
Discrete Multi-Valued Particle Swarm Optimization
Jim Pugh and Alcherio Martinoli

Swarm-Intelligent Systems Group
École Polytechnique Fédérale de Lausanne

1015 Lausanne, Switzerland
Email: {jim.pugh,alcherio.martinoli}@epfl.ch

Abstract— We present a new optimization technique based on
the Particle Swarm Optimization algorithm to be used for solv-
ing problems with unordered discrete-valued solution elements.
The algorithm achieves comparable performance to both the
previous modification of PSO for binary optimization and to
genetic algorithms on a standard set of benchmark problems.
Performance is maintained on these problems re-encoded with
ternary solution elements. The algorithm is then tested on a
simulated discrete-valued unsupervised robotic learningproblem
and obtains competitive results. Various potential improvements,
modifications, and uses of the algorithm are discussed.

I. I NTRODUCTION

Discrete optimization is a difficult task common to many
different areas in modern research. This type of optimization
refers to problems where solution elements can assume one
of several discrete values. The most basic form of discrete
optimization is binary optimization, where all solution ele-
ments can be either 0 or 1, while the more general form
is problems that have solution elements which can assume
n different unordered values, wheren could be any integer
greater than 1. While Genetic Algorithms (GA) are inherently
able to handle these problems, there has been no adaption of
Particle Swarm Optimization able to solve the general case.

Particle swarm optimization (PSO) is a promising new opti-
mization technique developed by James Kennedy and Russell
Eberhart [3] [4] which models a set of potential problem
solutions as a swarm of particles moving about in a virtual
search space. The method was inspired by the movement of
flocking birds and their interactions with their neighbors in the
group. Every particle in the swarm begins with a randomized
position (xi) and (possibly) randomized velocity(vi) in the
n-dimensional search space, wherexi,j represents the location
of particle indexi in the j-th dimension of the search space.
Candidate solutions are optimized by flying the particles
through the virtual space, with attraction to positions in the
space that yielded the best results. Each particle remembers
at which position it achieved its highest performance(x∗

i,j).
Every particle is also a member of some neighborhood of
particles, and remembers which particle achieved the best
overall position in that neighborhood (given by the indexi′).
This neighborhood can either be a subset of the particles (local
neighborhood), or all the particles (global neighborhood). For
local neighborhoods, the standard method is to set neighbors
in a pre-defined way (such as using particles with the closest
array indices as neighbors modulo the size of the swarm,
henceforth known as a “ring topology”) regardless of the

particles’ positions in the search space. The equations executed
by PSO at each step of the algorithm are:

vi,j = w · vi,j + pw · rand() · (x∗

i,j − xi,j)

+ nw · rand() · (x∗

i′,j − xi,j)

xi,j = xi,j + vi,j

where w is the inertia coefficient which slows the velocity
over time to prevent explosions of the swarm and ensure
ultimate convergence,pw is the weight given to the attraction
to the previous best location of the current particle andnw

is the weight given to the attraction to the previous best
location of the particle neighborhood.rand() is a sampling
of a uniformly-distributed random variable in[0, 1].

The original PSO algorithm can only optimize problems
in which the elements of the solution are continuous real
numbers. A modification of the PSO algorithm for solving
problems with binary-valued solution elements was also de-
veloped by the creators of PSO [5]. The equations for the
modified algorithm are given by:

vi,j = vi,j + pw · rand() · (x∗

i,j − xi,j)

+ nw · rand() · (x∗

i′,j − xi,j)

xi,j = 1 if (rand() < S(vi,j))

xi,j = 0 otherwise

whereS(x) is the sigmoid function given by

S(x) =
1

1 + e−x

Because it is not possible to continuously “fly” particles
through a discrete-valued space, the significance of the ve-
locity variable was changed to instead indicate the probability
of the corresponding solution element assuming a value of0
or 1. The velocity is updated in much the same way as in
standard PSO, though no inertia coefficient is used here. For
assigning a new particle value, the velocity term is transformed
to the range(0, 1), and the particle element is randomly set
with probability of picking1 given byS(vi,j). In this variation
of the algorithm, the velocity term is limited to|vi,j | < Vmax,
whereVmax is some value typically close to6.0. This prevents
the probability of the particle element assuming either a value
of 0 or 1 from being too high. Though the discrete-value
modification for PSO (henceforth refered to as DPSO) has

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147915718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

been shown to be able to optimize various discrete-valued
problems [5], it is limited to discrete problems with binary-
valued solution elements.

There has been some other exploration of PSO techniques
for discrete optimization. Yang et al. [14] developed an al-
gorithm based on DPSO which uses a different method to
update velocity. Al-kazemi and Mohan [1] used a technique
also based on DPSO which had particles alternatively exploit
personal best and neighborhood best positions instead of si-
multaneously. Both methods use the same principles as DPSO
and both are limited to binary problems. Pampara et al. [9]
solved binary optimization using Angle Modulation with only
four parameters in continuous PSO, which allowed for faster
optimization of several problems. The technique was again
only applied to binary problems.

Several other forms of discrete optimization have been
explored using PSO. Permutation optimization has been at-
tempted in several cases (e.g., [8], [10], [13]). The case study
for most of these works has been the Traveling Salesman
Problem. This type of optimization, while it does use discrete
particle elements, is fundamentally different than the discrete
optimization we deal with here. PSO has also been applied
to some integer programming problems [11]. Our optimiza-
tion differs from this because our discrete parameters are
unordered, which makes it impossible to simply discretize a
continuous search space as was done for integer programming.

Section 2 of this paper introduces our new discrete-valued
PSO algorithm, which we designate Multi-Valued Particle
Swarm Optimization (MVPSO). Section 3 compares its per-
formance against GA and DPSO on the standard De Jong
Test Suite [2]. Section 3 explores the capabilities of the
algorithm for solving problems with discrete-valued solution
elements encoded in ternary. Section 5 applies the algorithm
to an unsupervised robotic learning problem with ternary
solution elements. Section 6 discusses possible improvements
and applications of the algorithm and concludes the paper.

II. D ISCRETEMULTI -VALUED PARTICLE SWARM

OPTIMIZATION

A. The Algorithm

In DPSO, the velocity term contains the probabilities of
solution elements assuming values, and the particle contains
the solution elements. For our algorithm, the particles them-
selves contain the probabilities of solution elements assuming
values. Our particle representation therefore goes from being
2-dimensional to 3-dimensional:xi,j,k is a continuous real-
value indicator of the probability of particlei, elementj
assuming valuek (in the case of binary, k would be either
0 or 1). To find a particle’s fitness, the solution elements
are generated probabilistically at evaluation time, making the
evaluation inherently stochastic. Because particle termsare
real-valued, this representation allows us to use velocityin
the same way as in standard PSO, wherevi,j,k represents the
velocity of xi,j,k.

B. Generating the Solution Elements

At the time of fitness evaluation for particlei, we must
transform the real-valued termsxi,j,0, ..., xi,j,n to generate a
value from0 to n for solution elementsj . To do this, we apply
the sigmoid function to each term, and use the weighted sum
as the probability:

x′

i,j =

n
∑

k=0

S(xi,j,k)

P (sj = k) =
S(xi,j,k)

x′

i,j

wherex′

i,j is the normalizing coefficient for particlei, element
j. By using this technique, the particle can potentially generate
any possible solution, but with varying probabilities depending
on its terms.

C. Maintaining Centered Particle Values

The particle swarm maintains the best dynamics when all
the particles share a common reference frame for their terms.
This is always the case in standard PSO, as each particle
term represents a solution element which is given a frame
of reference by the fitness function. However, in our situation,
the probability of a particular solution valuek′ is dependent
not only on the probability term for that valuexi,j,k′ but on
all other xi,j,k as well due to the probability normalization.
We therefore apply an adjustment to particle terms after each
modification of the particle values. This adjustment is given
by

x′

i,j,k = xi,j,k − ci,j

for all k, wherex′

i,j,k is the new indicator of the probability of
particle i, elementj assuming valuek, with ci,j chosen such
that

n
∑

k=0

S(x′

i,j,k) = 1

The idea is to shift all the values such that we get a nor-
malizing coefficient of 1. By applying this to all elements and
particles, we have a common reference for every particle. This
also accomplishes the normalization that would otherwise be
required to generate the solution elements.

As there is no straightforward method of findingci,j ana-
lytically, we calculate it by numerical approximation.

D. Dealing with Noise

Because particles in our algorithm contain probabilities of
element values instead of actual element values, a particle
can assume different element values on different evaluations
and therefore return different fitness values. This situation is
analogous to a noisy fitness evaluation, and we therefore ought
to use a method of dealing with this noise. We apply the
technique used in [12] for PSO with noisy optimization, where
we reevaluate the previous best particles at each iterationof
the algorithm and average all the evaluation results over the
particles’ lifetimes to get an average fitness. This modification

may also give our algorithm some intrinsic resistance to noisy
fitness evaluations.

A flowchart of the algorithm can be seen in Fig. 1.

Fig. 1. Evolutionary optimization loop used by MVPSO

E. Limiting the Velocity

Because our technique differs from standard PSO, the
impact of the inertia coefficientw was not immediately clear.
By evaluation, we found the algorithm performed well for aw

which linearly decreases from1.2 at the start of the algorithm
to 0.6 at the end, which is similar to the technique used in
previous work with standard PSO. It would be interesting and
useful to develop a technique for adapting the inertia coeffi-
cient throughout the evolution based on how the optimization
of the system is progressing.

F. Algorithm Parameters

We use a ring topology for the swarm and assign the nearest
particle on each side to be a neighbor.pw and nw are both
set to2.0.

III. T EST FUNCTION EVALUATION

A. Setup

We use the very standard De Jong Test Suite ([2]) with
binary encoding to evaluate the performance of the algorithm.

The functions are given by

f1(x̄) =

n
∑

i=1

x2

i

f2(x̄) = 100(x2

2 − x1)
2 + (x1 − 1)2

f3(x̄) = 6n +
n

∑

i=1

⌊xi⌋

f4(x̄) = N (0, 1) +

n
∑

i=1

ix4

i

1

f5(x̄)
=

1

500
+

n
∑

i=1

1

i + (x1 − aimod5)6 + (x2 − ai/5)6

for a0 = −32, a1 = −16, a2 = 0, a3 = 16, a4 = 32. The
function parameters are specified in Table I. For comparison,
we use standard GA and DPSO (parameters given in Table
II). All algorithms use 20 agents. For GA, the parameters were
chosen to achieve near-maximal performance on the functions.
For DPSO, we use the same parameters used in [5].

TABLE I

TEST FUNCTION PARAMETERS

Function n Bits per Value Value Range

f1 3 10 [−5.12, 5.11]

f2 2 10 [−5.12, 5.11]

f3 5 10 [−5.12, 5.11]

f4 30 8 [−1.28, 1.27]

f5 2 17 [−65.5, 65.5]

TABLE II

GA AND DPSO PARAMETERS

GA DPSO

Crossover Probability 0.6 pw, nw 2.0

Mutation Probability 0.2 V max 6.0

We run GA and DPSO for 400 iterations, except onf5,
where we used 800 iterations. Because our algorithm requires
twice as many function evaluations due to the noise-resistant
re-evaluations, we only run 200 iterations (400 iterationsfor
f5) in order to guarantee a fair comparison with an equal
amount of computational processing between algorithms.

B. Results and Discussion

The final achieved values and standard deviations for all
functions with all algorithms can been seen in Table III.

The progress of the best solutions off1 can be seen in
Fig. 2. All algorithms manage to obtain low final values,
though GA and DPSO have faster convergence and manage to
achieve better performances, with DPSO doing slightly better
in the end, though no algorithm consistently reaches zero. We

TABLE III

GA, DPSO,AND MVPSO PERFORMANCE(AND STANDARD DEVIATION)

ON BINARY PROBLEMS

GA DPSO MVPSO

f1 0.00014 (0.00009) 0.00008 (0.00007) 0.00297 (0.00679)

f2 0.27285 (0.41788) 0.10702 (0.17433) 0.02943 (0.04690)

f3 0.00000 (0.00000) 0.00000 (0.00000) 1.28255 (0.73066)

f4 7.13937 (2.19431) 2.52286 (1.08721) 16.50117 (5.64966)

f5 0.17155 (0.14406) 0.03724 (0.08504) 0.00002 (0.00012)

suspect that the stochastic evaluation of MVPSO often keeps
it from completely converging to the minimum value, while
the mutation in GA and the deterministic evaluation in DPSO
allow them to perform much better.

0 50 100 150 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue

GA
DPSO
MVPSO

Fig. 2. Average of best solutions onf1 over 100 runs for GA, DPSO, and
MVPSO. Steps represent two iterations of GA and DPSO and one iteration
of MVPSO.

The progress of the best solutions off2 can be seen in Fig.
3. Here, MVPSO manages to continue optimization through all
200 steps, and surpasses the performances of GA and DPSO
partway through. The reason for the worse performances of
GA and DPSO was that they would occasionally become
stuck in a local minimum with much higher values. MVPSO
managed to avoid this at almost every run of the algorithm.
Again, DPSO is able to outperform GA.

The progress of the best solutions off3 can be seen in
Fig. 4. Both GA and DPSO achieve near-zero values here,
with DPSO converging slightly more quickly, while MVPSO,
though it does converge, does not approach the optimum.
The situation here is similar to that off1, and we suspect
MVPSO’s stochastic evaluation is again causing difficulties
in convergence. However, it is interesting to see that the
convergence rate of MVPSO actually increases towards the
end of the run, when the inertia coefficient is lower. This
suggests that low inertia values will encourage convergence

0 50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

Steps

V
al

ue

GA
DPSO
MVPSO

Fig. 3. Average of best solutions onf2 over 100 runs for GA, DPSO, and
MVPSO. Steps represent two iterations of GA and DPSO and one iteration
of MVPSO.

in MVPSO, and a proper choice for inertia over time could
allow this function to be optimized much more effectively.

0 50 100 150 200
0

2

4

6

8

10

12

14

16

Steps

V
al

ue

GA
DPSO
MVPSO

Fig. 4. Average of best solutions onf3 over 100 runs for GA, DPSO, and
MVPSO. Steps represent two iterations of GA and DPSO and one iteration
of MVPSO.

The progress of the best solutions off4 can be seen in
Fig. 5. The situation here is very similar to that off3: both
GA and DPSO converge to very low values, while MVPSO
does not do nearly as well. This function uses many more
dimensions than any of the other functions, which could cause
MVPSO to have even more convergence difficulties with its
stochastic evaluation. The rate of convergence of MVPSO
again increases in the latter part of the run, likely as a result
of the inertia coefficient, and DPSO again converges further
and more quickly than GA.

The progress of the best solutions off5 can be seen in Fig.
6. This function has a large number of local optima. Both
GA and DPSO quickly converge to solutions, while MVPSO

0 50 100 150 200
0

20

40

60

80

100

120

140

Steps

V
al

ue

GA
DPSO
MVPSO

Fig. 5. Average of best solutions onf4 over 100 runs for GA, DPSO, and
MVPSO. Steps represent two iterations of GA and DPSO and one iteration
of MVPSO.

converges much more slowly, but is able to eventually surpass
the other two algorithms in the latter portion of the run. This
suggests that MVPSO may be better able to escape local
optima if the algorithm is given enough time. DPSO achieves
better performance than GA yet again.

0 50 100 150 200 250 300 350 400
10

−6

10
−4

10
−2

10
0

10
2

10
4

Steps

V
al

ue

GA
DPSO
MVPSO

Fig. 6. Average of best solutions onf5 over 100 runs for GA, DPSO, and
MVPSO. Steps represent two iterations of GA and DPSO and one iteration
of MVPSO.

All algorithms were able to converge for all functions.
DPSO outperformed GA on every function, while MVPSO
was able to eventually achieve better performance onf2 and
f5. MVPSO seems to have some difficulties with with total
convergence on several functions, but it seems better able
to escape local minima than the other two algorithms. It
appeared as though decreasing the inertia coefficient might
have improved the performance of MVPSO onf3 and f4.
Using an intelligently adaptive inertia coefficient in MVPSO
might allow it to achieve much superior performance.

IV. D ISCRETEVALUES BEYOND BINARY: TERNARY

Up until now, we have only used MVPSO for optimization
problems with binary-valued solution elements. We wish to
compare the performance on problems with discrete-valued
solution elements with more than two possibilities. The next
logical encoding is ternary, where we convert the numerical
representation of the function terms to base-3.

A. Setup

We compare the performances of GA and MVPSO on all
functions from the De Jong Test Suite. However, we now
encode the numbers using a ternary scheme instead of binary.
This requires us to recalculate the number of bits using
different function bounds. The new function parameters can
be found in Table IV. Correspondingly, functionf3 is changed
to

f3(x̄) = 4n +
n

∑

i=1

⌊xi⌋

to reflect the new minimum value of the terms. The number
of iterations remain the same.

TABLE IV

TESTFUNCTION PARAMETERS: TERNARY

Function n Bits per Value Value Range

f1 3 6 [−3.64, 3.64]

f2 2 6 [−3.64, 3.64]

f3 5 6 [−3.64, 3.64]

f4 30 5 [−1.21, 1.21]

f5 2 11 [−88.6, 88.6]

B. Results and Discussion

The final achieved values and standard deviations for all
functions with all algorithms can been seen in Table V.

TABLE V

GA AND MVPSO PERFORMANCE(AND STANDARD DEVIATION) ON

TERNARY PROBLEMS

GA MVPSO

f1 0.00000 (0.00000) 0.01082 (0.01287)

f2 0.05922 (0.10503) 0.01719 (0.02318)

f3 0.00000 (0.00000) 0.46443 (0.57156)

f4 0.44819 (0.67467) 24.30198 (7.79275)

f5 5.06314 (4.87844) 0.45841 (0.83823)

The progress of the best solutions off1, f3, andf5 in ternary
can be seen in Fig. 7, 9, and 8, respectively. We see similar
results here to what was observed with binary encoding; both
functions converge, with MVPSO ultimately surpassing GA in

f2 and f5. In f1, GA manages to converge to zero in every
run, something it was unable to do in binary encoding; this
is likely the result of a local minima created by the binary
encoding scheme, which is no longer present in ternary. Inf3

andf4, we still see the convergence rate of MVPSO increase
in the latter stages of the evolution, though to a lesser degree
than with binary. This could indicate that the effect of the
inertia coefficient may be damped as the number of possible
discrete values increases. Inf5, both functions perform much
more poorly than in the binary case; this may be due to the
larger range of values used here, or as a result of new local
optima that may have been introduced by this re-encoding
scheme. Overall, we observe similar trends between GA and
MVPSO here to what was observed in the binary case, with
GA maintaining/improving its performance slightly more than
MVPSO.

0 50 100 150 200

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Steps

V
al

ue

GA
MVPSO

Fig. 7. Average of best solutions onf1 in ternary over 100 runs for GA and
MVPSO. Steps represent two iterations of GA and one iteration of MVPSO.
The GA algorithm obtains a value of zero when it reaches the bottom of the
graph.

V. D ISCRETE-VALUED UNSUPERVISEDROBOTIC

LEARNING

We further test Multi-Valued Particle Swarm Optimization
by using it for simulated unsupervised robotic learning. The
scenario is very similar to that explored in [12], where a
single small-scale mobile robot must learn obstacle avoidance
behavior using an Artificial Neural Network (ANN).

A. Setup

We use Webots, an embodied simulator, for our robotic
simulations [6], using the Khepera robot model [7]. The
Khepera has been modified in simulation to use twelve evenly
spaced proximity sensors instead of the standard eight; this
should give the robot better sensor coverage and not introduce
a bias which might result from the uneven sensor spacing on
the real Khepera (see Fig. 10). The robot operates in a 2.0 m
x 2.0 m square arena.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

Steps

V
al

ue

GA
MVPSO

Fig. 8. Average of best solutions onf3 in ternary over 100 runs for GA and
MVPSO. Steps represent two iterations of GA and one iteration of MVPSO.

0 50 100 150 200 250 300 350 400
10

−1

10
0

10
1

10
2

10
3

Steps

V
al

ue

GA
MVPSO

Fig. 9. Average of best solutions onf5 in ternary over 100 runs for GA and
MVPSO. Steps represent two iterations of GA and one iteration of MVPSO.

The robotic controller is a single-layer discrete-time artifi-
cial neural network of two neurons, one for each wheel speed.
However, we modify the ANN functionality from that which
was used in [12]. We convert the proximity sensors from
linear distance sensors to binary detection sensors (1 upon
activation and0 otherwise); these sensors are triggered when
detecting an obstacle closer than some fixed distance (2.56
cm in our case with 10% noise) and are a common type of
proximity detector in robotics. Each sensor can generate three
possible effects on each motor neuron: positive, negative,or
none. These correspond effectively to neural weight valuesof
+1, −1, or 0. Additionally, each motor has a bias which is
also of the same ternary form. The equation for neural output

Fig. 10. Robot arena with Khepera robot. Rays represent proximity sensors.

then becomes:

sn = θn +
∑

xi

wi,nxi

r(sn) =

1, if sn > 0

−1, if sn < 0

0, if sn = 0

wherer(sn) is the output of neuronn, θn is the bias of that
neuron,xi is the activation value of sensori, and wi,n is
the corresponding ternary weight. The neuron therefore hasa
positive output for a positive total weight, a negative output
for a negative total weight, and no output for an equal number
of positive and negative inputs. A positive output corresponds
to forward motor movement at the maximum speed, negative
corresponds to backward movement at the maximum speed,
and no output corresponds to no motion.

The total number of weights to be optimized is 26 (twelve
sensor weights for each of the two motors, plus two bias
weights). Slip noise of 10% is applied to the wheel speed.
The time step for neural updates is 128 ms. We use the same
fitness function as in [12]:

F = V · (1 −
√

∆v) · (1 − i)

0 ≤ V ≤ 1

0 ≤ ∆v ≤ 1

0 ≤ i ≤ 1

whereV is the average absolute wheel speed of both wheels,
∆v is the average of the difference between the wheel
speeds, andi is the average activation value of the most
active proximity sensor over the evaluation period (for this
calculation, we use the linear distance sensor values from [12]
to have comparable fitness values). These parameters reward
robots that move quickly, turn as little as possible, and spend
little time near obstacles, respectively. The evaluation period

of the fitness tests for these experiments is 240 steps, or
approximately 30 seconds. Between each fitness test, a random
speed is briefly applied to each of the robot’s motors to ensure
the randomness of the next evaluation.

Because unsupervised robotic learning is a noisy optimiza-
tion task, we also run our experiment using the noise-resistant
GA algorithm from [12], where at each iteration of the algo-
rithm, the parent set of the population is re-evaluated and the
worst performance is taken as the new fitness. This technique
has been shown to improve performance on problems with
noisy fitness and on unsupervised robotic learning.

We use the same algorithmic parameters here as for the
previous experiments for both GA and PSO. The population
size is set to 60 agents. The optimization is run for 200
iterations of GA and 100 iterations of MVPSO and noise-
resistant GA to guarantee a fair comparison, since both require
twice as many evaluations as standard GA.

B. Results

The results for the best evolved controllers can be seen
in Fig. 11. Best controllers were selected by choosing the
candidate solution with the best aggregate performance at the
end of the evolution. This controller was then evaluated 30
times, and the final performance for that run taken as the
average of these performances.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
Itn

es
s

GA NR GA MVPSO

Fig. 11. Average performance of best evolved controllers over 50 runs for
standard GA, noise-resistant GA, and MVPSO. Error bars represent standard
deviation between runs.

MVPSO and noise-resistant GA both achieved very good
performances here, while standard GA did slightly worse
and had a much higher standard deviation. This shows that
MVPSO can accomplish discrete-valued optimization beyond
binary in a variety of scenarios. The intrinsic noise-resistance
of MVPSO may have helped it overcome the noise inherent to
the unsupervised robotic learning. The average perceived per-
formance of the candidate solutions throughout the evolution
for all algorithms can be seen in Fig. 12; this metric shows how
well the algorithm believes its candidate solutions perform,
and we can see that standard GA has a false perception of the

quality of its solutions due to the lack of reevaluation, while
noise-resistant GA and MVPSO are much more accurate. As
in the other cases, both GA algorithms initially converge much
more quickly than MVPSO, but MVPSO continues to improve
after progress stops for the GA algorithms.

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

F
itn

es
s

GA
NR GA
MVPSO

Fig. 12. Average perceived performance of population throughout evolution
averaged over 50 runs for standard GA, noise-resistant GA, and MVPSO.
Standard GA falsely perceives a very high performance for its controllers
while noise-resistant GA and MVPSO have a much more accurateperception.

VI. CONCLUSION AND OUTLOOK

We have presented a new PSO-based algorithm capable
of optimizing problems with discrete multi-valued solution
elements. The algorithm’s performance is competitive with
those of GA and DPSO. The algorithm continues to function
well for discrete-valued solution elements in ternary form,
and successfully accomplishes discrete-valued unsupervised
robotic learning.

There are several aspects of MVPSO which could be
interesting to explore or examine in more detail:
Calculating the Solution Element Probabilities- the technique
we use for calculating probabilities here is very heuristic(i.e.
use of sigmoid for squashing, linear probability adjustment).
There may be better performing methods of accomplishing
this.
Improved Noise-resistance- the noise-resistance technique
used to compensate for the stochastic evaluation of particles is
very simple; it could be expanded to better choose when more
fitness evaluations are needed and more intelligently combine
multiple fitness evaluations. This would not only improve
the general functionality, but also improve the algorithm’s
resistance to external noise when dealing with stochastic
fitness functions.
Adjusting the Inertia Coefficient- we saw evidence that using
different inertia coefficients could allow MVPSO to optimize
more quickly and effectively. This effect should be explored in
detail and, if possible, an adaptive inertia coefficient scheme
should be developed which gives the best performance in all

situations.
Possibilities/Limitations for Discrete-Valued Optimization Be-
yond Binary - there were indications that the performance
of the algorithm decreased as the number of discrete values
increased. This effect should be further explored in different
scenarios.
Combining Standard PSO and MVPSO- there is no reason
why a PSO particle could not be a hybrid of continuous
values and discrete values by using both the standard PSO
algorithm and MVPSO. This union could result in a very
powerful algorithm, and should be explored.
Strengths and Weaknesses of PSO vs GA for Discrete Opti-
mization- something which is still being analyzed for contin-
uous optimization is which scenarios are more favorable for
standard PSO and which are more favorable for GA. This will
also need to be addressed for the discrete cases.

VII. A CKNOWLEDGEMENTS

Jim Pugh and Alcherio Martinoli are currently sponsored
by a Swiss NSF grant (contract Nr. PP002-68647).

REFERENCES

[1] Al-kazemi, B. & Mohan, C. K. “Multi-phase Discrete Particle Swarm
Optimization” Fourth International Workshop on Frontiersin Evolution-
ary Algorithms, 2000.

[2] De Jong, K. A. “An analysis of the behavior of a class of genetic adaptive
systems” Ph.D. dissertation, U. Michigan, Ann Arbor, 1975.

[3] Eberhart, R. & Kennedy, J. “A new optimizer using particle swarm
theory” Micro Machine and Human Science, 1995. MHS ’95., Proceed-
ings of the Sixth International Symposium on, Vol., Iss., 4-6 Oct 1995,
pages:39-43

[4] Kennedy, J. & Eberhart, R. “Particle swarm optimization” Neural
Networks, 1995. Proceedings., IEEE International Conference on, Vol.4,
Iss., Nov/Dec 1995, pages:1942-1948 vol.4

[5] Kennedy, J. & Eberhart, R. “A Discrete Binary Version of the Particle
Swarm Algorithm” IEEE Conference on Systems, Man, and Cybernetics,
Orlando, FA, 1997, pages:4104-4109

[6] Michel, O. “Webots: Professional Mobile Robot Simulation” Int. J. of
Advanced Robotic Systems, 2004, pages:39-42, vol.1

[7] Mondada, F., Franzi, E. & Ienne, P. “Mobile robot miniaturisation: A
tool for investigation in control algorithms” Proc. of the Third Int. Symp.
on Experimental Robotics, Kyoto, Japan, October, 1993, pages:501-513

[8] Onwubolu, G. C. & Clerc, M. “Optimal operating path for automated
drilling operations by a new heuristic approach using particle swarm
optimisation”, International Journal of Production Research, Vol. 42,
No. 3, 2004, pp.473-491.

[9] Pampara, G., Franken, N., & Engelbrecht, A. P. “Combining Particle
Swarm Optimisation with angle modulation to solve binary problems”,
IEEE Congress on Evolutionary Computing, Vol. 1, 2005, pp. 89-96.

[10] Pang, W., Wang, K., Zhou, C., & Dong, L. Fuzzy Discrete Particle
Swarm Optimization for Solving Traveling Salesman Problem, Proceed-
ings of the 4th International Conference on Computer and Information
Technology (CIT04), IEEE Computer Society, 2004.

[11] Parsopoulos, K. E. & Vrahatis, M. N. “Recent approachesto global
optimization problems through particle swarm optimization”, Natural
Computing 1, 2002, No. 2-3, pp. 235-306.

[12] Pugh, J., Zhang, Y. & Martinoli, A. “Particle swarm optimization
for unsupervised robotic learning” Swarm Intelligence Symposium,
Pasadena, CA, June 2005, pp. 92-99.

[13] Secrest, B. R. “Traveling Salesman Problem for Surveillance Mission
using Particle Swarm Optimization”, Thesis, School of Engineering and
Management of the Air Force Institue of Technology, Air University ,
2001.

[14] Yang, S., Wang, M. & Jiao, L. “A Quantum Particle Swarm Optimiza-
tion”, Congress on Evolutionary Computing, June 2004, Vol.1, pp. 320-
324.

