
The weakest failure detectors to solve
Quittable Consensus and Non-Blocking Atomic Commit∗

Rachid Guerraoui1 Vassos Hadzilacos2 Petr Kouznetsov1 Sam Toueg2

(1) Distributed Programming Laboratory, EPFL
(2) Department of Computer Science, University of Toronto

{rachid.guerraoui,petr.kouznetsov}@epfl.ch {vassos,sam}@cs.toronto.edu

Abstract

We introduce quittable consensus, a natural variation of the consensus problem, where processes have
the option to agree on “quit” if failures occur, and we relate this problem to the well-known problem of
non-blocking atomic commit. We then determine the weakest failure detectors for these two problems in all
environments, regardless of the number of faulty processes.

1 Introduction

Non-blocking atomic commit (NBAC) is a well-known problem that arises in distributed transaction process-
ing [8]. Informally, the set of processes that participate in a transaction must agree on whether to commit or
abort that transaction. Initially each process votes Yes (“I am willing to commit”) or No (“we must abort”),
and eventually processes must reach a common decision, Commit or Abort. The decision to Commit can be
reached only if all processes voted Yes. Furthermore, if all processes voted Yes and no failure occurs, then the
decision must be Commit. NBAC is similar to the classical problem of consensus, where each process initially
proposes a value, and eventually processes must reach a common decision on one of the proposed values.

It is well-known that NBAC and consensus are unsolvable in asynchronous systems with process crashes
(even if communication is reliable) [6]. One way to circumvent such impossibility results is through the use
of unreliable failure detectors [2]: In this model, each process has access to a failure detector module that
provides some (possibly incomplete and inaccurate) information about failures, e.g., a list of processes currently
suspected to have crashed. Chandra at al. [1] determined the weakest failure detector to solve consensus in
systems with a majority of correct processes, while Delporte et al. [4]generalized this result to all systems,
regardless of the number of correct processes. Informally,D is the weakest failure detector to solve problem P

if (a) there is an algorithm that uses D to solve P , and (b) any failure detector D′ that can be used to solve P

can be transformed to D.
As with consensus, failure detectors can be used to solve NBAC [9, 7]. It was an open problem, however,

whether there is a weakest failure detector to solve NBAC and, if so, what that failure detector is. In this paper
we resolve this problem. To do so,

(a) we introduce a natural variation of consensus, called quittable consensus (QC) — a problem that is inter-
esting in its own right;

(b) we determine the weakest failure detector to solve QC;

∗The results of this paper were first presented at the 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC 2004) [5].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147915731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(c) we establish a close relationship between QC and NBAC; and

(d) we use (b) and (c) to derive the weakest failure detector to solve NBAC.

Informally, QC is like consensus except that, in case a failure occurs, processes have the option (but not
the obligation) to agree on a special value Q (for “quit”). This weakening of consensus is appropriate for
applications where, when a failure occurs, processes are allowed to agree on that fact (rather than on an input
value) and resort to a default action.

Despite their apparent similarity, QC and NBAC are different in important ways. In NBAC the two possible
input values Yes and No are not symmetric: A single vote of No is enough to force the decision to abort. In
contrast, in QC (as in consensus) no input value has a privileged role. Another way in which the two problems
differ is that the semantics of the decision to abort (in NBAC) and the decision to quit (in QC) are different. In
NBAC the decision to abort is sometimes inevitable (e.g., if a process crashes before voting); in contrast, in QC
the decision to quit is never inevitable, it is only an option. Moreover, in NBAC the decision to abort signifies
that either a failure has occurred or someone voted No; in contrast, in QC the decision to quit is allowed only if
a failure has occurred.

We now describe in more detail our results, which involve the following three failure detectors.

• The leader failure detector Ω outputs the id of a process at each process. There is a time after which it
outputs the id of the same correct process at all correct processes [1].

• The quorum failure detector Σ outputs a set of processes at each process. Any two sets (output at any
times and by any processes) intersect, and eventually every set consists of only correct processes [4].

• The failure signal failure detector FS outputs green or red at each process. As long as there are no
failures, FS outputs green at every process; after a failure occurs, and only if it does,FS must eventually
output red permanently at every process [3, 9].

We first show that there is a weakest failure detector to solve QC. This failure detector, which we denote Ψ,
is closely related to the weakest failure detector to solve consensus, namely (Ω,Σ) [4],1 and to FS. Specifically,
Ψ behaves as follows: For an initial period of time the output of Ψ at each process is ⊥. Eventually, however, Ψ
either behaves like the failure detector (Ω,Σ) at all processes or, if a failure occurs, it may instead behave like
the failure detectorFS at all processes. The switch from⊥ to (Ω,Σ) orFS need not occur simultaneously at all
processes, but the same choice is made by all processes. This result has an intuitively appealing interpretation:
To solve QC, a failure detector must eventually either truthfully inform all processes that a failure has occurred,
in which case the processes can decide Q, or it must be powerful enough to allow processes to solve consensus
on their proposed values. This matches the bevariour of Ψ.

We then prove that NBAC is equivalent to QC modulo the failure detector FS. More precisely we show
that: (a) given FS, any QC algorithm can be transformed into an algorithm for NBAC, and (b) any algorithm
for NBAC can be transformed into an algorithm for QC, and can also be used to implement FS.

Finally, we use this equivalence to prove that (Ψ,FS) is the weakest failure detector to solve NBAC. This
result applies to any system, regardless of the number of faulty processes.

Related work. Several versions of the consensus problem have been studied before but, to the best of our
knowledge, this is the first paper to propose quittable consensus.

NBAC has been studied extensively in the context of transaction processing [8, 13]. Its relation to consensus
was first explored in [11]. Charron-Bost and Toueg [3] and Guerraoui [9] showed that despite some apparent
similarities, in asynchronous systems NBAC and consensus are in general incomparable — i.e., a solution for
one problem cannot be used to solve the other.2 The problem of determining the weakest failure detector to solve

1If D and D
′ are failure detectors, (D,D′) is the failure detector that outputs a vector with two components, the first being the

output of D and the second being the output of D′.
2An exception is the case where at most one process may fail. In this case, NBAC can be transformed into consensus, but the reverse

does not hold.

2

NBAC was explored and settled in special settings. Fromentin et al. [7] determine that to solve NBAC between
every pair of processes in the system, one needs a perfect failure detector [2]. Guerraoui and Kouznetsov [10]
determine the weakest failure detector for NBAC in a restricted class of failure detectors; while from results
of [3] and [9] it follows that in the special case where at most one process may crash, FS is the weakest failure
detector to solve NBAC. The general question, however, was open until the present paper.

Roadmap. The rest of the paper is organised as follows: In Section 2 we briefly review the model of com-
putation, and define formally the failure detectorsΩ, Σ and FS. In Section 3 we give the exact specification
of QC, and in Section 4 we prove that Ψ is the weakest failure detector to solve QC. In Section 5 we give the
specification of NBAC, we prove that NBAC is equivalent to QC moduloFS, and we use this to show that
(Ψ,FS) is the weakest failure detector to solve NBAC.

2 Model

We consider the asynchronous message-passing model in which processes have access to failure detectors [1, 2].
In this section we summarise the relevant terminology and notation.

The system consists of a set Π of n processes. Processes can fail only by crashing, i.e., prematurely halting.
Each process executes steps asynchronously: the delays between steps are finite but unbounded and variable.
Processes are connected via reliable links that transmit messages with finite but unbounded and variable delay.

A failure pattern is a function F : N → 2Π, where F (t) denotes the set of processes that have crashed
through time t. (We assume a discrete global clock used only for presentational convenience, and not accessible
by the processes.) Crashed processes do not recover and so, for all t ∈ N, F (t) ⊆ F (t + 1). faulty(F) =
⋃

t∈N F (t) denotes the set of processes that crash in F , and correct(F) = Π − faulty(F) denotes the set of
processes that are correct in F .

A failure detector history with range R describes the behaviour of a failure detector during an execution;
formally, it is a function H : Π × N→ R, where H(p, t) is the value of the failure detector module of process
p at time t. A failure detector D with range R is a function that maps each failure pattern F to a set of failure
detector histories with range R. Intuitively, D(F) is the set of behaviors that D can exhibit when the failure
pattern is F .

An algorithm A is an automaton that specifies, for each processp, (a) the set of messages that p can send;
(b) the set of states that p can occupy (a subset of which are identified asp’s possible initial states); and (c) a
transition function which determines the messages that p sends and the new state it occupies when it takes
a step. In one atomic step, p performs the following actions: it receives a message addressed to it (possibly
the empty message λ), it queries the failure detector and receives its present value, it sends messages to other
processes and changes its state.3 The messages that p sends and the new state it occupies are specified by its
transition function based on its present state, the message it receives and the value it was given by the failure
detector. Formally, a step is a triple 〈p, m, d〉, where p is the process taking the step, m is the message p receives
in that step, and d is the failure detector value it sees in that step. A schedule S is a finite or infinite sequence
of steps.

A configuration of algorithm A specifies the global state of the system, i.e., the state of each process
and of the “message buffer” which contains the set of messages that have been sent but have not yet been
received. An initial configuration of A is a configuration in which every process occupies an initial state and
the message buffer is empty. The step e = 〈p, m, d〉 is applicable to configurationC if m is λ or m belongs
to the message buffer of C and its recipient is p; in this case e(C) denotes the configuration that results if the
present configuration isC, and process p executes the step in which it receives message m and sees failure
detector value d. A schedule S = e1e2 . . . is applicable to configurationC if and only if S is empty or e1 is
applicable to C, e2 is applicable to e1(C) and so on. If S is a finite schedule applicable toC, S(C) denotes the
configuration that results from applyingS to C.

3Our result also applies to models where steps have finer granularity. For simplicity we focus on this one.

3

A run of algorithm A using a failure detector D describes an execution of A where processes have access
to D. Formally, a run (respectively, partial run) of algorithm A using a failure detector D is a tuple R =
〈F,H, I, S, T 〉 where F is a failure pattern, H ∈ D(F) is a failure detector history, I is an initial configuration
of A, S is an infinite (respectively, finite) schedule ofA that is applicable to I , and T is an infinite (respectively,
finite) increasing list of times indicating when each step inS occurred. A number of straightforward conditions
are imposed on the components of runs and partial runs to ensure that the failure detector values that appear in
the steps of the schedule are consistent with the failure detection history H , that processes don’t take steps after
crashing, and that (in runs) correct processes take infinitely many steps and messages are not lost. For details
see [1].

Some algorithms meet their specification only under some assumptions about the “environment” — e.g.,
that a majority of the processes are correct, or that two particular processes do not both crash. Formally, an
environment E is a set of possible failure patterns. Intuitively, these are the failure patterns in which an algorithm
of interest works correctly.

In Section 1 we informally introduced the failure detectors Ω, Σ, FS. We now define these formally.

• The range of Ω is Π. For every failure pattern F ,

H ∈ Ω(F) ⇔ ∃p ∈ correct(F)∀q ∈ correct(F)∃t ∈ N ∀t′ ≥ t H(q, t′) = p.

• The range of Σ is 2Π. For every failure pattern F ,

H ∈ Σ(F) ⇔
(

∀p, p′ ∈ Π∀t, t′ ∈ NH(p, t) ∩ H(p′, t′) 6= ∅
)

∧
(

∀p ∈ correct(F)∃t ∈ N ∀t′ ≥ t H(p, t′) ⊆ correct(F)
)

.

• The range of FS is {green, red}. For every failure pattern F ,

H ∈ FS(F) ⇔ ∀p ∈ Π∀t ∈ N
(

H(p, t) = red → F (t) 6= ∅
)

∧
(

faulty(F) 6= ∅ → ∀p ∈ correct(F)∃t ∈ N ∀t′ ≥ t H(p, t′) = red
)

.

3 Quittable consensus (QC)

Informally, quittable consensus is a weaker version of consensus where, if a failure has occurred, processes can
also agree on the special value Q. In the quittable consensus problem (QC), each process invokes the operation
PROPOSE(v), where v ∈ {0, 1}, which returns a decision of 0, 1 or Q (for “quit”). It is required that:

Termination: If every correct process proposes a value, then every correct process eventually returns a deci-
sion.

Uniform Agreement: No two processes (whether correct or faulty) return different values.

Validity: A process may only decide a value v ∈ {0, 1, Q}. Moreover,
(a) If v ∈ {0, 1} then some process previously proposed v.
(b) If v = Q then a failure previously occurred.

Here we defined the binary version of QC, where processes can propose values in the set{0, 1}. It is straight-
forward to generalise QC so that processes can propose values from an arbitrary set of at least two values that
does not include the special value Q.

4

Code for each process p:

Procedure PROPOSE(v): { v is 1 or 0 }
1 while Ψp = ⊥ do nop
2 if Ψp ∈ {green, red}
3 then { henceforth Ψ behaves like FS }
4 return Q
5 else { henceforth Ψ behaves like (Ω,Σ) }
6 d := CONSPROPOSE(v) { use Ψ to run (Ω,Σ)-based consensus algorithm }
7 return d

Figure 1: Using Ψ to solve QC.

4 The weakest failure detector to solve QC

We define a new failure detector denotedΨ and show that it is the weakest failure detector to solve QC in any
environment. To prove this, we first show thatΨ can be used to solve QC in any environment. We then prove
that, for every environment E , any failure detector that can be used to solve QC in E can be transformed into Ψ
in E .

4.1 Specification of failure detector Ψ

Roughly speaking Ψ behaves as follows: For an initial period of time the output of Ψ at each process is ⊥.
Eventually, however, Ψ behaves either like the failure detector (Ω,Σ) at all processes, or, in case a failure
previously occurred, it may instead behave like the failure detector FS at all processes. The switch from ⊥
to (Ω,Σ) or FS need not occur simultaneously at all processes, but the same choice is made by all processes.
Note that the switch from ⊥ to FS is allowable only if a failure previously occurred. Furthermore, if a failure
does occur processes are not required to switch from ⊥ to FS; they may still switch to (Ω,Σ).

More precisely, Ψ is defined as follows. For each failure patternF ,

H ∈ Ψ(F) ⇔
(

∃H ′ ∈ (Ω,Σ)(F)∀p ∈ Π∃t ∈ N
(

∀t′ < tH(p, t′) = ⊥ ∧ ∀t′ ≥ t H(p, t′) = H ′(p, t′)
)

)

∨
(

∃t∗ ∈ NF (t∗) 6= ∅ ∧ ∃H ′ ∈ FS(F)∀p ∈ Π∃t ≥ t∗
(

∀t′ < tH(p, t′) = ⊥ ∧ ∀t′ ≥ t H(p, t′) = H ′(p, t′)
)

)

4.2 Using Ψ to solve QC

It is easy to use Ψ to solve QC in any environment E (see Figure 1). Each process p waits until the output of
Ψ becomes different from ⊥. At that time, either Ψ starts behaving like FS or it starts behaving like (Ω,Σ).
If Ψ starts behaving like FS (Ψ can do so only if a failure previously occurred), p returns Q. The remaining
case is that Ψ starts behaving like (Ω,Σ). It is shown in [4] that there is an algorithm that uses (Ω,Σ) to solve
consensus in any environment. Therefore, in this case, processes propose their initial value to that consensus
algorithm and return the value decided by that algorithm. In Figure 1, CONSPROPOSE() denotes p’s invocation
of the algorithm that solves consensus using (Ω,Σ). Hence the following result:

Theorem 1 For all environments E , Ψ can be used to solve QC in E .

5

Code for each process p:

on initialization:
1 Ψ-outputp := ⊥ { Ψ-outputp is the output of p’s module of Ψ }

task 1:
2 do forever { This is done exactly as in [1] }
3 cobegin
4 p builds an ever-increasing DAG Gp of failure detectors samples

by repeatedly sampling its failure detector and exchanging samples
with other processes.

5 ||
6 p uses Gp and the n + 1 initial configurations to construct a forestΥp

of ever-increasing simulated runs of algorithm A using D
that could have occurred with the current failure pattern F and the
current failure detector history H ∈ D(F).

7 coend

task 2:
8 wait until p decides in some run of every tree of the forest Υp

9 if p decides Q in some run
10 then
11 p executes A by proposing 0
12 else { every tree of the forest Υp has a run where p decides 0 or 1 }
13 let I and I ′ be initial configurations that differ only in the proposal of one process

and S and S′ be schedules in Υp so that p decides 0 in S(I) and 1 in S′(I ′)
14 p executes A by proposing (I, I ′, S, S′)

15 wait until p decides in this execution of A
16 if p decides 0 or Q
17 then { extract FS }
18 Ψ-outputp := red
19 else { p’s decision is of the form (I0, I1, S0, S1); extract (Ω,Σ) }
20 Ω-outputp := p ; Σ-outputp := Π
21 cobegin

{ extract Ω }
22 do forever Ω-outputp := id of the process that p extracts using Υp and the procedure described in [1]
23 ||

{ extract Σ }
24 let (I0, I1, S0, S1) be the decision value of p

25 let C be the set of configurations reached by applying all prefixes ofS0, S1 to I0, I1, respectively
26 do forever
27 wait until p adds a new failure detector sample u to its DAG Gp

28 repeat
29 let Gp(u) be the subgraph induced by the descendants of u in the current DAG of samples Gp.
30 for each C ∈ C construct the set SC of all schedules

compatible with some path of Gp(u) and applicable to C

31 until for each C ∈ C there is a schedule S ∈ SC such that p decides in S(C)
32 Σ-outputp :=

⋃

C∈C
set of processes that take steps in the schedule S ∈ SC such that p decides in S(C)

33 ||
{ combine Ω and Σ to Ψ }

34 do forever Ψ-outputp := (Ω-outputp,Σ-outputp)
35 coend

Figure 2: Extracting Ψ from D and QC algorithm A

6

4.3 Extracting Ψ from any failure detector that solves QC

Let D be an arbitrary failure detector that can be used to solve QC in some environment E ; i.e., there is an
algorithm A that uses D to solve QC in environment E . We must prove that Ψ can be “extracted” from D
in environment E , i.e., processes can run in E a transformation algorithm that uses D and A to generate the
output of Ψ — a failure detector that initially outputs ⊥ and later behaves either like (Ω,Σ) or like FS. The
transformation algorithm that does this is shown in Figure 2 and is explained below.

Each process p starts by outputting ⊥ (line 1). While doing so, p determines whether in the current run
it is possible to extract (Ω,Σ), or it is legitimate to start behaving like FS and output red because a failure
occurred, as follows.

In task 1, p simulates runs of A that could have occurred in the current failure detector history ofD and the
current failure pattern F , exactly as in [1]. It does this by “sampling” its local module of D and exchanging
failure detector samples with the other processes (line 4). Process p organizes these samples into an ever-
increasing DAG Gp whose edges are consistent with the order in which the failure detector samples were
actually taken. Using Gp, p simulates ever-increasing partial runs of algorithm A that are compatible with
paths in Gp (line 6).4 Each process p organizes these runs into a forest of n + 1 trees, denoted Υp. For any
i, 0 ≤ i ≤ n], the i-th tree of this forest, denoted Υi

p, corresponds to simulated runs of A in which processes
p1, . . . , pi propose 1, and pi+1, . . . , pn propose 0. A path from the root of a tree to a node x in this tree
corresponds to (the schedule of) a partial run of A, where every edge along the path corresponds to a step of
some process.

In task 2, p waits until it decides in some run of every tree of the forest Υp (line 8). If p decides Q in any of
these runs, then a failure must have occurred (in the current failure pattern), and so p knows that it is legitimate
to output red in this run. Otherwise (p’s decisions in the simulated runs are 0s or 1s), p determines that it is
possible to extract (Ω,Σ) in the current run.

At this point, p executes the given QC algorithm A (using failure detector D) to agree with all the other
processes on whether to output red or to extract (Ω,Σ). Specifically, ifp has determined that it is legitimate
to output red then it proposes 0 to A (line 11), otherwise it proposes (I, I ′, S, S′) (line 14) where I and I ′ are
initial configurations that differ only in the proposal of one process, andS and S′ are schedules in Υp such that
p decides 0 in S(I) and 1 in S′(I ′).5 The following lemma proves that these configurations and schedules exist.

Lemma 2 If any process p reaches line 12 then there are initial configurations I and I ′, and schedules S and

S′ in Υp, such that (a) I and I ′ differ only in the proposal of one process, and (b) p decides 0 in S(I) and 1 in

S′(I ′).

PROOF SKETCH . If any process p reaches line 12, then in each tree of Υp, p has a run in which it decides 0
or 1. In the tree where every process proposes 0 (respectively, 1), p’s decision must be 0 (respectively, 1). The
result immediately follows.

If A returns 0 or Q, then p stops outputting ⊥ and outputs red from that time on (line 18). If A returns a
value of the form (I0, I1, S0, S1), then p stops outputting ⊥ and starts extracting Ω (line 22) and Σ (lines 24-32).
Ω is extracted as in [1] (see Section 4.3.1). Σ is extracted using novel techniques explained in Section 4.3.2.

Note that processes use the given QC algorithm A and failure detector D in two different ways and for
different purposes. First each process simulates many runs of A to determine whether it is legitimate to output
red or it is possible to extract (Ω,Σ) in the current run. Then processes actually execute A (this is a real
execution, not a simulated one) to reach a common decision on whether to output red or to extract (Ω,Σ).
Finally, if processes decide to extract (Ω,Σ), they resume the simulation of runs of A to do this extraction.

4Each failure detector sample in Gp includes the name of the process that took this sample. Roughly speaking, we say that a run or
schedule of A is compatible with a path in Gp if the sequence of processes that take steps in this run or schedule and the failure detector
values that they see match the sequence of processes and failure detector values in this path [1].

5We assume here that A can solve multivalued QC. This causes no loss of generality: by using the technique of [12] one can
transform any binary QC algorithm into a multivalued one.

7

4.3.1 Extracting Ω

To extract Ω, p must continuously output the id of a process such that, after some time, correct processes
output the id of the same correct process. This is done using the procedure of [1], with some minor differences
explained below.

As in [1], because of the way each process p constructs its ever-increasing forest Υp of simulated runs, the
forests of correct processes tend to the same infinite limit forest, denotedΥ. The limit tree of Υi

p is denoted Υi.
Each node x of the limit forest Υ is tagged by the set of decisions reached by correct processes in partial runs
that correspond to descendants of x.

In [1] the only possible decisions were 0 or 1, and so these were the only possible tags. Consequently, each
node was 0-valent, 1-valent or bivalent (with two tags). Here there are three possible decisions (0, 1 or Q) so
each node is 0-valent, 1-valent, Q-valent or multivalent (with two or three tags).

In [1] (and here) the extraction of the id of a common correct process relies on the existence of a critical
index i in the limit forest Υ. Here we define i to be critical if the root of Υi is multivalent (in which case it
is called multivalent critical), or if the root of Υi−1 is u-valent and the root of Υi is v-valent, where u, v ∈
{0, 1, Q} and u 6= v (in which case it is called univalent critical).

In [1] it is shown that a critical index always exists. In this paper, however, this is not necessarily the case. If
some process crashes (in the current failure pattern), it is possible that in all the simulated runs of QC algorithm
A in Υ all decisions are Q. In this case, the roots of all trees in the limit forest Υ are tagged only with Q. So
there is no critical index, and we cannot apply the techniques of [1] to extract the id of a correct process! This
is why, in our transformation algorithm, processes do not always attempt to extract Ω from D. However, if a
process actually attempts to extract Ω (in line 22) then a critical index does exist in the limit forest Υ, and so Ω
can indeed be extracted:

Lemma 3 If any process reaches line 22 then the limit forest Υ has a critical index.

PROOF SKETCH . If a process reaches line 22, then it previously decided a tuple of the form (I0, I1, S0, S1) in
line 15. Thus, by the Validity property of A, some process q (not necessarily correct) proposed some tuple in
line 14. We first show that the limit forestΥ has some run where some correct process decides a value other
than Q.

Since q proposed a tuple in line 14, it must have decided some value v 6= Q in some partial run R of A in
Υq. Before q proposed its tuple in line 14, it sent to all processes the finite path ofq’s DAG (of failure detector
samples) that gave rise to the partial run R. Thus, after receiving this path and integrating it in its own DAG,
every correct process p also constructs partial run R (which is compatible with this path), and includes it in its
own forest Υp. So the partial run R where q decides v is also embedded in the limit forest Υ. Note that Υ
includes an infinite runR∗ that extends R such that all the correct processes take an infinite number of steps in
R∗. By the Termination and Uniform Agreement properties of A, all the correct processes decide v (the same
as q) in run R∗. So Υ has a run where all correct processes decide v 6= Q.

From the above, the root of some tree Υj of the limit forest Υ has tag v 6= Q. Without loss of generality,
assume v = 0. Note that the root of tree Υn, where all processes propose 1, must have a tag u 6= 0 (it can be 1
or Q). Therefore, some index i between j and n must be critical.

4.3.2 Extracting Σ

To extract Σ, p must continuously output a set of processes (quorum) such that the quorums of all processes
always intersect, and eventually they contain only correct processes. This is done in lines 24-32 as follows.

When process p reaches line 24, it has agreed with other processes on two initial configurationsI0 and I1

and two schedules S0 and S1 that are applicable to I0 and I1, respectively. Consider the set C of configurations
of A obtained by applying all the prefixes ofS0 and S1 to I0 and I1 (line 25).

8

To determine its next quorum, p uses “fresh” failure detector samples to simulate runs of A that extend each
configuration inC (lines 29-30). It does so until, for each configuration inC, it has simulated an extension in
which it has decided (line 31). The quorum of p is the set of all processes that take steps in these “deciding”
extensions (line 32).

Note that in line 27, p waits until it gets a new sample u from its failure detector module (which happens
in line 4 of task 1) and then it uses only samples that are more recent than u to extend the configurations inC
(lines 29-30). This ensures the freshness of the failure detector samples that p uses to determine its quorums.
Consequently, quorums eventually contain only correct processes (one of the two requirements of Σ).

4.3.3 Sketch of the proof

Lemma 4 Let R1 = 〈F,H, I, S · S1, T · T1〉 and R2 = 〈F,H, I, S · S2, T · T2〉 be partial runs of A, such that

the sets of processes that take steps in S1 and in S2 are disjoint and T1 and T2 contain distinct times. Let T̂ be

the merging of T1 and T2 (in increasing order) and Ŝ be the corresponding merging of S1 and S2 (i.e., the steps

of Ŝ are the steps of S1 and S2 in the order indicated by T̂). Then R̂ = 〈F,H, I, S · Ŝ, T · T̂ 〉 is also a partial

run of A.

Corollary 5 Let R1 = 〈F,H, I, S ·S1, T ·T1〉 and R2 = 〈F,H, I, S ·S2, T ·T2〉 be partial runs of A, such that

the sets of processes that take steps in S1 and in S2 are disjoint and T1 and T2 contain distinct times. If some

process decides x1 in R1 and some process decides x2 in R2 then x1 = x2.

Lemma 6 For each correct process p, there is a time after which Σ-outputp contains only correct processes.

PROOF SKETCH . Let p be a correct process. Note that: (a) p takes a new failure detector sample u infinitely
often (in line 27), and (b) Σ-outputp contains only processes that take steps after the most recent sample u taken
by p. Since faulty processes eventually stop taking steps, there is a time after which Σ-outputp does not contain
any faulty process.

Lemma 7 Let p, q be any processes, Σ-outputp and Σ-outputq always intersect.

PROOF SKETCH . Recall that p and q agreed on a value of the form (I0, I1, S0, S1) in a (real) execution of A
(line 15). I0 and I1 are initial configurations that differ only in the proposal of one process, andS0 and S1 are
(simulated) schedules of A in which some process decides 0 in S0(I0) and 1 in S1(I1). Thus, p and q also agree
on the set of configurationsC that is obtained by applying all prefixes ofS0 and S1 to I0 and I1, respectively.

More precisely, let S0 = e1e2 . . . e` and S1 = f1f2 . . . fm (where the eis and fjs are steps). Let C0 = I0

and Ci = ei(Ci−1) for 1 ≤ i ≤ `; similarly, D0 = I1 and Dj = fj(Dj−1) for 1 ≤ j ≤ m. Thus,
C = {C0, . . . , C`, D0, . . . , Dm}.

Let Qp and Qq be the values of Σ-outputp and Σ-outputq at any two times. We must prove that Qp∩Qq 6= ∅.
Suppose, for contradiction, that this is not the case.

Consider the iteration of the loop in lines 26-32 at the end of which p set Σ-outputp to Qp. In that iteration,
for each Ci, 0 ≤ i ≤ `, p determined a schedule σ

p
i such that p decides some value, denoted x

p
i , in σ

p
i (Ci); and,

for each Dj , 0 ≤ j ≤ m, p determined a schedule τ
p
j such that p decides some value, denoted y

p
j , in τ

p
j (Cj).

Note that Qp is the set of processes that take steps in the schedules σ
p
i , 0 ≤ i ≤ `, and τ

p
j , 0 ≤ j ≤ m.

Consider now the iteration of the loop in lines 26-32 at the end of which q set Σ-outputq to Qq. We define
σ

q
i , x

q
i , τ

q
j , and y

q
j , in an analogous manner. (See Figure 3.)

Claim 7.1 For all i, 0 ≤ i ≤ `, x
p
i = x

q
i ; and for all j, 0 ≤ j ≤ m, y

p
j = y

q
j .

9

C0 C1 C2 C`

e1 e2 e`

σ
p

0
σ

p

1
σ

p

2

I0

x
p

0
x

p

1
x

p

2
x

p

`p decides

D0 D1 D2 Dm

f1 f2 fm

τ
p

0
τ

p

1
τ

p

2 τ
p
m

I1

y
p

0
y

p

1
y

p
mp decides

σ
p

`

Some process

decides 0

Some process

decides 1

C0 C1 C2 C`

e1 e2 e`

σ
q

0
σ

q

1
σ

q

2
σ

q

`

I0

x
q

0
x

q

1
x

q

2
x

q

`q decides

D0 D1 D2 Dm

f1 f2 fm

τ
q

0
τ

q

1
τ

q

2 τ
q
m

I1

y
q

0
y

q

1
y

q

2 y
q
mq decides

Some process Some process

decides 1decides 0

y
p

2

Figure 3: Illustration of proof of Lemma 7

PROOF SKETCH . Since Qp and Qq are disjoint, for each i, 0 ≤ i ≤ `, the sets of processes that take steps in
σ

p
i and σ

q
i are disjoint. Thus, by Corollary 5 (applied with I = I0, S = e1e2 . . . ei, S1 = σ

p
i and S2 = σ

q
i),

x
p
i = x

q
i . The proof that y

p
j = y

q
j is analogous.

By Claim 7.1, we can now definexi = x
p
i = x

q
i and yj = y

p
j = y

q
j .

Claim 7.2 For all i, 0 ≤ i < `, xi+1 = xi; and for all j, 0 ≤ j < m, yj+1 = yj .

PROOF SKETCH . Recall that Ci+1 = ei+1(Ci). Since Qp and Qq are disjoint, the sets of processes that take
steps in σ

p
i and σ

q
i are disjoint. Thus, the process that takes step ei+1 does not take a step in at least one of

σ
p
i or σ

q
i . Without loss of generality, assume that it does not take a step in σ

p
i . Let σ = ei+1 · σ

q
i+1

. Note
that σ is applicable to Ci. Moreover, the sets of processes that take steps in σ

p
i and σ are disjoint. Thus, by

Corollary 5 (applied with I = I0, S = e1e2 . . . ei, S1 = σ
p
i and S2 = σ), xi = xi+1. The proof that yj = yj+1

is analogous.

Claim 7.3 x0 = 0 and y0 = 1.

PROOF SKETCH . Recall that some process decides 0 in C` = S0(I0). Therefore, p decides 0 in σ
p
` (C`), and

so x` = 0. By Claim 7.2 and a trivial induction, xi = 0 for all i, 0 ≤ i ≤ `. In particular, x0 = 0. The proof
that y0 = 1 is analogous.

Let r be the process such that I0 and I1 differ only in the initial value of r. Since Qp and Qq are disjoint,
the sets of processes that take steps in σ

p
0

and τ
q
0

are disjoint. So r does not take a step in at least one of σ
p
0

and τ
q
0 . Without loss of generality, assume that r does not take a step in σ

p
0 . Thus, σ

p
0 is also applicable to I1.

By Corollary 5 (applied with I = I1, S being the empty schedule, S1 = σ
p
0 and S2 = τ

q
0), x0 = y0. This

contradicts Claim 7.3, and completes the proof of Lemma 7.

10

Theorem 8 For all environments E , if failure detector D can be used to solve QC in E , then the algorithm in

Figure 2 transforms D into Ψ in environment E .

PROOF SKETCH . Let A be any algorithm that uses D to solve QC in environment E . We show that the algo-
rithm in Figure 2 uses A to transform D into Ψ in environment E . In that algorithm, each process p maintains
a variable Ψ-outputp. We now prove that the values that these variables take conform to the specification ofΨ.
By inspection of Figure 2, it is clear that Ψ-outputp is either ⊥, or red (in which case we say it is of type FS),
or a pair (q, Q) where q ∈ Π and Q ⊆ Π (in which case we say it is of type (Ω,Σ)).

(1) For each process p, Ψ-outputp is initially ⊥ (line 1). If Ψ-outputp ever changes value, it becomes of type

FS forever (line 18) or of type (Ω,Σ) forever (lines 20-34).

(2) For all processes p and q, it is impossible for Ψ-outputp to be of type FS and Ψ-outputq to be of type

(Ω,Σ). This is because, by the Uniform Agreement property of A, p and q cannot decide different values
in line 15.

(3) For each correct process p, eventually Ψ-outputp 6= ⊥. To see this, let p be any correct process. Process
p simulates a forest Υp of ever-increasing partial runs of A as in [1] (see line 6). In this simulation, every
tree in Υp has runs in which all the correct processes take steps infinitely often. So, by the Termination
property of QC, every tree in Υp has a run in which p decides. Therefore, eventually all correct processes
complete the wait statement in line 8, and execute A in line 11 or 14. By the Termination property of QC,
eventually p decides in that execution of A, and stops waiting in line 15. Thus, p eventually sets Ψ-outputp
to a value other than ⊥ in line 18 or 34.

(4) For each process p, if Ψ-outputp is red then a process previously crashed in the current run. To see this, let
p be some process that sets Ψ-outputp = red (line 18). Thus, p decides 0 or Q in the execution of A that it
invoked in line 11 or 14. If p decides Q then the fact that some process has previously crashed in the current
run follows immediately from part (b) of the Validity property of QC. If p decides 0 then from part (a) of
the Validity property of QC, some process q proposed 0 in the execution of A that q invoked in line 11.
This implies that q decided Q in one of the simulated runs of A that q has in its forest Υq. Recall that these
are runs that could have occurred with the current failure pattern. By part (b) of the Validity property of
QC, this means that some process has previously crashed in the current run.

(5) If the Ψ-output variable of any process is ever of type (Ω,Σ), then there is a time after which, for every

correct process p, Ω-outputp is the id of the same correct process. To see this, suppose some Ψ-output
becomes of type (Ω,Σ). Then, by (2) and (3) above, eventually the Ψ-output variable of every correct
process also become of type (Ω,Σ). So every correct process sets its Ω-output variable repeatedly in
line 22 using the extraction procedure described in [1]. Since processes reach line 22, by Lemma 3, a
critical index exists in the limit forest Υ. By following the proof of [1], it can now be shown that eventually
all the correct processes extract the id of the same correct process. The only difference is that whenever
[1] refers to a bivalent node, we now refer to a multivalent one, and whenever [1] refers to 0-valent versus
1-valent nodes, we refer here to u-valent and v-valent nodes where u, v ∈ {0, 1, Q} and u 6= v.

(6) If the Ψ-output variable of any process is ever of type (Ω,Σ) then: (a) for every correct process p, there is a

time after which Σ-outputp contains only correct processes, and (b) for every processes p and q, Σ-outputp
and Σ-outputq always intersect. This is shown in Lemmas 6 and 7.

From the above, it is clear that the values of the variables Ψ-output conform to Ψ: For an initial period of time
they are equal to ⊥. Eventually, however, they behave either like the failure detector (Ω,Σ) at all processes or,
if a failure occurs, they may instead behave like the failure detector FS at all processes. Moreover, this switch
from ⊥ to (Ω,Σ) or FS is consistent at all processes.

From Theorems 1 and 8, we have:

11

Code for each process p:

Procedure VOTE(v): { v is Yes or No }
1 send v to all
2 wait until [(for each process q in Π, received q’s vote) or FS = red]
3 if the votes of all processes are received and are Yes then
4 myproposal := 1
5 else { some vote was No or there was a failure }
6 myproposal := 0
7 mydecision := PROPOSE(myproposal)
8 if mydecision = 1 then
9 return Commit
10 else { mydecision = 0 or Q }
11 return Abort

Figure 4: Using FS to transform QC into NBAC

Corollary 9 For all environments E , Ψ is the weakest failure detector to solve QC in E .

5 The weakest failure detector to solve NBAC

5.1 Specification of NBAC

In the non-blocking atomic commit problem (NBAC), each process invokes the operation VOTE(v), where
v ∈ {Yes, No}, which returns either Commit or Abort. It is required that:

Termination: If every correct process votes, then every correct process eventually returns a value.

Uniform Agreement: No two processes (whether correct or faulty) return different values.

Validity: A process may only return Commit or Abort. Moreover,
(a) If v = Commit then all processes previously voted Yes.
(b) If v = Abort then either some process previously voted No or a failure previously occurred.

5.2 Using FS to relate NBAC and QC

We first show that NBAC is equivalent to the combination of QC and failure detectorFS. We then use this
result to establish a relationship between the weakest failure detector to solve QC and the one to solve NBAC.

Theorem 10 NBAC is equivalent to QC and FS. That is, in every environment E :

(a) Given failure detector FS, any solution to QC can be transformed into a solution to NBAC.

(b) Any solution to NBAC can be transformed into a solution to QC, and can be used to implement FS.

PROOF. Let E be an arbitrary environment.

(a) The algorithm in Figure 4 uses FS to transform QC into NBAC in E .

(b) It is known that NBAC can be used to implement FS in any environment [3, 9]. Roughly speaking,
processes use the given NBAC algorithm repeatedly (forever), voting Yes in each instance. At each process,
the output of FS is initially green, and becomes permanently red if and when an instance of NBAC returns
Abort. It remains to prove that any solution to NBAC in E can be transformed into a solution to QC in E . This
transformation is shown in Figure 5.

12

Code for each process p:

Procedure PROPOSE(v): { v is 1 or 0 }
1 send v to all
2 d := VOTE(Yes) { use of the given NBAC algorithm }
3 if d = Abort then
4 return Q
5 else
6 wait until [(for each process q ∈ Π, received q’s proposal)]
7 return smallest proposal received

Figure 5: Transforming NBAC into QC

5.3 The weakest failure detector to solve NBAC

Theorem 11 For every environment E , if D is the weakest failure detector to solve QC in E , then (D,FS) is

the weakest failure detector to solve NBAC in E .

PROOF. Let E be an arbitrary environment, andD be the weakest failure detector to solve QC in E . This means
that: (i) D can be used to solve QC in E and (ii) any failure detector that solves QC in E can be transformed
into D in E .

Let D′ = (D,FS). We must show that: (a) D′ can be used to solve NBAC in E , and (b) any failure detector
that solves NBAC in E can be transformed into D′ in E .

(a) Since the output of D′ includes the output of D, by (i), D′ can be used to solve QC in E . Since D′ also
includes FS, by Theorem 10(a), D′ can be used to solve NBAC in E .

(b) Let D′′ be a failure detector that solves NBAC in E . By Theorem 10(b), (1) D′′ can be used to solve QC in
E , and (2) D′′ can be used to implement FS in E . From (1) and (ii), D′′ can be transformed into D in E . By
(2), D′′ can be transformed into (D,FS), i.e., into D′, in E .

From Corollary 9 and Theorem 11, we immediately have:

Corollary 12 For all environments E , (Ψ,FS) is the weakest failure detector to solve NBAC in E .

6 Final remarks

In environments where a majority of processes are correct it is easy to implement the quorum failure detectorΣ:
Each process periodically sends “join-quorum” messages, and takes as its present quorum any majority of
processes that respond to that message [4]. Therefore, in such environments Ψ is equivalent to a simpler failure
detector, one which outputs just Ω where Ψ outputs (Ω,Σ).

Our definitions of QC and NBAC do not allow a process to quit or abort because of a future failure. We could
have defined these problems in a way that allows such behaviour, as in fact is the case in some specifications of
NBAC in the literature. Our results also hold with these definitions, provided we make a corresponding change
to the definitions of the failure detectorsFS and Ψ: they are now allowed to output red in executions with
failures even before a failure has occurred.

References

[1] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. Journal of the
ACM, 43(4):685–722, July 1996.

13

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM,
43(2):225–267, March 1996.

[3] B. Charron-Bost and S. Toueg. Unpublished notes, 2001.

[4] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Shared memory vs message passing. Technical Report
IC/2003/77, EPFL, December 2003. Availabe at http://icwww.epfl.ch/publications/.

[5] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and S. Toueg. The weakest failure
detectors to solve certain fundamental problems in distributed computing. In Proceedings of the 23rd Annual ACM
Symposium on Principles of Distributed Computing (PODC’04), pages 338–346, July 2004.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(3):374–382, April 1985.

[7] E. Fromentin, M. Raynal, and F. Tronel. On classes of problems in asynchronous distributed systems with process
crashes. In Proceedings of the 19th IEEE International Conference on Distributed Computing Systems (ICDCS’99),
pages 470–477, 1999.

[8] J. Gray. Notes on database operating systems. In R. Bayer, R. M. Graham, and G. Seegmuller, editors, Operating
Systems: An Advanced Course, volume 60 of LNCS, pages 393–481. Springer-Verlag, 1978.

[9] R. Guerraoui. Non-blocking atomic commit in asynchronous distributed systems with failure detectors. Distributed
Computing, 15:17–25, January 2002.

[10] R. Guerraoui and P. Kouznetsov. On the weakest failure detector for non-blocking atomic commit. In Proceedings of
the 2nd IFIP International Conference on Theoretical Computer Science (TCS 2002), pages 461–473, August 2002.

[11] V. Hadzilacos. On the relationship between the atomic commitment and consensus problems. Fault-Tolerant Dis-
tributed Computing, pages 201–208, 1987.

[12] A. Mostefaoui, M. Raynal, and F. Tronel. From Binary Consensus to Multivalued Consensus in asynchronous
message-passing systems. Information Processing Letters, 73(5–6):207–212, March 2000.

[13] D. Skeen. Crash Recovery in a Distributed Database System. PhD thesis, University of California at Berkeley, May
1982. Technical Memorandum UCB/ERL M82/45.

14

