-

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Discrete Multi-Valued Particle Swarm Optimization

Jim Pugh and Alcherio Martinoli
Swarm-Intelligent Systems Group
Ecole Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland
Email: {jim.pugh,alcherio.martinoli@epfl.ch

Abstract— We present a new optimization technique based on particles’ positions in the search space. The equatiortse
the Particle Swarm Optimization algorithm to be used for soV- by PSO at each step of the algorithm are:
ing problems with unordered discrete-valued solution elerants.

The algorithm achieves comparable performance to both the vij = w-vp;+pw-rand()- (¥} — 2 ;)
previous modification of PSO for binary optimization and to ' ’ . J ’
genetic algorithms on a standard set of benchmark problems. + nw - rand() - (23 ; — @i 5)
Performance is maintained on these problems re-encoded wit Tij = Tij+vi

ternary solution elements. The algorithm is then tested on a
simulated discrete-valued unsupervised robotic learningproblem
and obtains competitive results. Various potential improements,

modifications, and uses of the algorithm are discussed. where w is the inertia coefficient which slows the velocity

over time to prevent explosions of the swarm and ensure
. INTRODUCTION ultimate convergencew is the weight given to the attraction
Discrete optimization is a difficult task common to manyo the previous best location of the current particle and
different areas in modern research. This type of optimizatiis the weight given to the attraction to the previous best
refers to problems where solution elements can assume dweation of the particle neighborhoodand() is a sampling
of several discrete values. The most basic form of discreséa uniformly-distributed random variable 0, 1].
optimization is binary optimization, where all solutioneel The original PSO algorithm can only optimize problems
ments can be either 0 or 1, while the more general form which the elements of the solution are continuous real
is problems that have solution elements which can assum@émbers. A modification of the PSO algorithm for solving
n different unordered values, where could be any integer problems with binary-valued solution elements was also de-
greater than 1. While Genetic Algorithms (GA) are inhergntlveloped by the creators of PSO [5]. The equations for the
able to handle these problems, there has been no adaptiometiified algorithm are given by:
Particle Swarm Optimization able to solve the general case.
Particle swarm optimization (PSO) is a promising new opti- vij = vij+pw-rand() - (z7; — i)
mization technique developed by James Kennedy and Russell + nw - rand() - (¥} ; — i 5)
Eberhart [3] [4] which models a set of potential problem S i o
solutions as a swarm of particles moving about in a virtual T L (mm.l() < S(i))
search space. The method was inspired by the movement of iy = 0 otherwise
flocking birds and their interactions with their neighbarghie whereS(z) is the sigmoid function given by
group. Every particle in the swarm begins with a randomized
position (z;) and (possibly) randomized velocity;) in the S(x) = —
n-dimensional search space, wheig represents the location L+e™®
of particle index: in the j-th dimension of the search spaceBecause it is not possible to continuously “fly” particles
Candidate solutions are optimized by flying the particlabrough a discrete-valued space, the significance of the ve-
through the virtual space, with attraction to positions lie t locity variable was changed to instead indicate the prdipabi
space that yielded the best results. Each particle remembefrthe corresponding solution element assuming a value of
at which position it achieved its highest performarie¢ ;). or 1. The velocity is updated in much the same way as in
Every particle is also a member of some neighborhood sfandard PSO, though no inertia coefficient is used here. For
particles, and remembers which particle achieved the baskigning a new particle value, the velocity term is tramsél
overall position in that neighborhood (given by the ind8x to the range(0, 1), and the particle element is randomly set
This neighborhood can either be a subset of the particleal(lowith probability of pickingl given byS(v; ;). In this variation
neighborhood), or all the particles (global neighborho&@y of the algorithm, the velocity term is limited 1o, ;| < Vinaz,
local neighborhoods, the standard method is to set neighbahereV,,... is some value typically close ®0. This prevents
in a pre-defined way (such as using particles with the closélse probability of the particle element assuming either laeva
array indices as neighbors modulo the size of the swarpnf, 0 or 1 from being too high. Though the discrete-value
henceforth known as a “ring topology”) regardless of theodification for PSO (henceforth refered to as DPSO) has

1

https://core.ac.uk/display/147915718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

been shown to be able to optimize various discrete-valuBd Generating the Solution Elements
problems [5], it is limited to discrete problems with binary st the time of fitness evaluation for particle we must
valued solution elements. transform the real-valued terms ; o, ..., z; ;.. to generate a

There has been some other exploration of PSO technigyg$,e fromo to n for solution element;. To do this, we apply

for discrete optimization. Yang et al. [14] developed an afne sigmoid function to each term, and use the weighted sum
gorithm based on DPSO which uses a different method 4@ the probability:

update velocity. Al-kazemi and Mohan [1] used a technique

also based on DPSO which had particles alternatively exploi o iS(m»)
personal best and neighborhood best positions instead of si J —~ b
multaneously. Both methods use the same principles as DPSO S(wi58)
and both are limited to binary problems. Pampara et al. [9] P(s; =k) = jj

solved binary optimization using Angle Modulation with gnl Tij

four parameters in continuous PSO, which allowed for faStWhere:c,;_j is the normalizing coefficient for particle element

optimization of several problems. The technique was agajnBy using this technique, the particle can potentially gate

only applied to binary problems. any possible solution, but with varying probabilities degieg
Several other forms of discrete optimization have beeyn its terms.

explored using PSO. Permutation optimization has been at-

tempted in several cases (e.g., [8], [10], [13]). The casdyst C. Maintaining Centered Particle Values
for most of these works has been the Traveling Salesmanrhe particle swarm maintains the best dynamics when all
Problem. This type of optimization, while it does use digerethe particles share a common reference frame for their terms
particle elements, is fundamentally different than themite This is always the case in standard PSO, as each particle
optimization we deal with here. PSO has also been appligdm represents a solution element which is given a frame
to some integer programming problems [11]. Our optimizaf reference by the fitness function. However, in our sitrati
tion differs from this because our discrete parameters at: probability of a particular solution valug is dependent
unordered, which makes it impossible to simply discretize @t only on the probability term for that valug ; » but on
continuous search space as was done for integer programmgldother z; ; . as well due to the probability normalization.
Section 2 of this paper introduces our new discrete-valuge therefore apply an adjustment to particle terms afteh eac
PSO algorithm, which we designate Multi-Valued Particlenodification of the particle values. This adjustment is give
Swarm Optimization (MVPSO). Section 3 compares its peby
formance against GA and DPSO on the standard De Jong
Test Suite [2]. Section 3 explores the capabilities of the
algorithm for solving problems with discrete-valued siint for all k, wherez; , is the new indicator of the probability of
elements encoded in ternary. Section 5 applies the algoritiarticle:, element; assuming valué:, with ¢; ; chosen such
to an unsupervised robotic learning problem with ternaffat n
solution elements. Section 6 discusses possible improviesme Z S(a)) =1
and applications of the algorithm and concludes the paper. o 7

Lk = Ligk — Cij

The idea is to shift all the values such that we get a nor-
Il. DISCRETEMULTI-VALUED PARTICLE SWARM malizing coefficient of 1. By applying this to all elementsdan
OPTIMIZATION particles, we have a common reference for every particles Th
also accomplishes the normalization that would otherwise b
required to generate the solution elements.
In DPSO, the velocity term contains the probabilities of As there is no straightforward method of finding; ana-
solution elements assuming values, and the particle emtalytically, we calculate it by numerical approximation.
the solution elements. For our algorithm, the particlesrnthe
selves contain the probabilities of solution elements @y
values. Our particle representation therefore goes fromgbe Because particles in our algorithm contain probabilitiés o
2-dimensional to 3-dimensionat; ;. is a continuous real- element values instead of actual element values, a particle
value indicator of the probability of particle, elementj can assume different element values on different evalustio
assuming valué: (in the case of binary, k would be eitherand therefore return different fithess values. This situats
0 or 1). To find a particle’s fitness, the solution elementanalogous to a noisy fithess evaluation, and we thereforetoug
are generated probabilistically at evaluation time, mgkime to use a method of dealing with this noise. We apply the
evaluation inherently stochastic. Because particle teames technique used in [12] for PSO with noisy optimization, wéer
real-valued, this representation allows us to use veloicity we reevaluate the previous best particles at each iterafion
the same way as in standard PSO, wherg;, represents the the algorithm and average all the evaluation results over th
velocity of z; ; . particles’ lifetimes to get an average fitness. This modifice

A. The Algorithm

D. Dealing with Noise

may also give our algorithm some intrinsic resistance t@yoiThe functions are given by
fitness evaluations. n
A flowchart of the algorithm can be seen in Fig. 1. fil@) = fo
i=1
) = 100(z2 — z1)? 4 (21 — 1)?

) = 6%+ZL%—J

Kl

I

Generate initial swarm and f2(
velocities randomly
f3(

I

Esraluate the mitial swarr, generating

the solutions stochastically. Use the n 4
initial performace as the nitial personal fa(@) = N(0,1)+ Z 175
hest and nsing that to find the iratial i1
teighborhood best.
- — 1 L Z 1
& —_— = —_— - n >
f5(£C) 500 P 1+ (ZCl — aimods)ﬁ + (1'2 — a,-/5)°

Update velocities of particles using
personal best and neighborhood hest
!

Apply velocities to positions of particles

for ag = =32, a1 = —16, as = 0, ag = 16, a4 = 32. The
function parameters are specified in Table I. For compayison
we use standard GA and DPSO (parameters given in Table

}). All algorithms use 20 agents. For GA, the parameterswer
Adjust particle positions to chosen to achieve near-maximal performance on the fursction
mmelpmbﬁhﬂ“? For DPSO, we use the same parameters used in [5].
TABLE |

Esraluate new particle positions
and reevaluate personal best positions,
gererating solutions stochastically.

TESTFUNCTION PARAMETERS

Function | n Bits per Value | Value Range
Fmd.the new personal best for each f1 3 10 [—5.12,5.11]
patticle atid use that to find the new

neighbothood bests f2 2 10 [-5.12,5.11]
f3 5 | 10 [-5.12,5.11]

— S
{jast iteration’?--"'_:sm—- fa 308 [—1.28,1.27]
TR e fs 2 |17 [—65.5, 65.5]

Wes

TABLE I

Fig. 1. Evolutionary optimization loop used by MVPSO GA AND DPSO RRAMETERS

E. Limiting the Velocity GA DPSO
Because our technique differs from standard PSO, the Crossover Probability] 0.6 | pw,nw | 2.0
impact of the inertia coefficient was not immediately clear. Mutation Probability | 0.2 | Vmaz | 6.0

By evaluation, we found the algorithm performed well fowa
which linearly decreases frofin2 at the start of the algorithm
to 0.6 at the end, which is similar to the technique used in We run GA and DPSO for 400 iterations, except fin

previous work with standard PSO. It would be interesting amdhere we used 800 iterations. Because our algorithm regjuire
useful to develop a technique for adapting the inertia coeffivice as many function evaluations due to the noise-regista
cient throughout the evolution based on how the optimiratioe-evaluations, we only run 200 iterations (400 iteratiéors

of the system is progressing. f5) in order to guarantee a fair comparison with an equal

. amount of computational processing between algorithms.
F. Algorithm Parameters P P g g

We use a ring topology for the swarm and assign the nearBst Results and Discussion
particle on each side to be a neighbp®: andnw are both The final achieved values and standard deviations for all
set t102.0. functions with all algorithms can been seen in Table IIl.

The progress of the best solutions #f can be seen in
Fig. 2. All algorithms manage to obtain low final values,
A. Setup though GA and DPSO have faster convergence and manage to

We use the very standard De Jong Test Suite ([2]) witichieve better performances, with DPSO doing slightlydvett
binary encoding to evaluate the performance of the algorithin the end, though no algorithm consistently reaches zes. W

IIl. TESTFUNCTION EVALUATION

TABLE Il

2
GA, DPSOAND MVPSO RERFORMANCE(AND STANDARD DEVIATION) 10 — GA
ON BINARY PROBLEMS o II\DAT/ISDgO
GA DPSO MVPSO

f1 | 0.00014 (0.00009)| 0.00008 (0.00007) 0.00297 (0.00679)

f2 | 0.27285 (0.41788)| 0.10702 (0.17433) 0.02943 (0.04690) E

f3 | 0.00000 (0.00000)| 0.00000 (0.00000) 1.28255 (0.73066) =

fa | 7.13937 (2.19431) 2.52286 (1.08721) 16.50117 (5.64966

fs | 0.17155 (0.14406)| 0.03724 (0.08504) 0.00002 (0.00012)
suspect that the stochastic evaluation of MVPSO often keep 10_20 50 100 150 200
it from completely converging to the minimum value, while Steps

the mutation in GA and the deterministic evaluation in DPSO

allow them to perform much better. Fig. 3. Average of best solutions ofs over 100 runs for GA, DPSO, and
MVPSO. Steps represent two iterations of GA and DPSO and tenation

1 of MVPSO.
10
— GA
--- DPSO .) . i
* MVPSO || in MVPSO, and a proper choice for inertia over time could
allow this function to be optimized much more effectively.
e] 16
T : — GA
© g : --- DPSO
3 3 141 o MVPSO ||
>
12} 1
E <]
2 10 8
>
777777777777777777777777 8 .
-5
10 ; ! : 6]
0 50 100 150 200
ab N e i
Fig. 2. Average of best solutions ofy over 100 runs for GA, DPSO, and 2 b
MVPSO. Steps represent two iterations of GA and DPSO and tenation
of MVPSO. 0 ‘ ‘
100 150 200
The progress of the best solutions fafcan be seen in Fig. Steps

3. Here, MVPSO manages to continue optimization through all

200 Steps1 and surpasses the performances of GA and Dm Average of best soluti(_)ns qf3 over 100 runs for GA, DPSO,__and

partway through. The reason for the worse performances Ployosg - 'cPresent wo iterations of GA and DPSO and tenation

GA and DPSO was that they would occasionally become

stuck in a local minimum with much higher values. MVPSO The progress of the best solutions 6f can be seen in

managed to avoid this at almost every run of the algorithrRig. 5. The situation here is very similar to that 6 both

Again, DPSO is able to outperform GA. GA and DPSO converge to very low values, while MVPSO
The progress of the best solutions fif can be seen in does not do nearly as well. This function uses many more

Fig. 4. Both GA and DPSO achieve near-zero values hedidmensions than any of the other functions, which could eaus

with DPSO converging slightly more quickly, while MVPSO,MVPSO to have even more convergence difficulties with its

though it does converge, does not approach the optimustochastic evaluation. The rate of convergence of MVPSO

The situation here is similar to that ofi, and we suspect again increases in the latter part of the run, likely as alresu

MVPSO’s stochastic evaluation is again causing difficaltieof the inertia coefficient, and DPSO again converges further

in convergence. However, it is interesting to see that tlad more quickly than GA.

convergence rate of MVPSO actually increases towards theThe progress of the best solutions fagfcan be seen in Fig.

end of the run, when the inertia coefficient is lower. Thi§. This function has a large number of local optima. Both

suggests that low inertia values will encourage convergen@A and DPSO quickly converge to solutions, while MVPSO

140 ——y IV. DISCRETEVALUES BEYOND BINARY: TERNARY

--- DPSO
120 o MVPSO

Up until now, we have only used MVPSO for optimization
problems with binary-valued solution elements. We wish to
100 - | compare the performance on problems with discrete-valued
’ solution elements with more than two possibilities. Thetnex
logical encoding is ternary, where we convert the numerical

[}
‘_E representation of the function terms to base-3.
A. Setup
We compare the performances of GA and MVPSO on all
functions from the De Jong Test Suite. However, we now
encode the numbers using a ternary scheme instead of binary.
This requires us to recalculate the number of bits using
different function bounds. The new function parameters can
be found in Table IV. Correspondingly, functigy is changed
to
Fig. 5. Average of best solutions ofa over 100 runs for GA, DPSO, and
MVPSO. Steps represent two iterations of GA and DPSO and tenation n
of MVPSO. f3(@) = an + > |xi)

converges much more slowly, but is able to eventually srpas t_0 reﬂ_ect the new minimum value of the terms. The number
the other two algorithms in the latter portion of the run. hiof iterations remain the same.

suggests that MVPSO may be better able to escape local TABLE IV
optima if the algorithm is given enough time. DPSO achieves TESTEUNCTION PARAMETERS: TERNARY
better performance than GA yet again.
10° Function | n Bits per Value | Value Range
— GA f1 3 |6 [—3.64,3.64]
--- DPSO
-~ MVPSO f2 2 |6 [—3.64,3.64]
| f3 5 |6 [—3.64, 3.64]
fa 3|5 [-1.21,1.21]
R 1 5 2 |11 [—88.6,88.6]

Value
)
I
I
|
I

L B. Results and Discussion
” The final achieved values and standard deviations for all

107 .) . X)
functions with all algorithms can been seen in Table V.
107 ‘ ‘ ‘ ‘ ‘ ‘ ‘ TABLE V
0 50 100 150 200 250 300 350 400 GA AND MVP SO PERFORMANCE(AND STANDARD DEVIATION) ON
Steps TERNARY PROBLEMS

Fig. 6. Average of best solutions ofy over 100 runs for GA, DPSO, and

MVPSO. Steps represent two iterations of GA and DPSO and tenation GA MVPSO
of MVPSO.
f1 | 0.00000 (0.00000)| 0.01082 (0.01287)
All algorithms were able to converge for all functions. f2 | 0.05922 (0.10503) 0.01719 (0.02318)
DPSO outperformed GA on every function, while MVPSO f3 | 0.00000 (0.00000)| 0.46443 (0.57156)
was able to eventually achieve better performanceg-pand fa | 0.44819 (0.67467)| 24.30198 (7.79275)
f5.- MVPSO seems to have some difficulties with with total 7 | 5.06314 (4.87844)| 0.45841 (0.83823)

convergence on several functions, but it seems better able
to escape local minima than the other two algorithms. It
appeared as though decreasing the inertia coefficient mighThe progress of the best solutionsfef fs, andfs in ternary
have improved the performance of MVPSO ¢rm and f;. can be seen in Fig. 7, 9, and 8, respectively. We see similar
Using an intelligently adaptive inertia coefficient in MVOS results here to what was observed with binary encoding; both
might allow it to achieve much superior performance. functions converge, with MVPSO ultimately surpassing GA in

f» and fs. In f;, GA manages to converge to zero in every 9 — GA
run, something it was unable to do in binary encoding; this 81 --- MVPSO ||
is likely the result of a local minima created by the binary \
encoding scheme, which is no longer present in ternarysIn 7" 7
and f,, we still see the convergence rate of MVPSO increase | \‘ i
in the latter stages of the evolution, though to a lesseregegr '
than with binary. This could indicate that the effect of the o 5/ | 1
inertia coefficient may be damped as the number of possibl g Al |
discrete values increases. f, both functions perform much i
more poorly than in the binary case; this may be due to the 3t - 8
larger range of values used here, or as a result of new loci
optima that may have been introduced by this re-encodin 2 e NN |
scheme. Overall, we observe similar trends between GA an 1| R i
MVPSO here to what was observed in the binary case, witt ST
GA maintaining/improving its performance slightly moreth % 50 100 150 200
MVPSO. Steps
102 Fig. 8. Average of best solutio_ns (ﬁa in ternary over 1OQ runs for GA and
— GA MVPSO. Steps represent two iterations of GA and one itaratbMVPSO.
1 --- MVPSO
10" ¢ 3
1 10° ‘
— GA
] --- MVPSO

Value

100 150 200
Steps

Fig. 7. Average of best solutions gfi in ternary over 100 runs for GA and
MVPSO. Steps represent two iterations of GA and one itaratibMVPSO.

The GA algorithm obtains a value of zero when it reaches th®iwof the 107 ‘ . : . ‘ . :
graph 0 50 100 150 200 250 300 350 400
. Steps
Fig. 9. Average of best solutions gf3 in ternary over 100 runs for GA and
V. DISCRETEVALUED UNSUPERVISEDROBOTIC MVPSO. Steps represent two iterations of GA and one itaratibMVPSO.
LEARNING

We further test Multi-Valued Particle Swarm Optimization
by using it for simulated unsupervised robotic learningeTh

scenario is very similar to that explored in [12], where a The robotic controller is a single-layer discrete-timefiart
single small-scale mobile robot must learn obstacle avmiela cial neural network of two neurons, one for each wheel speed.
behavior using an Artificial Neural Network (ANN). However, we modify the ANN functionality from that which

was used in [12]. We convert the proximity sensors from
A. Setup

linear distance sensors to binary detection sensbrappn
We use Webots, an embodied simulator, for our robotactivation and) otherwise); these sensors are triggered when

simulations [6], using the Khepera robot model [7]. Theetecting an obstacle closer than some fixed distance (2.56
Khepera has been modified in simulation to use twelve everdgn in our case with 10% noise) and are a common type of
spaced proximity sensors instead of the standard eigltd; tproximity detector in robotics. Each sensor can generaieth
should give the robot better sensor coverage and not inteodypossible effects on each motor neuron: positive, negative,
a bias which might result from the uneven sensor spacing nane. These correspond effectively to neural weight vatiies
the real Khepera (see Fig. 10). The robot operates in a 2.04m, —1, or 0. Additionally, each motor has a bias which is
X 2.0 m square arena. also of the same ternary form. The equation for neural output

of the fitness tests for these experiments is 240 steps, or
approximately 30 seconds. Between each fitness test, amando
speed is briefly applied to each of the robot’s motors to ensur
the randomness of the next evaluation.

Because unsupervised robotic learning is a noisy optimiza-
tion task, we also run our experiment using the noise-iaasist
GA algorithm from [12], where at each iteration of the algo-
rithm, the parent set of the population is re-evaluated aed t
worst performance is taken as the new fitness. This technique
has been shown to improve performance on problems with
noisy fithess and on unsupervised robotic learning.

We use the same algorithmic parameters here as for the
previous experiments for both GA and PSO. The population
size is set to 60 agents. The optimization is run for 200
iterations of GA and 100 iterations of MVPSO and noise-
resistant GA to guarantee a fair comparison, since bothirequ
twice as many evaluations as standard GA.

Fig. 10. Robot arena with Khepera robot. Rays representipityxsensors. B. Results

The results for the best evolved controllers can be seen

then becomes: in Fig. 11. Best controllers were selected by choosing the
candidate solution with the best aggregate performandeeat t
Sp = On+ Zwm:m end of the evolution. This controller was then evaluated 30
z; times, and the final performance for that run taken as the
1, if s, >0 average of these performances.
r(sn) = -1, ifs, <0 08 ‘
0, if s, =0
wherer(s,) is the output of neurom, 6, is the bias of that w I I
neuron,z; is the activation value of sensar and w; ,, is 0.6t]
the corresponding ternary weight. The neuron thereforeahas |
positive output for a positive total weight, a negative aitp 0.51]

for a negative total weight, and no output for an equal numbe
of positive and negative inputs. A positive output correstmo
to forward motor movement at the maximum speed, negativt
corresponds to backward movement at the maximum spee:
and no output corresponds to no motion. 0.2F .
The total number of weights to be optimized is 26 (twelve
sensor weights for each of the two motors, plus two bias 01f 7
weights). Slip noise of 10% is applied to the wheel speed
The time step for neural updates is 128 ms. We use the san 0 GA NR GA MVPSO
fitness function as in [12]:

0.41 1

Fltness

0.3f 1

Fig. 11. Average performance of best evolved controllersr &0 runs for
F=V-(1-VAv)-(1-1) standard GA, noise-resistant GA, and MVPSO. Error barsesemt standard
deviation between runs.

0<V<1
0<Av<l1 MVPSO and noise-resistant GA both achieved very good
0<i<l1 performances here, while standard GA did slightly worse

and had a much higher standard deviation. This shows that
whereV is the average absolute wheel speed of both wheeldy/PSO can accomplish discrete-valued optimization beyond
Av is the average of the difference between the whekinary in a variety of scenarios. The intrinsic noise-resise
speeds, and is the average activation value of the mosbf MVPSO may have helped it overcome the noise inherent to
active proximity sensor over the evaluation period (foisthithe unsupervised robotic learning. The average perceieed p
calculation, we use the linear distance sensor values fi@h [formance of the candidate solutions throughout the ewaruti
to have comparable fithess values). These parameters reviardll algorithms can be seen in Fig. 12; this metric shows ho
robots that move quickly, turn as little as possible, anchdpewell the algorithm believes its candidate solutions perfor
little time near obstacles, respectively. The evaluatieriquq and we can see that standard GA has a false perception of the

quality of its solutions due to the lack of reevaluation, Mhi
noise-resistant GA and MVPSO are much more accurate.
in the other cases, both GA algorithms initially convergecmu
more quickly than MVPSO, but MVPSO continues to improvi
after progress stops for the GA algorithms.

situations.

Rassibilities/Limitations for Discrete-Valued Optimiza Be-
yond Binary- there were indications that the performance
of the algorithm decreased as the number of discrete values
increased. This effect should be further explored in déffeer
scenarios.

Combining Standard PSO and MVPSQhere is no reason
why a PSO particle could not be a hybrid of continuous
values and discrete values by using both the standard PSO
algorithm and MVPSO. This union could result in a very
powerful algorithm, and should be explored.

Strengths and Weaknesses of PSO vs GA for Discrete Opti-
mization- something which is still being analyzed for contin-
uous optimization is which scenarios are more favorable for
standard PSO and which are more favorable for GA. This will

. --- NRGA i
04 L . MVPSO
1=
03 J i
0.2 I I I I
0 20 40 60 80 100
Steps

also need to be addressed for the discrete cases.

VIl. ACKNOWLEDGEMENTS

Jim Pugh and Alcherio Martinoli are currently sponsored
by a Swiss NSF grant (contract Nr. PP002-68647).

REFERENCES

[1] Al-kazemi, B. & Mohan, C. K. “Multi-phase Discrete Paifé Swarm

Fig. 12. Average perceived performance of population thhout evolution
averaged over 50 runs for standard GA, noise-resistant @A, MVPSO.
Standard GA falsely perceives a very high performance ®rcantrollers
while noise-resistant GA and MVPSO have a much more accpeateption.

(2]
(3]

V1. CONCLUSION AND OUTLOOK

We have presented a new PSO-based algorithm capatgﬂ\
of optimizing problems with discrete multi-valued solutio
elements. The algorithm’s performance is competitive witH®]
those of GA and DPSO. The algorithm continues to function
well for discrete-valued solution elements in ternary fprmi(é]
and successfully accomplishes discrete-valued unsigsetvi 7
robotic learning.

There are several aspects of MVPSO which could be
interesting to explore or examine in more detail:
Calculating the Solution Element Probabilitieshe technique
we use for calculating probabilities here is very heuriitie.
use of sigmoid for squashing, linear probability adjustthen (9]
There may be better performing methods of accomplishing
this. [10]
Improved Noise-resistance the noise-resistance technique
used to compensate for the stochastic evaluation of pestisl
very simple; it could be expanded to better choose when mdtél
fithess evaluations are needed and more intelligently coenbi
multiple fitness evaluations. This would not only improve s
the general functionality, but also improve the algoritam’
resistance to external noise when dealing with stochas[qg]
fitness functions.

Adjusting the Inertia Coefficientwe saw evidence that using
different inertia coefficients could allow MVPSO to optimiz
more quickly and effectively. This effect should be exptbie
detail and, if possible, an adaptive inertia coefficientesnh
should be developed which gives the best performance in all

[14]

Optimization” Fourth International Workshop on FrontiénsEvolution-
ary Algorithms, 2000.

De Jong, K. A. “An analysis of the behavior of a class of ggmadaptive
systems” Ph.D. dissertation, U. Michigan, Ann Arbor, 1975.
Eberhart, R. & Kennedy, J. “A new optimizer using parickwarm
theory” Micro Machine and Human Science, 1995. MHS '95.,ceeml-
ings of the Sixth International Symposium on, Vol., Iss§ ®ct 1995,
pages:39-43

Kennedy, J. & Eberhart, R. “Particle swarm optimizatioNeural
Networks, 1995. Proceedings., IEEE International Comfegeon, Vol.4,
Iss., Nov/Dec 1995, pages:1942-1948 vol.4

Kennedy, J. & Eberhart, R. “A Discrete Binary Version tiet Particle
Swarm Algorithm” IEEE Conference on Systems, Man, and Qyétis,
Orlando, FA, 1997, pages:4104-4109

Michel, O. “Webots: Professional Mobile Robot Simutatf Int. J. of
Advanced Robotic Systems, 2004, pages:39-42, vol.1

Mondada, F., Franzi, E. & lenne, P. “Mobile robot miniasation: A
tool for investigation in control algorithms” Proc. of théifd Int. Symp.
on Experimental Robotics, Kyoto, Japan, October, 1993eg&§1-513

8] Onwubolu, G. C. & Clerc, M. “Optimal operating path for tamated

drilling operations by a new heuristic approach using plrtswarm
optimisation”, International Journal of Production Resbka Vol. 42,
No. 3, 2004, pp.473-491.

Pampara, G., Franken, N., & Engelbrecht, A. P. “ComlgniRarticle
Swarm Optimisation with angle modulation to solve binarphjems”,
IEEE Congress on Evolutionary Computing, Vol. 1, 2005, @-98.
Pang, W., Wang, K., Zhou, C., & Dong, L. Fuzzy Discretertieke
Swarm Optimization for Solving Traveling Salesman Prohl&moceed-
ings of the 4th International Conference on Computer andrinétion
Technology (CIT04), IEEE Computer Society, 2004.

Parsopoulos, K. E. & Vrahatis, M. N. “Recent approachesglobal
optimization problems through particle swarm optimizatjoNatural
Computing 1, 2002, No. 2-3, pp. 235-306.

Pugh, J., Zhang, Y. & Martinoli, A. “Particle swarm ojtization
for unsupervised robotic learning” Swarm Intelligence $wsium,
Pasadena, CA, June 2005, pp. 92-99.

Secrest, B. R. “Traveling Salesman Problem for Sulaede Mission
using Particle Swarm Optimization”, Thesis, School of Eegring and
Management of the Air Force Institue of Technology, Air Ubrsity ,
2001.

Yang, S., Wang, M. & Jiao, L. “A Quantum Particle Swarmtidpza-
tion”, Congress on Evolutionary Computing, June 2004, Yobp. 320-
324.

