b) a null reference
otherwise.

All methods call in turn specialized methods that are re-
sponsible for the serialization and the deserialization of type
encodings (serializeType() and deSerializeType(), respectively).
The actual serialization and deserialization of objects rely on
the standard Java support for object serialization.

Serialization Format Options. The output generated by the
serialize() method of our type-based publish/subscribe APIs
follows one of three possible serialization format options,
supplied as an argument (i.e., serializationFormat):

• serFormatTypeObjClasses. In this format, the serial-
ization of an object includes its type encoding (except
for the case of the code downloading approach), the se-
rialized object data and the corresponding class code
(serialized by a binary copy of the contents of the corre-
sponding class file). This is the most complete format,
which enables the receiver process to perform the sub-
typing test and, in case of interest in the object’s type,
has immediate access to the serialized object data and
its class code.

Should the class code be loaded (if the received ob-
ject is of interest) via our custom class loader (imple-
mented by the the class ByteArrayClassLoader) the
object is then deserialized and, hence, returned to the

application via a call to the deserialize() method. In
case the class loader of the receiver process requires
the code of other classes to load the object’s class, a
request for the code of each such class is sent back
to a ClassCodeProvider server thread running at the
sender process.6 Each such request is triggered when-
ever the class loader at the receiver process, during
the object’s class loading process, tries to load a class
whose code is not locally available; in response, the
ClassCodeProvider provides the class loader with the
requested code.

• serFormatTypeObj. In case the receiver process al-
ready has the object’s class code loaded (or locally
available for loading), serializing and sending its class
code is unnecessary. As an alternative, this format
excludes the class code from the serialization output,
thus reducing its length. In this case, the receiver
process simply tries to deserialize the serialized object
data, which will trigger the loading of the required
classes. Just as in the case of the previous format,
should any class code be unavailable (including the
code of the object’s class), it is obtained by a request
to the ClassCodeProvider at the sender process.

It is important to notice that removing the class code
from the serialization output does not require any ad-
dition of other information to allow the class loader
to determine the class to be loaded. The serialized
object that results from the standard Java object seri-
alization services already includes an identifier of the
corresponding class.

• serFormatOnlyType. The third format is only applica-
ble to the string representation and DST approaches.
It is suitable for situations where the type of the serial-
ized object fails, with a high frequency, the subtyping
test against the types of interest of the receiver pro-
cess. In case of a failed subtyping test (performed us-
ing only the type encoding), the actual deserialization
of the object’s data is not performed, and hence such
information is not necessary.

This format replaces the serialized object data by an
object identifier, generated by the sender process and
unique to that process, hence reducing the serialization
output length. Additionally, the serialized object data
is stored in an ObjectStore server thread at the sender
process. In case the receiver process happens to be
interested in obtaining the object, it requests it from
the ObjectStore using the received object identifier.

The serialization format option is encoded as a prefix of
the serialization output; this prefix is then analyzed by the
deserialize() method prior to the remaining deserialization
steps. Therefore, the serialization format employed for each
call to serialize() may vary.

6Namely, the code of super-classes, member classes or classes
referenced within the object’s class may be needed if it is
not available at the receiving process. An alternative would
be to include the code of all these classes in the serializa-
tion output, introducing a possibly significant overhead but
preventing the occurrence of class code requests from the
receiver process.

AssemblySerializer. The code downloading approach does
not add any additional type encoding to the serialized ob-
ject, since it relies exclusively on the standard subtyping
support of Java. Accordingly, the serializeType() and deSe-
rializeType() of AssemblySerializer are empty methods.

StringSerializer. The serializeType() and deSerializeType()
methods of the StringSerializer class respectively write and
read a string identifying the set of ancestors of the object (as
well as the cth(S)). Subtyping is performed by a string look-
up of the string identifiers of the types of interest (expressed
in StringCTH) in the deserialized string.

DSSerializer Class. The serializeType() and deSerialize-
Type() methods of the DSSerializer class respectively en-
code and decode the cth(S) and the list of the intervals of
the ancestors of the type of the object. The interval values
and their respective slice identifiers are encoded as described
in Section 5.5.

5.5 Bit-Encoding of Serialized Integers
As explained in Section 4, the encoding of a type t consists
of: (1) the intervals of the ancestors of type t (each inter-
val being represented by a slice identifier and containing the
type identifiers of the highest and the lowest ancestor of t
in that straight slice), (2) the slice identifier, (3) the type
identifier and (4) cth(S). We chose to implement the encod-
ing of an identifier using an array of bits representing the
absolute value of the identifier preceded by a bit of sign (our
implementation supports negative identifiers).

To deal with the variable size of the encoding (e.g., “1” is
not represented with the same number of bits than “3”),
an initial mark (a 0-bit) and a final mark (a sequence of
n 1-bits) are appended to the identifier, which is encoded
as groups of n bits. Whenever one such group of n bits
is identical to the final mark, it is repeated in the actual
encoding. Therefore, final marks can be distinguished by a
unit of n 1-bits that is followed by a 0-bit or by the end of
the array.

We optimized the encoding the intervals of the ancestors.
We encode the second value of the interval (representing
the highest type identifier of the ancestors in the interval)
as the relative offset to the first value. With the exception of
intervals whose lowest type identifier is negative and whose
highest type identifier is positive, the relative value is smaller
than the absolute value of the highest type identifier. There-
fore, the resulting encoding length of the interval is reduced.
One especially advantageous situation is the encoding of sin-
gleton intervals, where the relative value is zero, hence the
interval becomes encoded in a particularly efficient manner.

Implementing the encoding using the above technique does
not impose any assumption on the size of the straight slices
and thus allows the algorithm to dynamically add new types
to its straight slices. Furthermore, it has the desirable ad-
vantage of encoding small identifiers with a small number of
bits and hence suits perfectly DST.

Upon an experimental evaluation under the conditions de-
scribed in Section 6, the optimal unit size was found to be
n = 1. The results of Section 6 use such unit size.

6. PERFORMANCE
This section presents some performance results of our Java
implementation of DST and compares them to the main al-
ternatives mentioned in Section 2: string, code downloading
and CPQE, an optimized version of the centralized PQE al-
gorithm. The interest of the string approach is its simplicity
and the very fact that it does not require global reconfigu-
ration. CPQE is interesting because it is the most efficient
centralized approach we know of. The code downloading ap-
proach is interesting because it is the only way to perform
subtyping tests in current distributed systems.

All measurements were obtained using an Intel Pentium 4
2.66 GHz computer with 1GB RAM, running Java virtual
machine version 1.5.0-b64 on a Fedora Core 2 (kernel 2.6.11)
operating system. All the presented values are averaged over
10000 measurements.

We considered the type hierarchies of Java 1.5 (around 12500
classes), Java 1.4.2 (8900), Java 1.3.1 15 (4500) and Java
1.2.2 (4500) as core type hierarchies. More precisely, we
considered all Java 1.5 classes, 96% of the Java 1.4.2 classes,
78% of the Java 1.3.1 classes and 99% of the 1.2.2 Java
classes- The rest of the classes are not compatible with our
Java 1.5 implementation. To have fair comparison with
CPQE, all measurements assumed the existence of a unique
type hierarchy.

6.1 Performance of Type Encoding
An average time of 0.691 ms is taken by DST to initially
encode a type hierarchy. This is for instance substantially
higher than the time taken with a string approach (0.063
ms). This is explained by the increased complexity of our al-
gorithm. Since the encoding of a core type hierarchy occurs
only once, at the initialization of the system, we consider a
delay of less than a millisecond to be very acceptable.

Table 6 depicts the encoding length per type, in bits, av-
eraged over the total number of types for each Java type
hierarchy. We also distinguish for DST and the string ap-
proach, the number of bits that (1) must be sent along with
each object of that type and (2) must be maintained in order
to perform subtyping tests against such type. The results
from [16] do not allow us to make this discrimination in the
case of CPQE.

Java Version DST String CPQE
(1) (2) (1) (2) (1)+(2)

1.2.2 12.4 4.5 432.6 29.1 10
1.3.1 15 12.3 4.5 434.3 29.8 18

1.4.2 12.2 4.3 437.4 30.6 -
1.5 12.2 4.5 510.0 35.3 -

Table 6: Average number of bits for the encoding

The encoding length of DST outperforms the string ap-
proach by a factor of more than 35 for the type informa-
tion sent with the objects, and 2.5 to 7.8 for the informa-
tion maintained by processes that need to perform subtyping
tests. In fact, the difference is bigger if one considers that
the name of the classes have more than one letter (which is
typically the case in most applications). More importantly,
DST is comparable, in terms of encoding length, to CPQE.

This might be explained by the fact that the number of
ancestor intervals needed to encode a type is typically one,
which is a consequence of the low average number of straight
slices per type hierarchy (1.019 straight slices).

6.2 Performance of (De)Serialization
We also measured the performance of our implementation
when serializing/deserializing an object of the Dummy class
(see Figure 10) in order to transfer it among different pro-
cesses.7 The resulting serialized byte array contains the
(previously encoded) type information of the object (in the
case of DST and the string approach), the bytecode of the
object, as well as the object itself.

The time taken to serialize the Dummy object is presented
in Figure 16 for DST, the string and the code downloading
approaches. Clearly DST outperforms the string approach
but does not perform as well as the code downloading ap-
proach by 82.76 µs. This overhead is due to the time to
serialize the encoding of the type.

The serialized object was then sent by a process pi, over
a local TCP socket to a process pj that, upon a positive
subtyping test with the object’s type against any of the types
received by pj , completed the deserialization to obtain the
object. During the deserialization, four distinct situations
may happen with respect to (1) the types received by pj and
(2) the availability of the bytecode of the object. We depict
all the cases in Figure 16.

As expected, DST and the string approach are much better
when the subtyping test fails. DST outperforms the code
downloading approach by factors of 3 and 12, depending,
respectively, on whether the class of the object is already
loaded or not in the Java virtual machine of pj . On the
other hand, if the subtyping test succeeds, the overhead in-
duced by DST does not hamper the complete deserialization
process.

It is surprising to notice that both DST and the string ap-
proaches are comparable (we could have expected DST to
be better). This result can be explained by the fact that
the algorithm used to (de)serialize the type information of
the object in a length-efficient way, in DST, is quite com-
plex. If the deserialization time is more important than the
length of the encoding, we can then use plain bytes for en-
coding the type information and consequently outperform
the string approach by a factor of 4. Regarding the time
taken to actually perform the subtyping test, Figure 16 de-
picts the fact that this delay is negligible (around 10µs with
every approach) with respect to the time taken for the de-
serialization.

Finally, Table 7 conveys the information about the worst
encoding length that is achieved for the specific Java version.

This encoding corresponds, in Java 1.5, to
java.awt.dnd.DnDEventMulticaster. This type hierarchy has
18 straight slices. In this case, our algorithm still performs

7It was not possible to experiment the serialization and dese-
rialization on all Java classes, for they do not all implement
the Serializable interface.

Figure 16: Serialization and deserialization time of a Dummy object

Java Version DST String
Sender Receiver Sender Receiver

1.2.2 277 15 1432 1432
1.3.1 15 277 15 1432 1432

1.4.2 294 15 1432 1432
1.5 294 15 2494 2494

Table 7: Maximum number of bits to encode type
information, as held by receiver processes and sent
by sender processes

between 3 and 6 times better than the string-based ap-
proach.

7. CONCLUDING REMARKS
This paper presents an algorithm to perform subtyping tests
in a dynamic distributed environment where types can be
added at runtime. Our algorithm encodes a multiple sub-
typing hierarchy in a memory-efficient manner and can per-
form subtyping tests over each type of the hierarchy without
downloading its code nor having to deserialize objects of that
type. We avoid reconfiguration when new types are added
and ensure that the encoding of the core type hierarchy, i.e.,
of the set of types present at the initialization of the system,
remains the same throughout the lifetime of the system. The
performance measures we obtain convey the practicality of
our algorithm in terms of the size of the messages exchanged
in the network as well as the time taken to out subtyping
tests. We show that the performance of our algorithm is
comparable to the best currently known centralized subtyp-
ing algorithm [16], which requires however reconfiguration if
new types are dynamically added.

An important challenge of the design of our algorithm was to
enable subtyping tests against types that are added dynam-
ically, without global reconfiguration. To handle the tricky

situation where processes concurrently add new types, we
had to adopt a scheme where elements from a process name
are added to a type identifier. This form of encoding is not
ideal if different processes successively add new types one
after the other, and would end up not being efficient in this
case (more specifically, if a type t is a subtype of two types
belonging to the same slice si, which do not share any com-
mon root type, t would have multiple intervals Ix

si
for one

slice si). This issue seems inherent to handling the dynamic-
ity of a distributed environment in a concurrent manner, and
it would be interesting to prove a fundamental lower bound
on the memory required to handle concurrent additions.

8. REFERENCES
[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient

Management of Transitive Relationships in Large
Data and Knowledge Bases. In Proceedings of the 1989
ACM SIGMOD International Conference on
Management of Data, pages 253–262, may 1989.

[2] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt,
M. Kircher, and J. Parsons. The Design and
Performance of a Scalable ORB Architecture for
CORBA Asynchronous Messaging. In Proceedings of
the 2nd IFIP/ACM Middleware Conference, april
2000.

[3] N. H. Cohen. Type-Extension Tests can be Performed
in Constant Time. ACM Transactions on
Programming Languages and Systems, 13:626–629,
1991.

[4] P. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys, 35(2):114–131, june 2003.

[5] S. M. Inc. Java Message Service - Specification,
version 1.1.
http://java.sun.com/products/jms/docs.html, 2005.

[6] Java 1.5 Language Specification.
http://java.sun.com/j2se/1.5.0/docs/index.html, 2005.

[7] A. Krall, J. Vitek, and R. N. Horspool. Efficient Type
Inclusion Tests. In Proceedings of the 12th Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 142–157, october
1997.

[8] A. Krall, J. Vitek, and R. N. Horspool. Near Optimal
Hierarchical Encoding of Types. In Proceedings of the
11th European Conference on Object-Oriented
Programming, pages 128–145, june 1997.

[9] Microsoft. Microsoft Message Queuing.
http://www.microsoft.com/windows2000/technologies/
communications/msmq, 2005.

[10] .NET Framework Reference Documentation.
http://www.microsoft.com/net/, 2005.

[11] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The
Information Bus - An Architecture for Extensible
Distributed Systems. In Proceedings of the 14th ACM
Symposium on Operating System Principles (SOSP
’93), pages 58–68, december 1993.

[12] OMG. The Common Object Request Broker:
Architecture and Specification, 2001.

[13] K. Palacz and J. Vitek. Java Subtype Tests in
Real-Time. In Proceedings of the 17th European
Conference on Object-Oriented Programming, july
2003.

[14] L. K. Schubert, M. A. Papalaskaris, and J. Taugher.
Determining Type, Part, Colour, and Time
Relationships. Computer, 16 (special issue on
Knowledge Representation):53–60, october 1983.

[15] J. Vitek, R. Horspool, and A. Krall. Efficient Type
Inclusion Tests. In Proceedings of the 12th ACM
Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 142–157, 1997.

[16] Y. Zibin and J. Gil. Efficient Subtyping Tests with
PQ-Encoding. In Proceedings of the 16th ACM
Conference on Object-Oriented Programming Systems,
Languages and Applications, october 2001.

[17] Y. Zibin and J. Gil. Fast Algorithm for Creating
Space Efficient Dispatching Tables with Application to
Multi-Dispatching. In Proceedings of the 17th ACM
Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 142–160, november
2002.

