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Abstract. This paper presents a locality-based dissemination graph algorithm
for scalable reliable broadcast. Our algorithm scales in terms of both network and
memory usage. Processes only have “local knowledge” about each other. They or-
ganize themselves dynamically (right from the bootstrapping phase), according to
join, leave or crash events, to form a locality-based dissemination graph. Broad-
cast messages can be disseminated using these graphs in large networks like the
Internet, without relying on any special infrastructure or intermediate brokers.
Roughly speaking, a dissemination graph consists of “non-crossing” (indepen-
dent) trees that provide multiple paths between processes for improved broadcast
efficiency and reliability. Each tree is constructed using BGP routing information
about process “locality”. We convey the feasibility of the algorithm using both
simulation and experimental results and describe an application of our algorithm
for broadcasting information streams.

Keywords: System design, Peer-to-peer communications, Content distribution, Mul-
ticast, Service overlay networks, Fault-tolerance, Broadcast streams.

1 Introduction

Traditional reliable broadcast algorithms [1] guarantee a very high level of reliability,
despite message losses and process crashes, but scale poorly. Broadcast schemes like
IP multicast [2] and MBone [3] are not widely available in the Internet and need spe-
cially configured routers (multicast routers and mrouted processes). Further more, these
schemes do not cope well with message losses and process crashes.

Application level broadcast algorithms [4–10] have been recently proposed as a vi-
able alternative. The general idea is to make use of some intermediate overlay network
over the actual physical network, in order to cluster processes and achieve more efficient
information dissemination. Such application level broadcast algorithms have good scal-
able and reliable properties. They can also be deployed easily in a large scale setting.
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Many of these approaches exploit an abstract notion of “locality” in the clustering pro-
cedure in order to arrange processes according to network locality. Some approaches
use centralized services [11, 12] to find “distance” between processes in the Internet.
But, with a large number of processes, it becomes quickly infeasible to query a central-
ized service with all the existing process IDs to determine a “close” process for a given
process. Round trip time (RTT) is also used to find “locality” information for clustering
processes. But again this has the same draw back (the difficulty of finding RTT to many
number of processes) as above with a large number of processes.

In this paper we present a locality-based broadcast algorithm. Our algorithm is scal-
able and provides a reasonable level of reliability. No specific infrastructure is needed
(unlike for e.g., [3] and [13]). Processes have local knowledge about each other and
self-organize (peer-to-peer based) in a dynamic content distribution scenario where
processes join and leave in an ad-hoc fashion to form a dissemination graph. When
a new process joins, it contacts one or more existing process/es to find a suitable place
in the graph. In simple terms, this resembles a tree search to find a “locality” based
suitable region. The notion of locality is based on BGP [14] routing information. Our
scheme minimizes the usage of slow network links to reduce the delay incurred to de-
liver messages and reduce congestion in such links. It offers high level of reliability in
a dynamic environment where processes leave the graph and crash. To achieve this, our
graph building algorithm constructs “non-crossing” independent paths within the dis-
semination graph. We assume that there are few sources which broadcast with respect
to the destinations. We show reliability properties using formal analysis and illustrate
the feasibility of our approach through results obtained both with a prototype as well as
with simulations.

In Section 2 we contrast our approach with related work. Our general broadcast ar-
chitecture is presented in Section 3. The reliability of the scheme with independent trees
is formally analysed in Section 4. A full algorithm which performs clustering and con-
structs dissemination graph with independent trees is described in Section 5. Section 6
presents simulation and prototype measurement results. Two possible applications of
our general broadcast scheme is discussed in Section 7. Section 8 concludes this paper.

2 Related Work

BGP information is used in [15] to construct topological-aware Distributed Hash Tables
(DHT). These DHTs are used to locate objects in an overlay network.

Application level broadcast have been widely described in the literature. We discuss
here the efforts closest to ours.

In [7], several ways of arranging peers to form a hierarchy are mentioned, namely
by selecting nodes either through 1) a random fashion 2) a round-robin fashion or 3)
a smart-placement fashion (based on their network location). In a very large scale net-
work, the network-oblivious schemes based on random and round-robin selections are
obviously not adequate. A more efficient approach consists in selecting nodes using
smart-placement. This is done in [7] through a centralized service. Though many such
services are described (e.g., [11, 12]), to our knowledge, they are not available in the



Internet to be utilized as such. Even if such a service was available, it would not be
clear how it could be used in a large scale setting.

Narada [4] is a multicast scheme with self-organizing capabilities. In this scheme,
every member maintains a list of all other members, as well as a list of routing cost to
every other member for paths between them. Then a per-source tree is constructed using
an algorithm similar to DVMRP [16]. The scheme is very heavy in terms of memory
and hence does not scale. Indeed, and according to the authors, the scheme is targeted
towards medium size groups (with hundreds of members).

Scattercast [6] is based on an infrastructure (a set of servers known as agents) which
needs to be deployed a priori. The agents construct an overlay network using a method
similar to [4]. Individual clients are attached to close proximity scattercast clusters. The
method used for automatic location of such a scattercast cluster is not presented (it is
identified as a subject of future work by the author).

YOID [5] is an application level broadcast scheme which uses a general concept of
“locality”. However, no concrete hint is given on how locality information is determined
when interconnecting processes.

Gossip-based broadcast algorithms [8, 17, 13, 18, 19] can also be viewed as appli-
cation level broadcast schemes. While providing probabilistic guarantees on delivering
messages, they have very good scalability properties and high resilience against failures
and message losses. For instance, the algorithm presented in [13] is targeted toward
small-scale WANs and relies on “gossip servers” which need to be setup and config-
ured for each LAN manually. Hierarchical gossip-based broadcast algorithms presented
in [18, 19] promote the idea of grouping processes (members) according to their local-
ity, but no concrete way to exploit this locality is presented.

SplitStream [20], a content distribution scheme built on top of a DHT uses multiple
paths between the content source and the destination. The topological placement of
nodes is not done globally but limited to a few number of nodes (the “leaf set” of the
DHT).

We describe in this paper a deterministic approach to message forwarding that limits
the network usage. BGP-based clustering scheme can be applied both in a deterministic
as well as in a randomized gossiping context.

3 Dissemination Architecture

In our dissemination scheme, the processes self organize in a peer-to-peer fashion to
form a dissemination graph. The basic idea of our scheme is conveyed in Figure 1.
Depending on their available resources (and possibly user-defined criteria), a subset of
processes can be used to forward the messages they receive to other processes. The
processes which are not capable of forwarding events to others (e.g., due to resource
constraints) act as “pure clients” and receive events forwarded either by the source or
by some other processes.

We construct a graph for message dissemination in a peer-to-peer basis. There is
only one source for a given graph. For the sake of presentation simplicity, yet without
loss of generality, we only discuss one such graph. The graph consists of independent
trees connecting the source and all receiving processes. These trees are constructed



according to the network bandwidth between processes. Broadcast is achieved by for-
warding messages along these trees.

Processes have parent-child relationships. A process
�

� , which forwards the mes-
sages it receives to another process

�
� , is called a parent of

�
� and

�
� is called a child

of
�

� . The number of possible children a parent can have is called the parent’s fanout.
The fanout of a process is chosen according to its capabilities in terms of computation
and network resources. Our scheme aims at grouping processes which are “closer” in
the Internet. This is achieved using BGP-based clustering as described below.

Fig. 1. Process-Assisted Broadcast.

3.1 BGP-based Clustering

Our clustering scheme relies on BGP [14] routing information. In particular, we use the
notion of Autonomous System [14] (AS) to identify the segments of the Internet. Basi-
cally, an AS consists of a set of networks (a set of IP address blocks) which are managed
by one administrative domain like an Internet Service Provider (ISP). Generally the net-
works inside a same AS have high bandwidth links connecting them. For example, the
networks connecting universities in a country, large companies and organizations are
typically in the same autonomous systems. In other terms, within such AS, individual
networks and computers usually have high bandwidth links between them. Processes in
a given autonomous system are arranged as neighbors in our dissemination graph.

It is possible for a process to find its AS using BGP information. This information is
extracted using BGP routers or WHOIS servers [21, 22]. A service can be built on top of



BGP routers to provide this information directly from the lower level network in a real
time fashion. On the other hand, there are WHOIS servers [22, 23] which provide BGP
information in an off-line fashion. This service can be mirrored locally, for example at
the source, to have a low response time. Also the network address of a process (which
has an IP) can be obtained using such BGP routers and WHOIS servers. The network
address represents more fine-grained segmentation of the network.

In this paper, we only consider the AS and do not use the network address. Each
new process can know its corresponding AS when the process first contacts the service
when joining the group. If a fine-grained division is required, the network address of
a given process can also be used in the clustering. In such a case, processes are also
grouped according to the local networks they belong to inside a given AS.

We also group ASs according to their countries. This helps a process to aggregate
information about other processes: as a result, first, the size of the memory necessary to
keep local information about neighbors is minimized. Second, there is a high probability
to find a “closer” parent to a given process within the same country than from a different
country.

These techniques can be used to divide the network into clusters and sub-clusters.
A group of ASs in a country is called cluster where as individual ASs are sub-clusters
within the cluster. This approach to find the “locality” can be efficiently applied in a
large scale setting like in the Internet.

The clustering of processes promotes good communication between neighbors and
minimizes the amount of “local” information about other processes without keeping
global knowledge. It also helps a new process to find a suitable parent within an accept-
able time duration without consuming too much computing and network resources. In
other words, though there are many thousands of processes, the new process is provided
with adequate information to select a suitable parent.

3.2 Parent Selection

Our scheme provides heuristic information for any new process help it to find a suitable
set of parents. The source and a set of existing processes provide this information. To
ensure scalability, the source and processes keep a minimum amount of information
for providing this heuristic information. The source keeps the information about the
clusters and the knowledge about a limited set of processes for each of these clusters.
When a new process contacts the source, the source first checks the cluster to which
the new process belongs. Then the source, using its local knowledge, checks if there is
any process already in this particular cluster. If the source finds one or more processes
which are already in this cluster, then the new process is provided with the IDs of those
existing processes (if there are no existing processes in the cluster, the new process will
join as a child to the source itself). The new process contacts these processes which
are already in the cluster. Unlike the source, the processes inside a cluster have more
precise information about other processes in their respective clusters. That is, inside
a cluster each process knows to which sub-cluster it belongs. Also, processes know a
subset of the processes in their sub-cluster as well as in other sub-clusters. As a result,
if the new process ��� is in ����� , then ��� will be redirected to any existing processes in



��� � (details are in the Section 5). If there are no such existing processes in ��� � , � �
joins to some other existing processes.

The exact choice of a parent is made by the new process from the set of possi-
ble parents provided to the new process. In other terms, the new process measures the
communication latency to each potential parent and also verifies the availability of an
out-going link from each such parent. The parent is chosen such that it has an available
out-going link with sufficiently low latency to the new process.

At this point, it should be noted that the trees can be re-arranged to make the scheme
more efficient. For example, if a new process with a fanout greater than zero can not
join because all the leaf processes of the tree are having a fanout of zero, then the tree
will re-arrange by making the new process a new intermediate node in the tree.

Due to clustering, processes only keep a limited amount of information about other
processes for the purpose of parent selection: this preserves scalability.

Example The parent selection can be elaborated using a simple diagram as shown in
Figure 1. In this simple example, the processes belong to three clusters S1, S2 and S3.
The source P knows about processes A, C, F, D and E from clusters S1, S2 and S3
respectively. (For the purpose of having a higher reliability, the source can know more
than one process from each cluster). In cluster S1, there are two sub-cluster SS1 and
SS2. Processes A and B are located inside SS1 while C is in SS2. Process C, which is
also known by P, knows that process B is a child (of C) and belongs to sub-cluster SS1.

Suppose a new process G from SS1 wants to receive events from P. G first contacts
the source P. P observes that G belongs to S1. As P already knows that A and C are
in S1, P asks G either to join A and C, or obtain more precise information from them.
Once G contacts C (or A), C observes that G is in SS1. G will be informed about B by C.
Depending on the available resources, G joins A and B as a child. In a situation where
none of the existing processes in a cluster can be assigned as a parent to a new process
(for example, due to resource constraints), the tree will be re-arranged to make the new
process an internal node in the tree (assuming the new process can forward messages
to other processes) and previous leaf processes will remain leaf processes, in the newly
arranged tree. If all the existing processes are not able to forward messages, and the new
process also can not forward messages, the new process will join the source. A similar
scenario applies to process F in S2 since F is the only process in that cluster.

4 Independent Trees

At this point it should be clear that the processes in the lower level of the dissemination
tree rely on the proper functioning of the higher level processes which forward mes-
sages. If one such higher level process crashes, all the child processes of the crashed
process will not receive events until the system reconfigures to construct the dissemi-
nation tree. The independent trees (i.e., non-crossing paths between the source and the
receiving processes) are used to minimize the effect of such crashes and improve the ef-
ficiency as well as the reliability of the dissemination scheme. These multiple paths can
be used in different ways depending on the nature of the application and the messages
being broadcast. They are further discussed later in the paper.



Example Before continuing the elaboration of our scheme, let us consider a simple
example. As shown in Figure 1, the source sends events along two separate paths (more
than two paths are of course possible) for a given cluster, and hence any given process
receives events along two different paths. For instance, process B in cluster S1 receives
events via process A as well as C. In the case of failure (either A or C), B still receives
a part or all events from one path (i.e., according to the configuration as discussed in
Section 7).

When a new process joins, it must join multiple dissemination trees. For example,
when G joins in Figure 1, it can select A as parent to receive events along one path
and B as parent to receive events along the other path, provided that there are free out
going links; if there are no outgoing links, the tree is re-arranged and the new process
becomes an internal node (as described in the example of the previous section). Note
that the new process G will receive messages from its own sub-cluster (from A and
B) to minimize the transient traffic between sub-clusters. This reduces the message
delay and congestion in links between such sub-clusters. Also, to re-direct G to B by
process C, process C should keep some information about B and sub-cluster ID of B.
These issues are described in Section 5. It is sub-optimal to have communication links
between sub-clusters (like between SS1 and SS2) in these trees: but for a small number
of independent trees and sufficiently large number of processes having non-zero out
going links, such communication links between sub-clusters are limited.

When there is just a single process in a cluster as in S2, that process receives events
on both paths from the source itself. As more processes join, the system reconfigures
itself: for example, as in cluster S3. That is, in S3 process D and E exchange events that
they do not receive directly from the source.

To guarantee the reliability of our scheme in the case of failures, two complement-
ing paths should obviously not have common processes. The algorithm arranges pro-
cesses according to the locality and rearranges them to make the scheme efficient as
new processes join.

4.1 Reliability: An Analysis

The processes which take part in the message dissemination can be scattered all over
the Internet and their behavior (in terms of join, leave and crash) is quite unpredictable.
Either because the user terminates a process or due to failures, a process can be dis-
connected from the graph. Since many such processes act as parents, this might lead to
form a disconnected tree causing inability to deliver messages to lower level processes
in the tree. Of course, other trees in the graph could deliver messages and their opera-
tion is vital in such a scenario. We analyse the impact of such disconnections of trees
on the reliability of the broadcast. For this, we use the following notions: 1) Mean Time
Between Failures (MTBF) is the mean period of time a user may expect a given sys-
tem to operate before a failure; 2) Mean Time To Recover (MTTR) is the mean period
of time to recover the failed system (e.g., reconstruct a tree after disconnection). The
availability of a system is defined as follows:

� �����������	���
������ a ���
�������

���������������� (1)



If the time is measured in minutes, the down-time per day, that is the mean time a
given system is not available is :������� �����
	 � ���� a ���������
��� (2)

Assuming the availability of a single tree is a, availability of � such trees, out of �
trees in the graph, is ��� , where:

� � � � � ��� � � ���� � ���! � (3)

Hence the availability of at least � trees is " � , where:

"#� � �$ %'& � � % � �$ %'& � � � � � �
%
���( � � �! % (4)

For the proper functioning of the broadcast scheme, there should be at least one
failure free tree at any given time. This tree can be used either to receive messages
directly or to recover the messages (by retransmission from parent) once the message
digests are received by a process (see Section 7 for more details). Availability of at least
a single tree out of � trees is " � , where:

" � � �$ %'&
�

�

%
� �$ %'&

�

� �
� � �

%
���( � ���) % (5)

Assume an extreme case where, for a given dissemination tree, MTBF is 15 minutes
and MTTR is 4 minutes; that is a dissemination tree gets disconnected each 15 minutes
on average due to a process leaving the graph and it takes 4 minutes to reconstruct the
tree again (more on this is at the end of this section). Then using Equation 1 and 2
it can be seen that availability of a single tree (or any other scheme based just on a
single path) is 0.7895 and the down-time is 303.15 minutes (around 5 hours) per day.
Using Equation 5 and 2 it is possible to calculate the down-time of a system with �
independent trees. For various values of � , the down-time per day is shown in Figure 2.
For a dissemination scheme with 4 independent trees, the down-time is 2.82 minutes per
day while with 6 trees it is 0.12 minutes per day.

This shows that, even in a very dynamic and unpredictable environment, where a
trees fails at every 15 minutes (on average) due to processes leaving the graph, the
reliability of the scheme can be improved considerably by having a few independent
trees.

It should be noted that the reliability can also be improved by reducing MTTR. This
can be done by localizing the reconstruction: that is, whenever a process crashes or
leaves the tree, the neighbors of that process reconstruct the tree without involving all
the processes in the tree. The construction of the entire tree takes more time than the
localized reconstruction.
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Fig. 2. Down-time of the broadcast scheme (with MTBF = 15min and MTTR = 4min)

5 Algorithm

In Figure 3 and 4, we describe the basic algorithm which constructs the dissemina-
tion graph. For presentation simplicity, we only show the major parts of the algorithm.
When a process (potential receiver) joins a graph, the process sends a number of re-
quests to the source (broadcaster) and then possibly to a set of other processes. It is
important to note that the messages we refer to in this section are only protocol mes-
sages (e.g., Join, SourceAccept, Accept, etc.) that are used to construct the graph. They
are not the actual application broadcast messages that is broadcast by the source. For
all these protocol messages, the sender of a given message is denoted as

���
and the

receiver is denoted as
� � .

The graph consists of � independent trees: each tree has a color to identify itself.
A process receives messages from all the trees but only forwards messages from one
tree, T. The color of a process is the color of that tree T. A child process that has the
same color as parent � , is called a direct child of � . A parent has a list of all children
denoted as children list and list of all direct children denoted as direct c. It is obvious
that direct c

�
children list for its own sub-cluster.

A process is considered as full if it can not have -more- outgoing links. A process
which has a parent from another sub-cluster than its own, is called a sub-cluster head.

5.1 Basic Sequence of Messages

We describe here, the basic sequence of messages shown in the algorithm (Figure 3
and 4). When first joining, the new process,

� � , finds its country and AS (autonomous
system). Then

� � sends a Join message to the source: the source replies either with
a SourceAccept or Redirect message. If an existing process

���
(other than the source)

can accept
� � as a child, then

���
sends an Accept message to

� � . If a process detects



1: For connecting to the broadcast group:
2: get country c and AS as
3: send join(c, as) message to �

4: upon receiving a Join(c,as) from ��� by ���
5: if � � and � � are in same AS then
6: if � ���	��
��� then
7: ��� sends accept( � children list � , � direct c � ) to ���
8: else
9: � � sends redirect(direct children of � � in same AS)

10: else
11: if ��� is a sub-cluster-head then
12: if ������� routing table such that ��� .AS=as then
13: � � sends redirect( � � ) message to � �
14: else Do as 15 to 18
15: else if ��� � full then
16: ��� sends accept( � children list � , � direct c � ) to ���
17: else
18: ��� sends redirects(direct children of ��� ) to ���

19: upon receiving a accept( � children list � , � direct c � )
20: set � � .parent = � �
21: if all � accept messages are received then
22: if parent ��� of ��� is from another sub-cluster then
23: select color of � �
24: � � sends Route( � � id,AS of � � )
25: else
26: select a parent who needs more direct children � using

parameter of the message �
27: � � sends SetColor( � � id,color of � � ) to � �

28: upon receiving a Redirect(list)
29: let � = set of potential parents
30: if ��� is the source then
31: for all ��� list do
32: send join(c,as) messages
33: else
34: ������� list
35:  !� select one from �
36: ���"��#� 
37: send join(c,as) message to  

38: upon receiving a SourceAccept(list, clr)
39: set color to clr
40: for all �$� list do
41: send join messages

42: upon receiving a Route(process id, p AS)
43: if � � is a sub-cluster-head then
44: routing table � (process id, p AS)
45: forward Route( ��� id, p AS) to parent of ���
46: else
47: forward Route(process id, p AS) to parent of ���

48: upon receiving a SetColor(process id, clr)
49: %'&�( ��)+*-,/. � (102 !��%2&�( ��)+*3,/. � (10' �� (process id, clr)

Fig. 3. Graph Building Algorithm: At every receiver process



1: upon receiving a Join(c,as) from ���
2: let � =immediate children of � in country c
3: if � � ��� � then
4: ����� �	���
5: for all ����� do
6: clr � select color for �
7: send SourceAccept( � ,clr) message
8: else
9: send redirect( � ) to ���

Fig. 4. Graph Building Algorithm: At the source � .

itself as a sub-cluster head, then it sends a Route message to its parent: all the processes
forward this message to their parents. While sub-cluster heads alter this message before
forwarding, others forward the message as it is. Once it is received by the source, the
message is discarded. After receiving all � Accept messages, the new process

� � de-
cides on its color: then

� � sends a SetColor message to its parents. The parents update
their children list and direct c lists accordingly.

These messages (both requests and responses) and the tasks associated with them
are shown in Figure 3 and 4. These request and response messages (simply stated as
“messages” in this section) and associated tasks are described briefly next.

5.2 Messages

Join This message is sent by
� �

to
� � when a process

� �
needs to join a group. First

the message is sent to the source. Then, depending on the response this message will
be sent to other processes. The source might respond with a SourceAccept or Redirect
message. Other processes respond with an Accept message or Redirect message. If the
processes (not source)

� �
and

� � are not in the same sub-cluster and
� � is a sub-cluster

head, then
� � performs a routing table lookup in routing table to find another process

that is in the same sub-cluster as of
� �

.

SourceAccept This message is sent by the source (as a response to a join message) when
the source decides to accept a receiver process as its own child. That is, when there are
less than � processes in a cluster � (country) at the bootstrapping (initial) phase, these
messages are sent to construct the initial set of children and the graph. The information
about the process ids (of source’s children in the country � ) and their corresponding
color is also sent along with this message. Then each process sets its color according to
the request of the source and sends a join message to all other processes as indicated by
process ids.

Accept This message is sent by a process
� �

to another process
� � as a response to

a join message when
� �

decides to accept
� � as a child. If one parent is from another



sub-cluster,
� � selects the color of this parent. As a result, subsequent processes from

the same cluster (as of
� � ) can find a parent from within their own cluster. This re-

duces the number of links between the sub-clusters. Since such links are associated
with greater delays (than links in the same cluster), by reducing such links, the effi-
ciency is increased. The two parameters (number of elements in children list and in
direct c) allow a child to decide its color in an efficient manner. Using this parameter it
is possible to estimate whether one parent is not having adequate direct children (i.e.,
enough out-going links) of its own color. Then

� � can select the color of the process
which does not have adequate direct children. In other terms, this selection criterion
helps to have enough out-going links of each color.

Redirect This message is sent by
���

to
� � in response to a join message sent by

� �
(who is looking for a parent). The parameter, list, is a set of possible parents to

� � . If
� �

is the source, then ( � list � � m)
� � will send m number of join messages to construct

m trees. If
� �

is not the source, then
� � explores each process in “list” to find a suitable

parent by sending join messages to them. This join-redirect set of messages resembles
a search in a tree to find a possible parent.

Route This message is used to update the routing information in sub-cluster heads,
(a sub-cluster head is a process whose parent comes from a different sub-cluster than
his own). These processes keep a small amount of routing information. As a result,
given a process from a particular sub-cluster � �

%
, the sub-cluster head knows whether

there are any other processes in this � �

%
, in the sub-tree below the sub-cluster head. If

such a process exists, a new process which tries to join can be redirected appropriately.
In short, this message helps to group processes of the same sub-cluster together. This
message has a parameter � ��� ��� 	���� �	� ,� � ��
 , where � � � is the sub-cluster which
could be reached via ��� ��� 	���� �	� . Sub-cluster heads alter the ��� ��� 	���� �	� and forwards
the new route message to their parents.

SetColor This message is sent to
� � by

� �
in response to an accept message indicating

that
� � is selected as the parent. The parameter “color” indicates the color of

� �
.

� �
keeps information about ID of

� �
and color of

� �
.

For the presentation simplicity, the Figure 3 and 4 show only the major parts of
the algorithm. The procedure of broadcasting (application message forwarding) is not
shown in the algorithm; but this is simply done by forwarding messages along the edges
of the trees by each process starting from source. The information a process stores
(e.g., children list) has the nature “soft state”; that is, these informations need to be
refreshed periodically (e.g., in this case by children). In other terms, in order to be in
the children list, children need to inform parents about their presence periodically. This
nature of “soft state” information enables to handle crashes and leaving of processes
without any notification.

When a process (in particular an intermediate node in a tree) crashes (or leaves
without any notification), one of the path (of a given color) in the dissemination graph is
broken. Under such circumstances (once the children observe the crash of parent), after
a timeout, the children of crashed process should initiate a procedure to reconstruct
the broken path. The naive approach would be that these children contact the source



again to construct a path with the color of the broken one (other paths are unaffected).
This naive solution is not optimal in terms of communication steps, but consumes less
memory as it does not require additional information for the reconstruction procedure.

6 Performance

In this section we present results obtained from 1) a prototype implementation as well
as from 2) simulations. We use the prototype to test the feasibility of BGP-based cluster-
ing in a real world scenario as well as to evaluate the performance of the dissemination
scheme. The feasibility of clustering method in a larger scale is also tested using a sim-
ulation. We also use simulation to check the performance of the system with different
values of fanout.

6.1 Prototype Implementation

In this real experiment, we used a source which broadcasts messages with the size of
1kb each to a total of 210 processes.

Setting A source publishes over a modem connection (56kbps) from country � and in
autonomous system � . We used 150 processes in one country ( � ), and in autonomous
system � , while 60 other processes were in another country (

�
), and in the same au-

tonomous system. A random value between 1 to 4 was chosen as the “fanout” (i.e., max.
number of outgoing links) for each process. This simulates a real-life setting where the
fanout of an individual process depends on its network bandwidth and user preferences.
As described in Section 3, the country is specified for each process and the autonomous
system is obtained using the WHOIS [21] service.

Results Table 1 summarizes the results obtained in this experiment. The details of these
measurements are discussed next.

Country � �
Number of processes 150 60
Maximum depth 8 8
Average depth 5.3 5.7
Maximum join latency (ms) 1758 1302
Average join latency (ms) 952 1150
Minimum join latency (ms) 686 757
Maximum delay (ms) 213 267
Average delay (ms) 195 258
Minimum delay (ms) 177 182

Table 1. Communication between two Clusters.



Maximum and average depth: The depth of a process reflects the number of hops taken
by a message before being delivered to that process. The maximum time taken to
disseminate a message depends on the maximum depth of the dissemination tree
used for its dissemination. The average depth in contrast is the average number of
hops taken by messages before being received by processes.

Maximum and minimum join latency: In the dissemination scheme, a process joins a
suitable parent in the join phase. As processes are redirected progressively starting
from the source (see Section 3.2) to other processes, there is a certain latency when
joining the dissemination tree. The maximum and minimum latencies are depicted
by these two values.

Maximum, average, and minimum propagation delay: As each message is forwarded a
given number of times by the processes, there is a delay before a message is received
by each process. The maximum propagation delay is the largest delay incurred when
receiving a message in the system. This delay occurs for the bottom most process in
the dissemination tree. Similarly, minimum and average propagation delay represents
the minimum and average delay incurred in the dissemination process.

6.2 Simulations

We performed a set of simulations to analyze the performance of our clustering scheme
beyond the above (admittedly limited) setting involving only 2 countries and 3 au-
tonomous systems. We were interested in finding 1) the maximum delay (in terms of
hops) incurred due to successive forwarding of messages between processes, and 2) the
impact of the fanout on the maximum delay.

Setting We simulated a set of IP clients which are globally distributed. To achieve this,
we used a set of IP addresses of hosts which had recently accessed our laboratory web
site. To group IP addresses into clusters and sub-clusters within each country, we used
the WHOIS [21] service from [22].

We associated, -with each IP address-, a random integer f such that f is bounded by
1 � f � k. The parameter f depicts the fanout or the number of out-going links from a
process to other processes. We varied k such that k= 2,3,4,5 and did the simulations for
each k. As a result, we represent processes which are capable of forwarding messages
to up to k other processes as well as ones that can forward messages to only 1 other
process.

Results For each value of k we constructed the dissemination tree as shown in Figure 1
(Y-axis � depth, X-axis � fanout) and found the maximum and average depth of the tree
to estimate the maximum delay incurred due to hops when disseminating the messages.
Since the delay incurred for each message depends on the number of hops the message
has, it is critical to limit the number of hops. The maximum number of hops a message
will have is equal to the maximum depth of the tree in our dissemination scheme. Since
it is more general and appropriate to express the delay in terms of hops in end processes
based (peer-based) systems, we used hops as the measure of the delay in our results.
Figure 5 shows the delay for each value of k. Here, -for example- when k=2, the fanout
of processes can have a value of 1 or 2.



Fig. 5. Maximum Delay for Different Values of � .

7 Applications

In this section we describe two specific applications that can be built on top of our
broadcast. First, we present a scheme suitable for streaming media. Second, we de-
scribe a general gossip-based broadcast that will reduce the network usage (by using
message digests) while preserving the necessary redundancy to handle message losses
and failures.

7.1 Broadcasting Stream Data

Stream data such as audio and video consists of samples which are broadcast in a frag-
mented fashion. These fragments, which form a “signal” (e.g., a video frame, an audio
clip), are re-assembled at the receiver. Fragmentation can be done such that even if a
set of fragments are lost, this does not necessarily invalidate an entire message (e.g., a
video frame, an audio clip). There are number of coding schemes (e.g., [24, 25]) which
can deliver adequate quality stream data in spite of high level of message loss. Our in-
dependent dissemination trees can use such coding schemes very efficiently to deliver
stream data. These successive (or interleaving) fragments (packets) can be routed in a
round-robin style over multiple trees.

In such a scenario, the crash of a path does not cause a complete loss of the broad-
cast. The crash of a path only degrades the quality of the signal until that path is re-
constructed. This technique is hence applicable whenever the composition of single
events/messages generates higher quality aggregated data.

In the context of streams, our scheme applies particularly well since the redundant
trees are efficiently used: that is, the redundant trees do not disseminate duplicate mes-
sages but messages that can augment other messages.



7.2 Deterministic Gossip

The independent trees of the dissemination graph can be used to implement gossip-
based dissemination scheme in a deterministic fashion. In other terms, as the simplest
case, processes receive the same set of messages via independent and redundant trees
(e.g., � different trees). The source can set the parameter � according to the level
of redundancy required by the application to circumvent message losses and process
failures.

Another approach is to send messages in � (where � � � ; e.g., � � 1) trees and use
other �  � trees to send digests (i.e., message IDs) of those messages. As a result, when
the system operates without process failures and message losses, a process receives
actual messages � times and message digests from �  � trees. In the case of � trees
that send actual messages fail, the process still receives message digests from other
independent trees. Under such circumstances, a process is aware that it is not receiving
all messages that are being broadcast. Then (after a time-out) the process can ask for
messages from its parent in the correctly functioning trees from which it receives the
digest of the actual message. This recovery phase of messages is efficient since it is
done using neighbors of a given process (localized recovery) instead of using the source
itself. This method of deterministic gossip could help to reduce the amount of network
usage while still maintaining good reliability properties by having redundancy.

8 Conclusion

This paper presents a scalable gossip broadcast algorithm with good reliability proper-
ties. Broadcast is achieved using a graph, consisting of processes grouped according to
their locality. Processes (including the broadcaster) forward messages to a limited num-
ber of other neighbors. This number is defined according to their capabilities in terms
of resources. The processes only know about limited number of other processes.

To group processes according to their locality, a clustering scheme based on BGP
information is used. This scheme arranges processes in the Internet according to their
“locality”. Consequently, message delays between processes and transient broadcast
traffic between large networks (autonomous systems) are reduced by localizing the ma-
jority of broadcast traffic within clusters and sub-clusters. The clustering scheme, to-
gether with the local knowledge of processes, help new processes find a suitable “place”
within the graph by using few communication steps.

The clustering approach we use to arrange processes can be applied to various appli-
cations (e.g., peer-to-peer applications) and other broadcast algorithms such as [26, 27,
18]. Our dissemination graph with multiple independent paths is particularly suitable
for broadcasting streaming data such as audio and video media.

The processes self-organize to construct the graph which consists of “non-crossing”
(independent) trees. These trees, which evolve in a dynamic environment, are used to
forward messages. As shown in the paper, even in extreme cases where processes leave
the dissemination graph often, it is possible to have good reliability properties by lim-
iting the down-time to a required level. We also convey the feasibility of our approach
both using simulations and experimental results.
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