
The Information Structure
of Indulgent Consensus

Rachid Guerraoui, Member, IEEE, and Michel Raynal

Abstract—To solve consensus, distributed systems have to be equipped with oracles such as a failure detector, a leader capability, or

a random number generator. For each oracle, various consensus algorithms have been devised. Some of these algorithms are

indulgent toward their oracle in the sense that they never violate consensus safety, no matter how the underlying oracle behaves. This

paper presents a simple and generic indulgent consensus algorithm that can be instantiated with any specific oracle and be as efficient

as any ad hoc consensus algorithm initially devised with that oracle in mind. The key to combining genericity and efficiency is to factor

out the information structure of indulgent consensus executions within a new distributed abstraction, which we call “Lambda.”

Interestingly, identifying this information structure also promotes a fine-grained study of the inherent complexity of indulgent

consensus. We show that instantiations of our generic algorithm with specific oracles, or combinations of them, match lower bounds on

oracle-efficiency, zero-degradation, and one-step-decision. We show, however, that no leader or failure detector-based consensus

algorithm can be, at the same time, zero-degrading and configuration-efficient. Moreover, we show that leader-based consensus

algorithms that are oracle-efficient are inherently zero-degrading, but some failure detector-based consensus algorithms can be both

oracle-efficient and configuration-efficient. These results highlight some of the fundamental trade offs underlying each oracle.

Index Terms—Asynchronous distributed system, consensus, crash failure, fault tolerance, indulgent algorithm, information structure,

leader oracle, modularity, random oracle, unreliable failure detector.

�

1 INTRODUCTION

1.1 Context

UNDERSTANDING the deep structure and the basic design
principles of algorithms solving fundamental distrib-

uted computing problems is an important and challenging
task. This task has been undertaken for basic problems such
as distributed mutual exclusion [17], [30] and distributed
deadlock detection [6], [20]. Another such basic problem is
consensus [2], [13], [23]. This problem consists, for a set of
n processes, to propose each an initial value and,
eventually, agree on one of the proposed values, even if
some of the processes fail by crashing. Consensus is at the
heart of reliable distributed computing and it is tempting to
seek the fundamental structure of its algorithms, in
particular, consensus algorithms that are optimal in terms
of resilience and performance.

1.2 Resilience Optimality

Given that it is impossible to solve consensus determinis-

tically in the presence of crash failures in a purely

asynchronous system [13], several proposals have been

made to augment the system with oracles that circumvent

the impossibility. A first approach consists of introducing a

random oracle [3] allowing us to design consensus algo-

rithms that provide eventual decision with probability 1.

Another approach considers a failure detector oracle [7]

encapsulating eventual synchrony assumptions [12]. In
particular, failure detector }S has received a lot of
attention. It provides each process with a list of processes
suspected to have crashed, in such a way that every process
that crashes is eventually suspected (completeness prop-
erty) and there is a time after which some correct process is
no longer suspected (accuracy property). Another approach
consists of equipping the system with a leader oracle [21].
This oracle, denoted � in [8], provides the processes with a
function leader which eventually always delivers the same
correct process identity to all processes.

Oracles }S and � are, in a precise sense, minimal in that
each provides a necessary and sufficient amount of
information about failures to solve consensus with a
deterministic algorithm. Oracles }S and � actually have
the same computational power [8], [10]. The random oracle
solves a nondeterministic variant of consensus [3] and is,
strictly speaking, incomparable with the other two. This
oracle is, however, in the sense of [9], as strong as consensus
and, hence, also somehow minimal. Interestingly, the
algorithms that rely on any of those oracles have all the
common inherent flavor that consensus safety is never
violated, no matter how the oracle behaves: They are
indulgent toward their oracle [15]. In other words, the
oracles are only necessary for the liveness property of
consensus. A price to pay for this indulgence is that the
upper bound f on the number of processes that are allowed
to crash has to be smaller than n=2 (where n is the total
number of processes) and this is needed for each of these
oracles [3], [7], [8].

1.3 Performance Optimality

This paper focuses on the performance of indulgent
consensus algorithms in terms of time complexity (i.e.,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 4, APRIL 2004 453

. R. Guerraoui is with LPD-I&C-EPFL, CH 1015 Lausanne, Switzerland.
E-mail: rachid.guerraoui@epfl.ch.

. M. Raynal is with IRISA, Campus de Beaulieu, 35042 Rennes Cedex,
France. E-mail: Michel.Raynal@irisa.fr.

Manuscript received 13 Mar. 2003; revised 2 July 2003; accepted 10 July
2003.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 118448.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147915713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

latency measured in terms of communication steps). That is,
we consider the number of communication steps needed for
the processes to reach a decision in certain runs of the
execution. We overview here different optimality metrics
along this direction and we define them precisely later in
the paper.

. Oracle-efficiency. When an oracle behaves perfectly,
the consensus decision can typically be expedited.
More precisely, for all oracles discussed above, two
communication steps are necessary and sufficient to
reach consensus in failure-free runs where the oracle
behaves perfectly, e.g., [19]. Algorithms that match
this lower bound (e.g., [18], [26], [31]) are said to be
oracle-efficient in the sense that they are optimized for
the good behavior of the oracle.

. Zero-degradation. This property extends oracle-
efficiency from failure-free runs to runs with initial
crashes [11]. Algorithms that have this property also
match the two communication steps lower bound in
runs with initial crashes. For instance, the consensus
algorithms of [11] need only two communication
steps to reach consensus when the oracle behaves
perfectly, even if some processes had crashed
initially. This is particularly important because
consensus is typically used in a repeated form and
a process failure during one consensus instance
appears as an initial failure in a subsequent
consensus instance. In a zero-degrading algorithm,
a failure in a given instance does not impact the
performance of any future instances.

. One-step-decision. If the processes exploit an initial
knowledge on a privileged value or on a specific
subset of processes, they can even, sometimes, reach
consensus in a single communication step [5], e.g.,
when all noncrashed processes propose that privi-
leged value. This can, for instance, be very useful if
that specific value has a reasonable chance of being
proposed more often than others. Algorithms that
exploit such a knowledge to expedite a decision are
called here one-step-decision algorithms.

. Configuration-efficiency. Finally, when all processes
propose the same initial value, no underlying oracle
is actually necessary to obtain a decision. In that
case, two communication steps are also necessary
and sufficient to reach a consensus decision, no
matter how the underlying oracle behaves. Algo-
rithms that match this lower bound are said to be
configuration-efficient. (Such algorithms actually fol-
low the condition-based approach introduced and
investigated in [24].)

1.4 Motivation

In short, solving consensus goes through equipping
distributed systems with additional oracles such as a failure
detector, a leader oracle, or a random number generator.
Interestingly, algorithms relying on such oracles are all
indulgent, but they all require a correct majority. They do
also have some inherent performance lower bounds in
terms of time complexity. The objective of this work is to
come up with a simple unified indulgent consensus

algorithm that is generic and efficient. Genericity means
here that we could easily instantiate the algorithm with any
oracle, whereas efficiency means that the resulting algo-
rithm should be as efficient as any ad hoc consensus
algorithm designed for that specific oracle.

The first difficulty underlying this objective lies in
factoring out the appropriate information structure that is
common to efficient indulgent consensus algorithms, each
of which might be using a different oracle and making use
of specific algorithmic techniques. In fact, it is not entirely
clear whether such a common structure could be precisely
defined and whether the same generic algorithm could
encompass the specific characteristics of a random oracle, a
failure detector, and a leader oracle. The second difficulty
has to do with the possible conflicting nature of the lower
bounds. We know of no algorithm that matches all lower
bounds recalled above and it is not clear whether such an
algorithm can indeed be devised.

1.5 Related Work

In [18], several consensus algorithms were unified within
the same framework, all, however, relying on }S-like
failure detectors. A similar unification was proposed in
[4], for �-based consensus algorithms. In [1], [28], consensus
algorithms that make use of several oracles at the same time
were presented. In these hybrid algorithms, however,
efficiency was not the issue and the oracles are used in a
hardwired manner, e.g., they cannot be interchangeable. A
first attempt to build a common consensus framework,
unifying a leader oracle, a random oracle, and a failure
detector oracle, was proposed in [25]. Unfortunately,
algorithms derived by instantiating that framework with a
given oracle are clearly not as efficient as ad hoc algorithms
devised directly with that oracle. Efficient indulgent
consensus algorithms were presented in [11]. However,
for each oracle, a specific consensus algorithm is given.

1.6 Contribution

This paper factors out the information structure of efficient
indulgent consensus algorithms within a new distributed
abstraction, which we call Lambda. This abstraction
encapsulates the use of any oracle (random, leader, or
failure detector) during every individual round of indul-
gent consensus executions.

Using this abstraction, we construct a generic indulgent
consensus algorithm that can be instantiatedwith any oracle,
while assuming the highest number of possible failures, i.e.,
f < n=2, and be as efficient as any ad hoc algorithm initially
devised with that oracle in mind. The generic algorithm and
the Lambda abstraction are constructed as two pluggable
coroutines, with the round number of the consensus execution
acting as the actual glue. Interestingly, the generic algorithm
also enables the composition of different oracles, in an
interchangeable way, generalizing the idea of hybrid con-
sensus algorithms [1], [28].

The Lambda abstraction is defined by a set of precise
properties that can be ensured in different ways according
to the underlying oracle. The proposed generic consensus
algorithm has a simple structure and its proof relies only on
the properties of Lambda. As a convenient consequence, for
any instantiation of the generic algorithm, it is sufficient to

454 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 4, APRIL 2004

prove only that the particular oracle (or combination of
oracles) ensures the properties defining Lambda. The
genericity of the approach promotes a fine-grained compo-
sition of consensus optimizations. In particular, specific
instantiations of Lambda have the novel, and noteworthy,
feature of leading to indulgent consensus algorithms that
are, at the same time, oracle-efficient, zero-degrading, and
one-step-deciding.

Through new impossibility results on indulgent con-
sensus, we also show that 1) no leader-based or failure
detector-based consensus algorithm can be, at the same
time, zero-degrading and configuration-efficient and 2) any
leader-based consensus algorithm that is oracle-efficient is
also zero-degrading (hence, such an algorithm cannot be
configuration-efficient). We furthermore exhibit failure
detector-based instantiations of our generic algorithm that
are, at the same time, oracle-efficient and configuration-
efficient (hence, such an algorithm cannot be zero-degrad-
ing). These results highlight some of the fundamental trade
offs underlying each oracle.

To summarize, the contributions of this paper are:

. A new distributed programming abstraction, called
Lambda, which captures the information structure of
indulgent consensus algorithms. This abstraction
promotes genericity without hampering efficiency.

. New impossibility results on the composability of
consensus optimality properties. We show that some
time complexity lower bounds on consensus cannot
all be matched with the same algorithm.

1.7 Road-Map

The paper consists of seven sections. Section 2 presents the
computation model. Section 3 recalls the consensus problem
and its oracles. Section 4 describes our generic algorithm
and gives the specification of the Lambda abstraction.
Section 5 provides particular instances implementing
Lambda, each with a specific oracle, and discusses the
efficiency of the resulting algorithms. Section 6 gives our
impossibility results. Finally, Section 7 concludes the paper
with some final remarks.

2 DISTRIBUTED COMPUTATION MODEL

2.1 Processes

The computation model we consider is basically the
asynchronous system model of [2], [7], [13], [23]. The
system consists of a finite set � of n > 1 processes:
� ¼ fp1; . . . ; png. A process can fail by crashing, i.e., by
prematurely halting. Until it possibly crashes, the process
behaves according to its specification. If it crashes, the
process never executes any other action. By definition, a
faulty process is a process that crashes and a correct process
is a process that never crashes. Let f denote the maximum
number of processes that may crash. We assume f < n=2
(i.e., a majority of processes are correct).

2.2 Channels

Processes communicate and synchronize by sending and
receiving messages through channels. Channels are as-
sumed to be reliable: Messages are not altered or duplicated

and any message sent by a correct process to a correct

process is eventually received. There is no assumption

about the relative speed of processes or on message transfer

delays.
Our generic algorithm makes use of two communication

abstractions that can be built on top of those channels:

(simple) Broadcast and Reliable Broadcast abstractions [16].

Implementations of these communication abstractions

using reliable channels are straightforward and described

in [16], [29]. We simply recall their properties below.
The first abstraction is defined by two primitives:

Broadcast and Delivery, the semantics of which are expressed

by three properties, namely, validity, integrity, and termina-

tion. When a process p executes BroadcastðmÞ (resp.

DeliveryðmÞ), we say that p Broadcasts m (resp. Delivers

m). We assume that the messages are uniquely identified.

. Validity: If a process Delivers m, then some process
has Broadcast m. (No spurious messages.)

. Integrity: A process Delivers a message m at most
once. (No duplication.)

. Termination: If a correct process Broadcasts m, then
all correct processes Deliver m. (No message Broad-
cast by a correct process is missed by any correct
process.)

Reliable Broadcast is defined by two primitives: R_Broad-

cast and R_Delivery, the semantics of which are also

expressed by the three properties, validity, integrity, and

termination. The only difference with the Broadcast abstrac-

tion is the termination property. The latter is stated here as

follows:

. Termination: If 1) a correct process R-broadcastsm or
if 2) a process R-deliversm, then all correct processes
R-deliver m. (No message R-broadcast by a correct
process or R-delivered by a process is missed by a
correct process.)

When there is no ambiguity, we use the term receive to

mean Deliver or R-Deliver.

3 CONSENSUS AND ITS ORACLES

3.1 The Consensus Problem

In the Consensus problem, every process pi is supposed to

propose a value vi and the processes have to decide on the

same value v that has to be one of the proposed values.

More precisely, the problem is defined by two safety

properties (validity and uniform agreement) and a liveness

property (termination) [7], [13]:

. Validity: If a process decides v, then v was proposed
by some process.

. Uniform Agreement: No two processes decide dif-
ferently.1

. Termination: Every correct process eventually deci-
des on some value.

GUERRAOUI AND RAYNAL: THE INFORMATION STRUCTURE OF INDULGENT CONSENSUS 455

1. We actually consider here the uniform variant of consensus. It is
important to notice that this does not make any difference for indulgent
algorithms with the nonuniform variant of consensus (which only requires
that no two correct processes decide differently) [15].

For presentation simplicity, we consider only consensus in

its binary form: 0 and 1 are the only values that can be

proposed.

3.2 Leader Oracle

A leader oracle is a distributed entity that provides the

processes with a function leader() that returns a process

name each time it is invoked. A unique correct leader is

eventually elected, but there is no knowledge of when the

leader is elected. Several leaders can coexist during an

arbitrarily long period of time, and there is no way for the

processes to learn when this “anarchy” period is over. The

leader oracle, denoted �, satisfies the following property:2

. Eventual Leadership: There is a time t and a correct
process p such that, after t, every invocation of
leader() by any correct process returns p.

We say that the oracle � is perfect if, from the very

beginning, it provides the processes with the same correct

leader.
�-based consensus algorithms are described in [4], [11],

[21], [27]. These algorithms are (or can be easily made)

oracle-efficient: They can reach consensus in two commu-

nication steps when no process crashes and the oracle

behaves perfectly. The �-algorithm of [11] is not only oracle-

efficient, but also zero-degrading: It reaches consensus in

two communication steps when the oracle is perfect and no

process crashes during the consensus execution, even if

some processes had initially crashed. The notion of zero-

degradation means here that a failure in one consensus

instance does not impact the performance of future

consensus instances (where the failure appears as an initial

failure).

3.3 Failure Detector Oracle

A failure detector }S is defined as follows [7]: Each process

pi is provided with a set denoted by suspectedi. If

pj 2 suspectedi, we say that “pi suspects pj.”.Failure detector

}S satisfies the following properties:

. Strong Completeness: Eventually, every process that
crashes is permanently suspected by every correct
process.

. Eventual Weak Accuracy: There is a time after which
some correct process is never suspected by the
correct processes.

A }S oracle is perfect if it suspects exactly the processes that

have crashed and, hence, behaves as a perfect failure

detector. That is, in addition to strong completeness, the

oracle never suspects any noncrashed process.
Several }S-based consensus algorithms have been pro-

posed in [7], [11], [18], [26], [31]. The algorithms of [18], [26],

[31] reach consensus in two communication steps when the

oracle is perfect and no process crashes: They are oracle-

efficient. The algorithm of [11] is also zero-degrading.

3.4 Random Oracle

A random oracle provides each process pi with a function
random that outputs a binary value randomly chosen.
Basically, random() outputs 0 (resp. 1) with probability 1=2.

A binary consensus algorithm based on such a random
oracle is described in [3]. In the case where the processes
which have not initially crashed have the same initial value,
this algorithm reaches consensus in two communication
steps. (Note that, in this case, the algorithm does not
actually use the underlying random oracle. This situation
does actually correspond to the notion of configuration-
efficiency investigated in Section 6.)

4 A GENERIC CONSENSUS ALGORITHM

Our generic consensus algorithm is described in Fig. 1. As
announced in the Introduction, its combination of genericity
and efficiency lies in the use of an appropriate information
structure, called Lambda. This abstraction exports a single
function, itself denoted lambda(), and this function en-
capsulates the use of any underlying oracle. The algorithm
borrows its skeleton from [26].3

4.1 Two Phases per Round

A process pi starts a consensus execution by invoking
function consensusðviÞ, where vi is the value proposed by pi
for consensus. Function consensus() is made up of two
concurrent tasks: T1 (the main task) and T2 (the decision
dissemination task). The execution of statement returnðvÞ
by any process pi terminates the consensus execution (as far
as pi is concerned) and returns the decided value v to pi.

In their main task (i.e., T1), the processes proceed
through consecutive asynchronous rounds. Each round is
made up of two phases. During the first phase of a round,
the processes strive to select the same value, called an
estimate value. Then, the processes try to decide during the
second phase. This occurs when they get the same value at
the end of the selection phase.

Each process pi manages three local variables: ri (current
round number), est1i (estimate of the decision value at the
beginning of the first phase), and est2i (estimate of the
decision value at the beginning of the second phase). The
specific value ? denotes a default value (which cannot be
proposed by the processes).

4.1.1 First Phase (Selection)

The aim of this phase (line 104) is to provide all processes
with the same estimate (est2i). When this occurs, a decision
will be obtained during the second phase. To attain this
goal, this phase is made up of a call to the function
lambda ðÞ. For any process pi, the function has two input
parameters: a round number r (an integer) and est1i
representing either a possible consensus value (i.e., a binary
value in our case) or the specific value ?. The function
returns as an output parameter est2i, representing either a
possible consensus value or the specific value ?. A
fundamental property ensured by this function is the

456 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 4, APRIL 2004

2. This property refers to a notion of global time. This notion is not
accessible to the processes.

3. More precisely, our algorithm has the same structure as the }S-based
algorithm of [26], but differs in its first phase. This phase relies on the
Lambda abstraction instead of the particular }S failure detector.

following: For any two processes, pi and pj that, during a

round r, return from lambdaðr;�Þ, est2i and est2j, respec-

tively, we have:

ððest2i 6¼ ?Þ ^ ðest2j 6¼ ?ÞÞ) ðest2i ¼ est2j ¼ vÞ:

4.1.2 Second Phase (Commitment)

The second phase (lines 105-111) starts with an exchange of

the new estimates (note that these are equal to the same

value v or to ?). Then, the behavior of a process pi depends

on the set reci of estimate values it has gathered. There are

three cases to consider [26].

1. If reci ¼ fvg, then pi decides on v. Note that, in this
case, as pi receives v from ðn� fÞ > n=2 processes,
any process pj receives v from at least one process.
(Obviously, the algorithm remains correct if a
process waits for y messages, with n=2 < y � n� f .)

2. If reci ¼ fv;?g, then pi considers v as its new
estimate value (this is because some process might
have decided v) and proceeds to the next round.

3. if reci ¼ f?g, then pi adopts ? as estimate and
proceeds to the next round. The adoption of ? as
estimate is transitory. (An estimate equal to ?will be
updated to a non-? value by the lambdaðÞ function
called at the next round.)

It is important to notice that, at any round, lines 108 and

110 are mutually exclusive: If some process executes one of

them, then no process can execute the other. This exclusion

actually “locks” the decided value, thereby guaranteeing

consensus agreement. It follows that, when the processes

start a new round r > 1, est1i variables whose values are

different from ? are equal to the same value v: The value is

indeed locked.
The use of Reliable Broadcast (line 108) has the following

motivation: Given that any process that decides stops

participating in the sequence of rounds and all processes

do not necessarily decide during the same round, it is

possible that processes that proceed to round rþ 1 wait

forever for messages from processes that have terminated at

r. By disseminating the decided value, the Reliable Broad-

cast primitive prevents such occurrences.

4.2 The Lambda Abstraction

This section defines the properties of our Lambda abstrac-

tion. It states the properties any infinite sequence of

invocations of lambda () function has to satisfy. Section 5

will then show how these properties can be ensured using

various underlying oracles.

. Validity: No process invokes lambda ð1;?Þ. More-
over, if pi returns a 6¼ ? from lambda ðr;�Þ, then
some process invoked lambda ðr0; aÞ with r0 � r.

. Quasi-agreement: Let pi and pj be any two processes
that invoke lambda ðr;�Þ and get the values a and b,
respectively. If ða 6¼ ?Þ and ðb 6¼ ?Þ then a ¼ b.

. Fixed point: For any round number r, if all processes
that invoke lambda ðr;�Þ invoke it with the same
value a (i.e., lambda ðr; aÞ), then a and ? are the only
values that can be returned by any invocation of
lambda ðr0;�Þ, 8r0 � r.4

GUERRAOUI AND RAYNAL: THE INFORMATION STRUCTURE OF INDULGENT CONSENSUS 457

Fig. 1. The Generic Consensus Algorithm.

4. Using the terminology of [7], this property means that the value v is
locked: No different value v0 can be decided. Using the terminology of [13],
the configuration is monovalent as only v can be decided.

. Termination: For any round r, if all correct processes
invoke lambda ðr;�Þ, then all correct processes
return from the invocation.

. Eventual convergence: If all correct processes keep
on repeatedly invoking lambda ðÞ with increasing
round numbers, then there is a round r such that
lambda ðr;�Þ returns the same non-? value to all
correct processes.

4.3 Correctness of the Generic Algorithm

Assuming f < n=2 and the Lambda abstraction, this section

discusses how the algorithm of Fig. 1 satisfies the validity,

uniform agreement and termination properties of consensus.

Theorem 1 (Validity). Any decided value is a proposed value.

Proof. The specific value ? cannot be decided (line 108). By

the validity of the Lambda abstraction as well as the

integrity and validity properties of the Broadcast

primitives, the est1i and est2i variables can only contain

proposed values or ?. tu
Theorem 2 (Uniform Agreement). No two processes decide

different values.

Proof. This follows from the quasi-agreement and fixed

point properties of the Lambda abstraction as well as the

integrity and validity properties of the broadcast

primitives.
Let r be the smallest round during which some

process decides (“decide v during r” means “during r,
execute line 108 with reci ¼ fvg”). We first show that
1) the processes that decide during r decide v and 2) all
estimates are equal to v at the end of r. We then show
from 2) that no other value can be decided in a
subsequent round.

At the end of the first phase of r (just after line 104 and
before line 105), we have

ððest2i 6¼ ?Þ ^ ðest2j 6¼ ?ÞÞ) ðest2i ¼ est2j ¼ vÞ:

This follows from the quasi-agreement property of the

Lambda abstraction. As ? cannot be decided, it follows

that, if two processes decide during r, they decide the

same non-? value at line 108.
Assuming that some process pi decides v during r, we

now prove that the estimate est1j of any process pj that
progresses to rþ 1 is equal to v at the end of r. As there
are more than n=2 PHASE2 messages carrying the same v
(these are the messages that allowed pi to decide v
during r), then, by the integrity and validity properties of
the Broadcast primitive, pj must have Delivered at least
one of those PHASE2ðr; vÞ messages. Consequently, pj
executed line 109 and updated est1j to v. It follows that
all the processes that start rþ 1 have their estimate
variables equal to v.

Consider now round rþ 1. As the estimates of the
processes that start rþ 1 are equal to the same non-?
value, namely v, it follows from the fixed point property
of the Lambda abstraction that no value different from v
can be decided in a future round. tu

Lemma 1. No correct process blocks forever in a round.

Proof. This follows from 1) f being the maximum number
of processes that can crash, 2) the termination properties
of Lambda, as well as 3) the termination and integrity
properties of the Broadcast primitives. We show this
more precisely below.

If a process decides, then, by the termination property
of the Reliable Broadcast of the DECIDE message, all
correct processes decide. Hence, no correct process
blocks forever in a round. Assume by contradiction that
no process decides. Let r be the smallest round number
in which some correct process pi blocks forever. So, pi
blocks at line 104 or 106. By the termination property of
Lambda, no correct process blocks forever at line 104.
Consider now the case of line 106: The fact that pi cannot
block follows directly from the assumption that there are
at most f crashed processes, from which we conclude
that at least ðn� fÞ processes Broadcast the correspond-
ing messages: The integrity and termination properties of
the Broadcast lead to a contradiction. tu

Theorem 3 (Termination). Every correct process eventually
decides.

Proof. This follows from

1. Lemma 1,
2. f being the maximum number of processes that

can crash,
3. the termination and convergence properties of

Lambda, as well as
4. the integrity and termination properties of the

Broadcast primitives.

The proof is by contradiction. Assume that no process
decides. By Lemma 1, the correct processes progress
from round to round. Hence, by the eventual conver-
gence property of Lambda, there is a round r during
which all processes have the same value v at the end of
their first phase. It follows that the PHASE2ðr;�Þ
messages carry the same value v. By the integrity and
termination properties of the Broadcast, for any process
pi executing the second phase of r, we have reci ¼ fvg,
from which we conclude that the correct processes
decide at line 108. tu

5 ORACLE-BASED IMPLEMENTATIONS OF LAMBDA

This section describes modules that implement the Lambda

abstraction using various forms of oracles, namely, a leader
oracle, a failure detector oracle, and a random oracle. A
module provides a piece of code implementing the function
lambdaðri; est1iÞ invoked by a process pi and returning a
value in est2i. All these implementations use a local variable
per process pi, denoted prev est1i. The aim of this local
variable is to ensure the fixed point property by keeping the
last non-? value of est1i over subsequent invocations of the
lambda() function.

As observed in the Introduction, the generic consensus
algorithm and the Lambda abstraction act as two software
components pluggable together. More precisely, from the
point of view of each process pi, an execution of the generic
algorithm together with an implementation of the Lambda

abstraction is the conjunction of two “co-routines” that

458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 4, APRIL 2004

progress in turn. During each round, the control flow at pi
moves during the first phase from the main co-routine (i.e.,

the algorithm), to the co-routine implementing Lambda,

and then returns to the main co-routine for the second
phase before progressing to the next round.

5.1 Leader Module

An implementation of lambda ðri; estiÞ based on � is

described in Fig. 2. After resetting est1i to its last non-?
value (if est1i ¼ ?), every process pi first invokes the

oracle �. The latter provides pi with the identity of some

process (i.e., the name of a leader—line 202). Then, pi
exchanges with all other processes its current estimate value
plus the name of the process it considers leader (line 203).

When pi has got such messages from at least ðn� fÞ
processes (line 204), pi checks if some process p‘ is

considered leader by a majority of the processes. If there

is such a process p‘, and pi has got its current estimate value
est1‘, then pi considers est1‘ as the value of est2i. In the

other cases, pi sets est2i to ? (lines 206-208).

Theorem 4. The algorithm of Fig. 2 implements Lambda using�.

Proof.5 We have to show that the LO module, described in

Fig. 2, satisfies the validity, quasi-agreement, fixed point,

termination, and eventual convergence properties de-
fined in Section 4.2.

Validity and termination follow directly from the
algorithm and f being the maximum number of
processes that can crash. Quasi-agreement follows from
the fact that an est2i variable is equal to ? or the est1‘
value of a process p‘ (let us notice that there is at most
one process p‘ that is considered leader by a majority of
processes). The fixed point property follows from the fact

that, if all est1i are equal to some value v, then only v or
? can be output at line 208 (notice that the second phase
of the consensus algorithm can set est1i only to v or ?).
Therefore, if all est1i are equal to v at the beginning of r,
due to the management of the prev est1i variables, all
processes (that have a value) will have the same value v
after executing line 201 during the next round. The
eventual convergence property follows from the fact that
there is a time after which all processes have the same
correct leader p‘; when this occurs, p‘ imposes its
estimate to all processes. tu

The generic consensus algorithm, instantiated with such
an implementation of the function lambda (), boils down to
the � algorithm of [11] which, as we pointed out, is the most
efficient �-based algorithm we know of. When � is perfect,
it provides the processes with the same correct process as a
leader from the very beginning. Moreover, due to line 205,
the test of lines 206-207 is then satisfied as pi has got the
estimate value from the common leader p‘ (which is
leaderi). It follows that, at line 208, est2i is set to the value
of est1‘ (which is different from ?). Thus, it is easy to see
that, in this case, all processes get the same estimate value
after the execution of lambda ð1;�Þ and the protocol
terminates in two communication steps despite initial
process crashes. So, the algorithm is zero-degrading (hence,
also oracle-efficient).

5.2 Failure Detector Module

A }S-based implementation of lambda ðri; estiÞ is described
in Fig. 3. Its principle is particularly simple. Each round has
a coordinator (line 302) that tries to impose its estimate
value to all the processes (line 303). As the coordinator can
crash, a process relies on the strong completeness property
of failure detector }S in order not to wait indefinitely
(line 304). If a process pi gets a value v from the round

GUERRAOUI AND RAYNAL: THE INFORMATION STRUCTURE OF INDULGENT CONSENSUS 459

5. Line 205 is related to the zero-degradation property (see the discussion
below). It concerns neither the safety nor the liveness of the Lambda
abstraction and is consequently not used in this proof.

Fig. 2. �-based module.

Fig. 3. }calS-based module.

coordinator, pi sets est2i to v. If pi suspects the current
round coordinator to have crashed, pi sets est2i to ?
(line 305). In order not to miss the correct process that is
eventually no longer suspected (eventual weak accuracy),
all processes have to be considered in turn as coordinator
until a value is decided. This is realized with the help of the
mod function at line 302.

Theorem 5. The algorithm of Fig. 3 implements Lambda
using }S.

Proof. The proof is similar to the one used for Theorem 4.tu

The generic consensus algorithm instantiated with such
an implementation of the Lambda abstraction boils down to
the }S-based consensus algorithm described in [26]. It is
easy to see that the resulting algorithm needs only two
communication steps to decide when the first coordinator is
correct and the }S failure detector is perfect. So, this
algorithm is oracle-efficient. However, it is not zero-
degrading because, if the first coordinator has crashed,
the algorithm has to proceed to the second round. In this
case, at least three communication steps are required to
decide. (One to proceed from the first to the second round
and the others in the second round.) A simple way to get a
zero-degrading }S-based consensus algorithm, despite the
crash of the first coordinator, consists of customizing its first
round. More precisely, the lambda () function is then
implemented as follows:

. Round r ¼ 1: This round uses a module similar to
the one described in Fig. 2 except for its line 202 (the
line where the � oracle is used) which is replaced by
the following statement:

leaderi min ð�� suspectediÞ:

. Round r > 1: These rounds use the module de-
scribed in Fig. 3.

When the failure detector is perfect, all processes get the
same correct process as the “leader” of the first round, do
not suspect it, and, consequently, the decision is obtained
during that round. When we consider this implementation
of the lambda () function, the first round satisfies validity,
quasi-agreement, fixed point, and termination, whereas the
other rounds additionally satisfy eventual convergence.

5.3 Random Module

A random-based implementation of Lambda is described in
Fig. 4. When a process starts a new round with est1i ¼ ?, it
sets est1i randomly to 0 or 1. The processes then exchange

their current estimates values and each process pi looks for
a value that is a majority value. If such a value is obtained,
process pi assigns it to est2i. If pi does not see a majority
estimate value, pi sets est2i to ?. Note that, if est1i ¼ ? at
the beginning of a round, process pi can conclude that both
values have been proposed. Note also that, at the beginning
of the first round, no estimate value is equal to ?.
Theorem 6. Using random, the algorithm of Fig. 4 implements

the validity, quasi-agreement, and termination properties of

Lambda.

Proof. Straightforward from the algorithm. tu

The randomized consensus algorithm obtained when
using this implementation of the Lambda abstraction boils
down to the algorithm proposed in [3]. As noticed in Section
3.4, in the particular case where the processes that have not
initially crashedpropose the same initial value, this algorithm
does not use the underlying random oracle and reaches
consensus in two communication steps. Actually, this
algorithm uses the random oracle to allow the processes to
“eventually” start a round with the same estimate value.
When that round is reached, the process can decide without
the help of the oracle. The algorithm satisfies the eventual
convergence property with probability 1.

5.4 Module Composition

Interestingly, it is possible to provide implementations of
the Lambda abstraction based on combinations of the
previous LO, FD, and RO modules (or even any
XY module satisfying the validity, quasi-agreement, fixed
point, termination, and eventual convergence properties of
the Lambda abstraction). Such combinations provide hybrid
consensus algorithms that generalize the specific combina-
tions that have been proposed so far (namely, the
algorithms that combine a failure detector oracle with a
random oracle [1], [28]).

As examples, let us consider two module combinations
that merge the LO and FD modules.

. The first combination is the LO_FD_1 module
defined as follows:

- The odd rounds of lambda() are implemented
with the LO module (Fig. 2),

- The even rounds are implemented with the
FD module (Fig. 3) where the coordinator pc is
definedas follows: c ¼ ððri=2Þmod nÞ þ 1.6 (Note

460 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 4, APRIL 2004

Fig. 4. Random-based module.

6. In that way, no process is a priori prevented from being the correct
process that eventually is not suspected by the other processes.

that this composition requires a slight modifica-
tion of the round coordinator definition.)

. The second combination is the LO_FD_2 module
defined as follows. Each round of lambda() is
implemented by the the concatenation made up of
the LO module immediately followed by the
FD module.

It is easy to see that each of the resulting LO_FD_1 and
LO_FD_2 modules satisfies the properties associated with
the Lambda abstraction. Other combinations could be
defined in a similar way. Such combinations have to be
such that, given a round r, all processes use the same
module composition during r.

Appropriate combinations merging the RO module to
the LO and FD modules, provide implementations of
Lambda that satisfies its validity, quasi-agreement, fixed
point, and termination properties. As far as the eventual
convergence property is concerned, it is satisfied if the LO
(or FD) module is involved in an infinite number of rounds.
In the other cases, it is only satisfied with probability 1
(assuming RO is involved in an infinite number of rounds).

In that sense, the generic algorithm provides indulgent
consensus algorithms that can benefit from the best of
several “worlds” (leader oracle, failure detector oracle, or
random oracle).

5.5 One-Step Decision

This section considers two additional assumptions that,
when satisfied by an actual run, allow the consensus
algorithm to expedite the decision, i.e., to terminate in one
communication step [5]. Each of these assumptions relies on
a specific a priori agreement. More precisely, the first one
assumes an a priori agreement on a particular value and
allows a one-step decision when enough processes do
propose that value. The other assumes that there is a
predefined majority set of processes and allows a one-step
decision when those processes do propose the same value.

Interestingly, these additional assumptions can bemerged
in any deterministic implementation of Lambda (i.e., LO, FD,
or SV—defined in the next section). In the following, we

illustrate this idea by combining a specific implementation
with the �-based implementation of Lambda given in Fig. 2.
For a specific initial configuration, the processes can reach a
decision in one communication step. Interestingly, the one-
step decision characteristic of the resulting algorithm does
not impact the performance of the algorithmwhen the initial
configuration is not a specific one.

When combined with the LO module, each of the
modules introduced below (named PV—Fig. 5—and PS

—Fig. 6) assumes that there is a leader p‘ defined in the
LO module (line 202 of Fig. 2). The merging of the
LO module with the PV module (respectively, PS) concerns
only the first round. This merging is achieved through the
LO module of Fig. 2. More precisely, we test if there is a
leader as defined in the LO module (line 202 of Fig. 2). In
that case, we invoke the PV (respectively, PS) module.

5.5.1 Existence of a Privileged Value

Some applications have the property that some predeter-
mined value (�) appears much more often than other
values. This means that � is usually proposed much more
often than other values. The a priori knowledge of such a
predetermined value can help expedite the decision. This
can be done by plugging the following module PV,
described in Fig. 5, as described above. The idea underlying
this module is the following: If there is a leader p‘ (Fig. 2,
line 206) and a majority of processes including p‘ have their
current estimates equal to �, then pi decides � (line 502).
Otherwise, if pi has Delivered a PHASE1_LO message
carrying �, then pi updates its prev est1i local variable to
�. It is easy to see that, in any run where the processes that
have not initially crashed propose � and the oracle is
perfect, the processes decide in one communication step.

Theorem 7. The previous combination merging the LO and
PV modules provides a correct implementation of the Lambda

abstraction. When used in the consensus protocol described in
Fig. 1, it allows the processes to decide, in one communication
step, when the privileged value � is the only proposed value
and the oracle is perfect.

GUERRAOUI AND RAYNAL: THE INFORMATION STRUCTURE OF INDULGENT CONSENSUS 461

Fig. 5. Privileged value module.

Fig. 6. Privileged set of processes module.

Proof. Let us first notice that, if no process executes line 502,
then the only difference between the LO+PV merging
and LO lies in the fact that some processes possibly set

their prev est1i variables to � (which is then a proposed
value). This does not modify the output of the lambda ()

function for that round.
Let us now consider the case where a process decides

at line 502. In this case, the process decides �, which is
then the estimate value of the unique leader p‘ of that
round. Moreover, as, in this case, � has been sent by a
majority of processes and f < n=2, it follows that all the
processes that do not decide at line 502 execute line 503,
updating prev est1i to �.

If a process decides during the second phase, it
necessarily decides the current estimate of p‘, namely, �.
Assume some process pi does not decide during the
second phase. There are two cases to consider. Process pi
executes line 109 or line 110 (Fig. 1). If pi executes line 109,
then pi sets est1i to �. If pi executes line 110, then pi sets
est1i to ?, but then, at the beginning of the next round, pi
will reset est1i to prev est1i, whose value is now � (it has
been set to that value at line 503). It follows that if a
process decides at line 502, 1) the processes that decide
during the second phase of the round decide � and 2) the
processes that start the next round have their estimates
est1i equal to � and, so, no other value can be decided in
a later round.

Let us now consider the case where all the processes
propose the privileged value �. No matter which process
p‘ is considered leader, pi receives � from a majority of
processes including p‘ and, consequently, decides at
line 502. So, in that case, the processes decide in one
communication step. tu

5.5.2 Existence of a Privileged Set of Processes

This specific case considers the situations where there is a
predetermined set S of processes (f < n=2 < jSj), initially
known by each process. When processes in S do not crash
and propose the same value, it is possible to terminate in

one communication step. The corresponding PV module is
described in Fig. 6. It is merged with the LO as described
previously. The proof that this combination is correct is
similar to the previous one.

5.5.3 Discussion

When we look at the PV and PS modules, we can observe
that they are dual in the following sense: PV is “value”
oriented: It considers the case where the processes propose
the same predetermined value. On the other hand, PS is

“control” oriented: It considers the case where a predefined
set of processes propose the same nonpredetermined value.
In both cases, the improvement results from an a priori
agreement, either on the value � or on the set S.

Let us notice that the introduction of module PV or

module PS does not add any communication cost to the
resulting consensus algorithm. Hence, defining a priori a
privileged value � or a majority set of processes S and
trying to exploit it to expedite a decision is an overhead-free

operation (whatever the value chosen or the set selected, it
entails no additional communication cost).

Let us finally observe that, when the set of values does
not allow the PV (or PS) module to terminate in one
communication step, the consensus algorithm remains zero-
degrading: It still terminates in two communication steps
despite initial crashes if the underlying (� or }S) oracle
behaves perfectly. So, combining the additional assumption
that “there is a privileged value” or “there is a predefined
majority set of processes” with the use of an � or }S oracle
does not prevent zero-degradation. In a precise sense, one-
step decision and zero-degradation are compatible. This has
to be contrasted with the main result of the next section
(Theorem 9) which shows that configuration-efficiency
cannot be combined with zero-degradation.

6 CONFIGURATION EFFICIENCY

As we have pointed out (Section 3.4 and Section 5.3), when
all the processes (that have not initially crashed) propose
the same initial value, no underlying oracle is necessary to
obtain a decision and two communication steps are
necessary and sufficient to get a decision. We call an
algorithm that matches this lower bound each time the
initial values are the same and no matter how the under-
lying oracle behaves a configuration-efficient algorithm.

This section first presents a simple module that, when
used to implement the first round of the lambda() function
(the other rounds being implemented with the LO, FD, or
RO7 module, or a combination of them), provides a
configuration-efficient consensus algorithm. Then, it is
shown (Theorem 9) that no � or }S-based consensus
protocol can be, at the same time, configuration-efficient
and zero-degrading. In a precise sense, these optimization
techniques are incompatible. On the contrary, and as we
have seen, a random-based consensus algorithm can be at
the same time configuration-efficient and zero-degrading
when a single value is proposed (we have also seen that, in
this case, the random oracle is not used). Finally, we show
that it is possible to trade zero-degradation with configura-
tion-efficiency in the case of }S (in the sense that both
cannot be simultaneously provided), but not in the case of �
(Theorem 10).

6.1 Same Value Module

We present here a simple implementation of the lambda ()
function (Fig. 7) that is only based on the values proposed
by the processes: No oracle is used. The processes exchange
their current estimates values and look for a value that is a
majority value. If such a value exists, process pi assigns it to
est2i. If a process pi does not see a majority estimate value, it
sets est2i to ?. Except for its first line, this module, denoted
by SV, is the same as the RO module: The only difference
lies in the fact that SV does not use any underlying oracle.
When used in the first round, SV and RO are actually the
same module (this is because, when the first round starts,
we have est1i 6¼ ?).
Theorem 8. The algorithm of Fig. 7 ensures the validity, quasi-

agreement, fixed point, and termination properties of Lambda.

462 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 4, APRIL 2004

7. In the latter case, the eventual convergence property of Lambda can
only be guaranteed with probability 1.

Proof. Straightforward from the algorithm. tu

This implementation does not satisfy eventual conver-
gence, so the termination of the consensus algorithm is not
guaranteed in all cases. This implementation is particularly
interesting when there is a high likelihood that the
processes do propose the same value. In such cases, the
resulting consensus algorithm is zero-degrading and
terminates in two communication steps. Interestingly, this
module can be used in combination with other oracle-based
modules to provide Lambda implementations.

6.1.1 Remark

Assuming no more than f processes can crash, the
implementation of Lambda based on the SV (resp. RO,
LO, and FD) module ensures the validity, quasi-agreement,
fixed point, and termination properties of Lambda. SV does
not ensure eventual convergence, while (due to their
powerful underlying oracles) LO and FD ensure it. RO

can be seen as at an intermediate level as it ensures eventual
convergence only probabilistically. So, RO can be seen as
SV enriched with a “relatively weak oracle” whose aim is to
help obtain eventual convergence.

6.2 Impossibility Result

Assuming f < n=2 and A being any �-based or }S-based
consensus algorithm, we show here that A cannot be
simultaneously zero-degrading and configuration-efficient.
The proof technique uses indistinguishability arguments,
both 1) among runs without crashes and runs with crashes
and 2) among runs where the oracle behaves perfectly and
runs where the oracle does not.

As our impossibility result is a lower bound on a number
of communication steps, it is stated and proven assuming a
round-based full-information algorithm [14], i.e., we as-
sume that processes exchange the maximum information
they can exchange within every message. That is, whenever
a process transmits a message, it transmits it to all and
includes its current state. Processes proceed in rounds. In
every round, a process sends a message to all processes.
Before moving to the next round, the process waits for
messages from a majority and, depending on the oracle, it
waits for other messages. Basically, if the algorithm is based
on �, the process also waits for a message from the leader. If
the algorithm is based on }S, the process also waits for a
message from every nonsuspected process. Assuming this
strong model strengthens our impossibility result.

As we defined it, the notion of zero-degradation means
that the algorithm reaches consensus in 2 communication

steps (rounds) in any run where no process crashes, except

possibly initially, and the oracle behaves perfectly. Let us

recall here that � behaves perfectly in a run if it always

outputs the same correct process to all processes in that run;

}S behaves perfectly when every process that crashes is

eventually suspected (in a permanent way) by all correct

processes and no process is suspected before it crashes.

Note that, when we say here that a run reaches consensus,

we mean that all correct processes have decided.

Theorem 9. Assuming f < n=2, no � or }S-based consensus

algorithm can be zero-degrading and configuration-efficient.

Proof. We need to prove that if consensus can be reached in

two rounds in any run of A where the oracle behaves

perfectly and no process crashes, except initially (i.e., A is

zero-degrading), then there exists a run of A that does

not reach consensus in two communication steps even if

all processes have the same initial values (i.e., A cannot

be configuration-efficient).
The proof first considers the case of three processes

(i.e., n ¼ 3 and f ¼ 1). Then, it considers the case n > 3.8

Furthermore, we first consider a communication-closed
model [14]: If a process does not deliver, in a round r, a
message Broadcast to it in that round, the process never
delivers that message. We shall later discuss the general-
ization of our proof argument for the communication-
open model.

Case n ¼ 3. We prove our result using simple
indistinguishability arguments among four runs: R1-R4.
We depict the important messages of these runs in Fig. 8.
Messages that are Broadcast and not Delivered or sent by
a process to itself are not indicated; the value proposed
by a process is indicated inside square brackets “[]” and
the value decided inside parentheses “()”.

1. At least until the second round, run R1 is similar
for processes p2 and p3 to a run where p1 has
initially crashed. Without loss of generality, if A is
zero-degrading, then A must have a run such as
run R1. In this run, � would output the same
leader process, say p2, at all processes and }S
would output, say p1, at all processes. In both
cases, messages from p1 are missed by p2 and p3
because they consider p1 to have initially crashed:
Messages received by p1 are hence not relevant
for our purpose. Processes p2 and p3 decide, say 0,

GUERRAOUI AND RAYNAL: THE INFORMATION STRUCTURE OF INDULGENT CONSENSUS 463

Fig. 7. Same value module.

8. In a sense, we consider a reduction proof technique similar to that of
[22], where the case n ¼ 3 and f ¼ 1 is first considered and then
generalized.

after two rounds (zero-degradation) and, hence,
p1 eventually decides 0 as well.

2. Process p3 cannot distinguish R1 from run R2 up
to the second round: p3 receives exactly the same
messages from p2 and gets the same output from
its oracle. Hence, p3 decides 0 after two rounds in
run R2 as well. Processes p1 and p2 have to
eventually decide 0 in R2, even if p3 crashes
immediately after deciding at round 2.

3. Consider now run R3. After two rounds, p1 and p2
cannot distinguish run R3 from R2 where p3
might have decided 0 after two steps. Assume
again that p3 crashes immediately after the second
round in R3. Hence, p1 and p2 also have to
eventually decide 0 in run R3 as well. Process p3
cannot distinguish run R3 from R4.

4. In run R4, all processes might have the same
initial value and if we assume that A is config-
uration-efficient, then p3 must decide 1 after two
steps. A contradiction as p3 cannot distinguish R4

from R3.

Case n > 3. Let us divide the set of processes into
three subsets, P1, P2, and P3, each of size less than or
equal to dn=3e. Moreover, let f be such that
n=2 > f � dn=3e. Given that f � dn=3e, all processes of
a given subset can crash in a run. The generalization of
the proof for any n is then straightforward. We replace
process p1 with the set of processes P1, process p2 with
set P2, and process p3 with set P3, i.e., if we crash pi, we
crash all processes in Pi, if pi proposes a value v, we have
that value proposed by all processes in Pi, and so forth.
We then follow the same reasoning as for the proof with
n ¼ 3 to construct four runs, as R1-R4, and make them
contradictory.

Consider now a communication open model. Any
message that is sent by a correct process is eventually

received by all correct processes. The point here is that,
given the asynchronous characteristic of the channels,
these messages might arrive after the decision was made.
They simply do not change the contradiction argument.tu

6.3 Trading Zero-Degradation

This section discusses the possibility of trading zero-
degradation with configuration-efficiency. The issue is to
devise algorithms that are oracle-efficient and configura-
tion-efficient instead of zero-degrading. Recall that oracle-
efficiency (that concerns crash-free runs) is a weaker
property than zero-degradation (that concerns runs with
only initial crashes).

6.3.1 The Case of �

We show below that any �-based consensus algorithm that
is oracle-efficient is also zero-degrading. As a consequence
of our previous impossibility result (Theorem 9), there is no
way to trade the zero-degrading characteristic of oracle-
efficient �-based consensus algorithms with configuration-
efficiency.

Theorem 10. Assuming f < n=2, any oracle-efficient �-based
consensus algorithm is also zero-degrading.

Proof. Let A be any �-based consensus algorithm assuming
f < n=2. We need to show that if any run of A, where the
oracle behaves perfectly and no process crashes, reaches
consensus in two steps, then any run of A where the
oracle behaves perfectly and no process crashes, except
initially, also reaches consensus in 2 steps. Our proof
argument is by contradiction.

For presentation simplicity, we simply consider the
case of three processes, i.e., f ¼ 1, in a communication-
closed model and exhibit two contradictory runs,
depicted in Fig. 9. A being oracle-efficient, let us assume
without loss of generality that 1) A has a run R1 where

464 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 4, APRIL 2004

Fig. 8. Runs R1-R4 used in the proof of Theorem 9.

some process, say p1, crashes initially, 2) the oracle
behaves perfectly, say by permanently electing p2, and
3) either p2 or p3 decides after round 2. Let us observe
that the oracle � might also output p2 in a run R2 that is
similar to R1, except for p1 that does not crash.
Processes p2 and p3 cannot distinguish R1 from R2 as,
in both runs, they get the same information from �. But
then, in R2, � behaves perfectly, no process crashes, and
some process decides after round 2: a contradiction as A
is an oracle-efficient �-based consensus algorithm. tu

6.3.2 The Case of }S
We give here a }S-based consensus algorithm assuming

f < n=2 that is oracle-efficient and configuration-efficient.

The algorithm is, however, not zero-degrading (this would

contradict Theorem 9).
The idea in this }S-based consensus algorithm consists

of customizing its first round. More precisely, the lambda ()

function is implemented as follows:

. Round r ¼ 1: The processes exchange their current
estimates values and every process waits until it
receives a) a majority of estimates and b) an estimate
from all nonsuspected processes. If a process
1) receives the same value v or 2) receives values
from all processes and v is 2.1) the majority among
those or 2.2) p1’s value if there is no such majority,
then the process returns v. Otherwise, the process
returns ?. (Let us notice that this first round relies
only on the majority of correct processes assumption
and the strong completeness property of }S.)

. Round r > 1: These rounds use the module de-
scribed in Fig. 3.

When we consider this implementation of the lambda ()

function, the first round satisfies validity, quasi-agreement,

fixed point, and termination and the other rounds addi-

tionally satisfy eventual convergence. Consider a consensus

algorithm using this implementation of lambda. Clearly, if

all processes propose the same value, the processes return

that value within lambda and all correct processes decide in

two steps (configuration-efficiency). Similarly, if the oracle

behaves perfectly and no process crashes, then all processes

get all values and return the same value within lambda:

Thus, the processes decide in two steps (oracle-efficiency).

6.3.3 On Perfect � and }S Oracles

While� and}S have the same computational power [8], [10],
it is important to notice that perfect � and perfect}S are not
equivalent. This observation might help get an intuition of
why any oracle-efficient �-based consensus algorithm is also
zero-degrading, which is not the case with }S.

7 CONCLUSION

This paper dissects the information structure of consensus
algorithms that rely on oracles such as the random oracle
[3], the leader oracle [21], and the failure detector oracle [7].
The algorithms we consider are indulgent toward their
oracle: No matter how the underlying oracle behaves,
consensus safety is never violated.

We encapsulate the information structure of indulgent
consensus algorithms within a new distributed abstraction,
called Lambda. Basically, this abstraction is invoked in the
first phase of every round of our generic consensus
algorithm. It highlights a deep unity in the design principles
of consensus solutions and allows to state, in an abstract
way, the properties the oracles equipping the underlying
asynchronous system have to satisfy. This not only allows
us to provide a single proof of a family of algorithms
(whatever the oracles effectively used), but also promotes
the design of new oracles appropriately defined according
to the practical setting in which the system has to run.

The genericity of the approach helps devise new
consensus algorithms that are, at the same time, oracle-
efficient, zero-degrading, and one-step-deciding. We could
also derive new lower bounds such as the impossibility of
having an algorithm that is zero-degrading and configura-
tion-efficient at the same time.

It is important to notice that our approach does not aim
at unifying all algorithmic principles underlying consensus.
In particular, we focused on indulgent consensus algo-
rithms [15]. Figuring out how to include, for instance, the
synchronous dimension in our general information structure
might be feasible along the lines of [14], but requires a
careful study. Similarly, we did not consider the memory
dimension of consensus algorithms to unify models with
crash-stop message passing, crash-recovery message pas-
sing, and shared memory [4]. Integrating this dimension to
the oracle one is yet another nontrivial challenge.

ACKNOWLEDGMENTS

The authors are grateful to the referees for their useful
comments that helped us improve the presentation of this

GUERRAOUI AND RAYNAL: THE INFORMATION STRUCTURE OF INDULGENT CONSENSUS 465

Fig. 9. Runs R1-R2 used in the proof of Theorem 10.

paper. They would also like to thank Partha Dutta, Achour
Mostéfaoui, Bastian Pochon, and Sergio Rasjbaum for
discussions on consensus algorithms and lower bounds.
This paper is a revised and extended version of the paper
“A Generic Framework for Indulgent Consensus” which
appeared in the Proceedings of the 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS ’03),
May 2003.

REFERENCES

[1] M.K. Aguilera and S. Toueg, “Failure Detection and Randomiza-
tion: A Hybrid Approach to Solve Consensus,” SIAM J. Comput-
ing, vol. 28, no. 3, pp. 890-903, 1998.

[2] H. Attiya and J. Welch, Distributed Computing: Fundamentals,
Simulations and Advanced Topics. McGraw-Hill, 1998.

[3] M. Ben-Or, “Another Advantage of Free Choice: Completely
Asynchronous Agreement Protocols,” Proc. Second ACM Symp.
Principles of Distributed Computing (PODC ’83), pp. 27-30, 1983.

[4] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui, “Deconstruct-
ing Paxos,” SIGACT News, Distributed Computing Column, 2003.

[5] F. Brasileiro, F. Greve, A. Mostefaoui, and M. Raynal, “Consensus
in One Communication Step,” Proc. Sixth Int’l Conf. Parallel
Computing Technologies (PaCT ’01), pp. 42-50, 2001.

[6] J. Brzezinsky, J.-M. Hélary, M. Raynal, and M. Singhal, “Deadlock
Models and a General Algorithm for Distributed Deadlock
Detection,” J. Parallel and Distributed Computing, vol. 31, no. 2,
pp. 112-125, 1995.

[7] T. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems,” J. ACM, vol. 43, no. 2, pp. 225-
267, 1996.

[8] T. Chandra, V. Hadzilacos, and S. Toueg, “The Weakest Failure
Detector for Solving Consensus,” J. ACM, vol. 43, no. 4, pp. 685-
722, 1996.

[9] B. Chor and L. Nelson, “Solvability in Asynchronous Environ-
ments: Finite Interactive Tasks,” SIAM J. Computing, vol. 29, no. 2,
pp. 351-377, 1999.

[10] F. Chu, “Reducing � to }W ,” Information Processing Letters, vol. 67,
no. 6, pp. 289-293, 1998.

[11] P. Dutta and R. Guerraoui, “Fast Indulgent Consensus with Zero
Degradation,” Proc. Fourth European Dependable Computing Conf.
(EDCC ’02), pp. 191-208, 2002.

[12] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
Presence of Partial Synchrony,” J. ACM, vol. 35, no. 2, pp. 288-323,
1988.

[13] M.J. Fischer, N. Lynch, and M.S. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process,” J. ACM, vol. 32,
no. 2, pp. 374-382, 1985.

[14] E. Gafni, “A Round-by-Round Failure Detector: Unifying Syn-
chrony and Asynchrony,” Proc. 17th ACM Symp. Principles of
Distributed Computing (PODC ’98), pp. 143-152, 1998.

[15] R. Guerraoui, “Indulgent Algorithms,” Proc. 19th ACM Symp.
Principles of Distributed Computing (PODC ’00), pp. 289-298, 2000.

[16] V. Hadzilacos and S. Toueg, “Reliable Broadcast and Related
Problems,” Distributed Systems, S. Mullender, ed., pp. 97-145,
New-York: ACM Press, 1993.

[17] J.-M. Hélary, A. Mostéfaoui, and M. Raynal, “A General Scheme
for Token- and Tree-Based Distributed Mutual Exclusion Algo-
rithms,” IEEE Trans. Parallel and Distributed Systems, vol. 5, no. 11,
pp. 1185-1196, Nov. 1994.

[18] M. Hurfin, A. Mostéfaoui, and M. Raynal, “A Versatile Family of
Consensus Protocols Based on Chandra-Toueg’s Unreliable Fail-
ure Detectors,” IEEE Trans. Computers, vol. 51, no. 4, pp, 395-408,
Apr. 2002.

[19] I. Keidar and S. Rajsbaum, “On the Cost of Fault-Tolerant
Consensus when There Are No Faults: A Tutorial,” SIGACT
News, Distributed Computing Column, vol. 32, no. 2, pp. 45-63, 2001.

[20] A.D. Kshemkalyani and M. Singhal, “On the Characterization and
Correctness of Distributed Deadlock Detection,” J. Parallel and
Distributed Computing, vol. 22, no. 1, pp. 44-59, 1994.

[21] L. Lamport, “The Part-Time Parliament,” ACM Trans. Computer
Systems, vol. 16, no. 2, pp. 133-169, 1998.

[22] L. Lamport, R. Shostak, and L. Pease, “The Byzantine General
Problem,” ACM Trans. Programming Languages and Systems, vol. 4,
no. 3, pp. 382-401, 1982.

[23] N. Lynch, Distributed Algorithms. San Francisco: Morgan Kauf-
mann, 1996.

[24] A. Mostéfaoui, S. Rajsbaum, and M. Raynal, “Conditions on Input
Vectors for Consensus Solvability in Asynchronous Distributed
Systems,” Proc. 33rd ACM Symp. Theory of Computing (STOC ’01),
pp. 153-162, 2001.

[25] A. Mostéfaoui, S. Rajsbaum, and M. Raynal, “A Versatile and
Modular Consensus Protocol,” Proc. Int’l IEEE Conf. Dependable
Systems & Networks (DSN ’02), pp. 364-373, 2002.

[26] A. Mostéfaoui and M. Raynal, “Solving Consensus Using
Chandra-Toueg’s Unreliable Failure Detectors: A General Quor-
um-Based Approach,” Proc. 13th Int’l Symp. Distributed Computing
(DISC ’99), pp. 49-63, 1999.

[27] A. Mostéfaoui and M. Raynal, “Leader-Based Consensus,” Parallel
Processing Letters, vol. 11, no. 1, pp. 95-107, 2001.

[28] A. Mostéfaoui, M. Raynal, and F. Tronel, “The Best of Both
Worlds: A Hybrid Approach to Solve Consensus” Proc. Int’l IEEE
Conf. Dependable Systems & Networks (DSN ’00), pp. 513-522, 2000.

[29] L. Rodrigues and P. Verissimo, “Topology-Aware Algorithms for
Large Scale Communications,” Advances in Distributed Systems,
pp. 127-156, Springer-Verlag, 2000.

[30] B. Sanders, “The Information Structure of Distributed Mutual
Exclusion Algorithms,” ACM Trans. Computer Systems, vol. 5, no. 3,
pp. 284-299, 1987.

[31] A. Schiper, “Early Consensus in an Asynchronous System with a
Weak Failure Detector,” Distributed Computing, vol. 10, pp. 149-
157, 1997.

Rachid Guerraoui received the PhD degree in
1992 from the University of Orsay. He has been
a professor in computer science since 1999 at
EPFL (Ecole Polytechnique Fédérale de Lau-
sanne) in Switzerland, where he founded the
distributed programming laboratory. Prior to that,
he was with HP Labs in Palo Alto, California, the
Center of Atomic Energy (CEA) in Saclay,
France, and the Centre de Recherche de l’Ecole
des Mines de Paris. His research interests

include distributed algorithms and distributed programming languages.
In these areas, he has been principal investigator for a number of
research grants and has published papers in various journals and
conferences. He has served on program committees for various
conferences and chaired the program committees of ECOOP 1999,
Middleware 2001, and SRDS 2002. He is a member of the IEEE.

Michel Raynal has been a professor of compu-
ter science since 1981. At IRISA (CNRS-INRIA-
University joint computing research laboratory
located in Rennes), he founded a research
group on distributed algorithms in 1983. His
research interests include distributed algorithms,
distributed computing systems, networks, and
dependability. His main interest lies in the
fundamental principles that underlie the design
and the construction of distributed computing

systems. He has been principal investigator for a number of research
grants in these areas and has been invited by many universities to give
lectures about operating systems and distributed algorithms in Europe,
South and North America, Asia, and Africa. He serves as an editor for
several international journals. He has published more than 75 papers in
journals and more than 160 papers in conferences He has also written
seven books devoted to parallelism, distributed algorithms, and systems
(MIT Press and Wiley). He has served on program committees for more
than 70 international conferences and chaired the program committees
of more than 15 international conferences. He currently serves as the
chair of the steering committee leading the DISC symposium series. He
received the IEEE ICDCS best paper Award three times in a row: 1999,
2000, and 2001.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

466 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 4, APRIL 2004

