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Abstract. In this paper, the problem of face verification across illumination is addressed.
In order to cope with different lighting conditions, a preprocessing step is applied to the face
image so as to make it independent on the illumination conditions. The illuminant invariant
representation of the image is obtained by first applying an anisotropic diffusion process to the
original image (Gross and Brajovic, 2003). Hence, it implies the numerical resolution of an elliptic
partial differential equation on a large grid: the image. So, a comparison is performed on two
methods to resolve such diffusion problems, namely the Gauss-Seidel relaxation and the Multigrid
V-cycle. The preprocessing algorithm with its different resolution schemes is applied prior to the
task of face verification. Experiments conducted on the challenging BANCA database showed
a significant improvement in terms of face verification error rate, while staying computationally
efficient.
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1 Introduction

Illumination has been identified as one of the major factor affecting the performance of face verifi-
cation systems. Actually, Adini et al. (1997) showed that image variation due to lighting changes is
more significant than that due to different personal identities. They also empirically noticed that no
classical image features are sufficient to compensate for illumination changes. Later, Chen et al. (2000)
formally proved that there are no functions of an image that are discriminative illuminant invariants.
Existing algorithms to cope with illumination variations can be divided into two categories. The
aim of the first category is to model the subspace of the image space described by varying the light
source only. For doing so, those methods require training images of the same object, viewed under
slightly different lighting conditions. Georghiades et al. (2001) developed a powerful tool to perform
face recognition across illumination. Based on their previous result stating that the set of images of
an object seen under arbitrary lighting conditions is a low-dimensional subspace of the image space
(Belhumeur and Kriegman, 1998), they proposed a method to approximate this subspace by building
a so-called illumination cone. Recognition is then performed by measuring the distance between the
probe image and the pre-stored illumination cone representations. Ho et al. (2003) extended this
algorithm by proposing a specific metric to efficiently cluster illumination cones.
There exists several other approaches based on the idea that the illumination subspace can be well
approximated by a low-dimensional subspace of the image space. Among them, one can mention the
spherical harmonic representation (Basri and Jacobs, 2001), and also the simpler subspace construc-
tion using linear combination of training images (Wang et al., 2003). These methods are generally
computationally expensive and require training images of the same object under various lighting con-
ditions.
The second approach used to deal with illumination changes is to apply a preprocessing step prior to
the face verification task itself. A well-known example of such enhancement algorithm is histogram
equalization. The main advantage of preprocessing compared to model-based approaches is that it
is completely independent on the classifier, so that no training phase regarding the illumination is
required: the goal is to turn the original image into a better suited representation for recognition
purpose. Hence, training images of the same object under different lighting conditions are not needed
anymore.

For the purpose of face verification, a comparison of photometric normalization algorithms was
made by Short et al. (2004) and showed the superiority of the diffusion-based model proposed by
Gross and Brajovic (2003). Their study was perform using a face verification system based on linear
discriminant analysis (LDA), which belongs to so-called holistic classifiers: the whole face image is
used as raw input to the system. On the other hand, feature-based classifiers first derives local
features as representation of the face region before proceeding with the classification. Compared to
holistic approaches, feature-based methods are generally more robust to change in illumination and
to imperfect face localization (Zhao et al., 2003).
We thus propose to study the most promising normalization technique on a system based on local
features and Gaussian Mixture Models (GMM) (Cardinaux et al., 2003, 2004). Moreover, no practical
implementation of the diffusion-based algorithm (Gross and Brajovic, 2003) was proposed and since it
involves the resolution of partial differential equations, there exist numerous methods to numerically
resolve such problems. Hence, we will investigate two different resolution schemes, in terms of both face
verification performance and computational efficiency. Performances of the preprocessing algorithms
are assessed on the BANCA database (Bailly-Baillire et al., 2003).

This paper is organized as follows: the next section describes the algorithm proposed by Gross
and Brajovic (2003). Section 3 details the different numerical resolution schemes, from the relaxation
to the multigrid V-cycle and section 4 presents the face verification system. Section 5 describes the
conducted experiments as well as the obtained results. Finally, a conclusion is drawn in section 6.



IDIAP–RR 05-46 3

2 Illumination Normalization

By conducting visual experiments, Land and McCann (1971) derived a computational framework of
how the eye perceive the reflectance of a scene: the reflectance value of a particular point R(x, y), can
be obtained by comparing the point’s intensity with many other ones in the scene.
A digital image I(x, y) can be regarded as the product between the illuminance L(x, y) and the
reflectance R(x, y) (Land and McCann, 1971), hence an illumination free representation of the image
can be obtained by dividing the original image by the illuminance term:

I(x, y) = R(x, y) · L(x, y) ⇒ R(x, y) =
I(x, y)

L(x, y)
(1)

The difficulty lies in estimating the illuminance term L(x, y). A practical implementation of this so-
called Retinex algorithm is due to Jobson et al. (1997): the illuminance field is obtained by applying
a Gaussian filter to the original image. Hence, the illuminance can be estimated as a smooth version

of the original image.

Gross & Brajovic Algorithm

Based on the previous result that the illuminance can be derived as a smooth version of the original
image, Gross and Brajovic (2003) proposed to estimate L(x, y) by applying an anisotropic diffusion
process to the input image. Unlike isotropic diffusion (which is equivalent to gaussian filtering),
meaningful informations in the image, represented by edges, are not discarded. The diffusion process
is implemented by minimizing the following variational model:

E(L) =

∫∫

Ω

ρ(x, y)(L(x, y)− I(x, y))2dxdy + λ

∫∫

Ω

(L2
x + L2

y)dxdy (2)

The first term forces the luminance function to be close to the original image and the second term
adds a smoothness constraint on L(x, y). λ controls the relative importance of this constraint (e.g.
the amount of blurring introduced in the image) and ρ(x, y) are the anisotropic diffusion coefficients.
Note that if ρ(x, y) = 1 ∀x, y then isotropic diffusion is performed. The solution for L(x, y) is found
thanks to the discrete version of the Euler-Lagrange equation associated to equation (2):

Li,j +λ

[

1

ρi,j−1
(Li,j − Li,j−1) + 1

ρi,j+1
(Li,j − Li,j+1)

+ 1

ρi−1,j
(Li,j − Li−1,j) + 1

ρi+1,j
(Li,j − Li+1,j)

]

= Ii,j

(3)

where the anisotropic diffusion coefficients ρi,j are defined as the reciprocal of the Weber contrast
measure: ρi,j = |Ii− Ij |/ min(Ii, Ij). Equation (3) actually represents a boundary value problem, and
can be viewed as a large sparse linear system: A · L = I , where A is called the differential operator

(Press et al., 1988).

3 Numerical Resolution

Since the matrix A is of size NxN , N being the number of pixel in the image, it cannot be directly
inverted without huge computational load and memory requirements. In this section, we present two
methods to approximate the solution of large sparse linear systems induced by the discretization of
elliptic partial differential equations, namely the relaxation and the multigrid V-cycle.
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3.1 Relaxation

Consider the linear problem: Ax = b and suppose that we have an arbitrary initial estimate of the
solution x0. This linear iterative method recursively corrects the initial estimate according to:

xk+1 = xk + B(b−Axk) (4)

where B will be an approximate of A−1. Note that if B = A−1 only one iteration is sufficient to
resolve the problem. A popular choice for B is the so-called Gauss-Seidel relaxation: let us write
A = D − L − U where D is the diagonal of A, −L and −U are the lower and the upper part of A
respectively. In Gauss-Seidel relaxation, B is defined as B = (D − L)−1. Consequently, the result
of the iterative process (4) depends on the ordering of processed elements. In our experiments, the
chequer-board ordering was used (Figure 1) since it is best suited for typical second-order elliptic
equations (Press et al., 1988). The Gauss-Seidel relaxation then becomes a two-stage process: first,
odd points are updated (equation (5)) and then even points (equation (6)).

ai,ix
k+1
i,i = bi,i −

(

ai−1,ix
k
i−1,i + ai,i−1x

k
i,i−1 + ai,i+1x

k
i,i+1 + ai+1,ix

k
i+1,i

)

(5)

ai,ix
k+1
i,i = bi,i −

(

ai−1,ix
k+1
i−1,i + ai,i−1x

k+1
i,i−1 + ai,i+1x

k+1
i,i+1 + ai+1,ix

k+1
i+1,i

)

(6)

Figure 1: Checker-board ordering of the Gauss-Seidel relaxation: all the gray points are processed
before updating the black ones.

3.2 Towards Multigrid

3.2.1 Coarse Grid Correction

Although the convergence of the Gauss-Seidel relaxation is guaranteed, the major drawback of this
procedure is that the convergence speed depends on the accuracy of the initial estimate. So the goal
of the coarse-grid procedure is to improve an initial guess of the solution. Let us define xi

0 as the
initial estimate on the finest grid 0, we also introduce the residual, defined as ri

0 = A0x
i
0− b0, which is

a measure of the error between the estimate and the solution. In order to improve the initial estimate
xi

0, the residual is projected onto a coarser, thus smaller grid 1. On this grid, the correction ci
1 can

be computed thanks to the residual equation A1c
i
1 = ri

1, solved by direct resolution. The correction
corresponds to the quantity to add to the estimate so as to yield the true solution on grid 1. Since
the solution has to be found on the finest grid, the correction ci

1 is then projected back to the fine
grid and finally added to the initial estimate: xi

0 ← xi
0 + ci

0. In order to go from one grid to another,
transfer functions have to be defined: as suggested in Press et al. (1988), the full-weighting scheme for
the fine-to-coarse function (R) and the bilinear interpolation for the coarse-to-fine function (P) were
used. The coarse-grid correction is summarized below:

1. Compute the residual on the fine grid: ri
0 = A0x

i
0 − b0

2. Restrict the residual to the coarse grid: ri
1 = Rri

0
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3. Solve the residual equation: A1c
i
1 = −ri

1 (direct resolution)

4. Interpolate the correction ci
1 to the fine grid: ci

0 = Pci
1

5. Add the correction to the estimate: xi
0 ← xi

0 + ci
0

3.2.2 V-cycle

The multigrid V-cycle algorithm is a particular implementation of the multigrid framework, which
is known to be an optimal solver for large and sparse linear systems induced by partial differential
equations (Briggs et al., 2000). Considering the coarse grid correction, the residual equation is assumed
to be solved by direct matrix inversion. Although this resolution is faster since the grid is smaller, the
computational load may remain important. The multigrid V-cycle algorithm goes one step further:
the idea is to solve the residual equation by applying, once again, another coarse-grid correction. This
process is then repeated until the coarser grid is small enough, for the residual equation to be solved
without significant computational load. The complete V-cycle algorithm is summarized below (Briggs
et al., 2000):

1. Apply ν1 > 0 relaxation steps to the initial estimate: x̂l0

2. Compute the residual on the fine grid: rl0 = Al0 x̂l0 − bl0

3. Restrict the residual to the next coarser grid: rl1 = Rrl0

4. Solve Al1cl1 = −rl1 by a recursive call to the V-cycle algorithm

• until the grid is small enough to perform efficient matrix inversion

5. Interpolate the coarse grid solution cl1 to the next finer grid: cl0 = Pcl1

6. Add the correction to the estimate: x̂l0 ← x̂l0 + cl0

7. Apply ν2 > 0 relaxation steps to the corrected estimate: x̂l0

4 Face Verification

In order to compare the performance of the diffusion-based preprocessing algorithms and their different
numerical resolution schemes, we investigated the effect of the lighting normalization on the popular
task of face verification. Face verification consists in giving an opinion, based on a face image, on
whether an individual claiming its identity is the true claimant or an impostor. In our experiments,
this decision is made based on a system using local features and Gaussian Mixtures Models (GMM)
(Cardinaux et al., 2003, 2004).

Let us consider a client C described by its parameters θC , and a generic face model C with
parameters θC . The generic face model is also known as the world model and is used to simulate an
arbitrary impostor. The decision on whether the client is the true claimant or not is given by:

Θ(X) = log P (X |θC)− log P (X |θC) (7)

where P (X |θC) denotes the likelihood that the set of features vectors comes from the true claimant and
P (X |θC) is the likelihood that the set of feature vectors comes from an impostor. These likelihoods
are estimated with:

P (X |θ) =

Nv
∏

t=1

P (~xt|θ) (8)

where the probability distribution P (~xt|θ) is modelled as a sum of gaussian distributions. In order
to derive the client-specific parameter set θC , the observation X is derived from the face image on a
block-by-block basis. Each block is decomposed using 2D-DCT basis functions, and the final feature
vector for a block is built according to the DCTmod2 scheme (Sanderson and Paliwal, 2002).



6 IDIAP–RR 05-46

5 Experiments and Results

5.1 Database and Protocols

The challenging BANCA database (Bailly-Baillire et al., 2003), especially designed for biometric au-
thentication, is used to assess the performances of the normalization algorithms. In our experiments,
we consider the English corpus of the database, containing 52 individuals (26 males and 26 females),
equally divided into two groups used for hyper-parameter selection (g1) and test (g2). Recordings
were made according to three distinct scenarios: controlled, degraded and adverse.

PSfrag replacements

(a)

(b)

(c)

Figure 2: The different scenarios: controlled (a), degraded (b) and adverse (c).

The BANCA protocol also defines various training and testing policies. Here we focus on four
particular conditions, that is: Matched controlled (Mc), Unmatched adverse (Ua), Unmatched de-
graded (Ud) and the Pooled test (P). In each protocols, the training phase is performed using images
taken from the controlled conditions. The system is then tested on images acquired under various
conditions, depending on the protocol: controlled (for Mc), adverse (for Ua), degraded (for Ud) and
the pooled test (P) does the test on images from the three different conditions (see Figure 2). This
procedure makes sense since it corresponds to the realistic and challenging scenario of capturing im-
ages for the gallery set in good conditions, whereas probe images are more likely to be acquired in
various conditions.

Before being processed by the classifier (for both training and testing), faces windows are manually
located, resized to 64x80 pixels, converted to grayscale and finally normalized with respect to illumi-
nation conditions. Moreover, histogram equalization is applied on the normalized image. Accuracy
of the verification system is measured using the Half Total Error Rate (HTER), which combine the
False Acceptance Rate (FAR) and the False Rejection Rate (FRR):

HTER =
FAR + FRR

2
(9)

Since the FAR and the FRR are related to each other (reducing the FAR will increase the FRR and
vice versa). The HTER is computed at the Equal Error Rate (EER), where FAR = FRR.

5.2 Results

Table 1 shows the accuracy of the face verification systems in terms of Half Total Error Rate (HTER)
on the test group g2. For comparison purposes, results obtained with no preprocessing, simple his-
togram equalization and isotropic diffusion (i.e. ρ(x, y) = 1 ∀x, y) are also presented. Resolution
schemes are denoted by relax for the Gauss-Seidel relaxation and by v-cycle for the Multigrid V-cycle
resolution. For each normalization algorithms, the hyper-parameter λ remains the same throughout
the different protocols. It was empirically selected, using the set g1 so as to minimize HTER on the
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pooled test (P), since it include images in all available conditions (controlled, degraded and adverse).

Normalization algorithm Mc [%] Ua [%] Ud [%] P [%]

None 3.686 20.192 28.205 24.733

Histogram equalization 7.372 20.032 22.917 19.818

Isotropic diffusion: relax 4.808 20.192 11.538 14.850
Isotropic diffusion: v-cycle 1.923 16.186 11.699 15.224

Anisotropic diffusion: relax 7.692 18.109 14.583 19.391
Anisotropic diffusion: v-cycle 4.487 15.705 12.019 12.981

Comparison

P2D-HMM Cardinaux et al. (2004) 3.4 12.7 15.4 16.4
LDA + Weber diffusion Short et al. (2004) 4.2 8.6 20.7 13.4

Table 1: Verification Performances on the BANCA database.

In the match controlled protocol (Mc), training and testing images come from the controlled
scenario and most of the normalization algorithms do not improve the verification rate. This result is
not surprising since there are no changes in terms of illumination conditions between the gallery and
the probe images.
The unmatched protocols (Ua and Ud) allow us to verify that the various algorithms and proposed
resolution schemes are indeed efficient to tackle illumination changes. Actually, with these protocols,
every algorithms improves the accuracy of the system. The best results in the adverse conditions
(Ua), achieved with anisotropic diffusion resolved by multigrid V-cycle reduces the error rate from
20.2% to 15.7%. Moreover, in the degraded conditions (Ud), the error rate decreases from 28.2%
to 11.5% thanks to the isotropic diffusion solved by relaxation. The pooled test P indicates which
strategy performs the best on all conditions: probe images may be captured from controlled, adverse
or degraded conditions. In our case, the anisotropic diffusion-based normalization with the V-cycle
resolution obtains the lowest error rate. Concerning the resolution scheme, it is better for both
investigated algorithms to use the multigrid V-cycle, since it gives, in almost every configuration, the
best verification rate.
Note that thanks to this preprocessing step, the lowest HTER can be compared to state-of-the-art
algorithms on the same database. Actually, applying the lighting normalization scheme prior to GMM-
based verification yields better results than more sophisticated HMM-based approaches reported in
Cardinaux et al. (2004). Results are also comparable with those obtained in Short et al. (2004), where
the anisotropic diffusion-based normalization is applied prior to a LDA-based classifier.

Since face verification may be a time critical task, it is also interesting to consider the computational
load of each normalization approach. The most efficient is, as one could have expected, the multigrid
V-cycle: it takes 40 ms to process a face window (64x80 pixels) using Weber contrast coefficients
on a P4 running at 3.2 Ghz. Relaxation is more dependent on its intrinsic parameter: the number
of relaxation sweeps. However, the computational load of the relaxation-based resolution of the
isotropic diffusion remains acceptable for real-time application (200ms for 20 steps). On the other
hand, relaxation applied with anisotropic coefficients is the most computationally expensive.

6 Conclusion

In this article, we proposed two distinct numerical resolution schemes for one of the state-of-the-art
preprocessing algorithms for illumination invariant face recognition (Gross and Brajovic, 2003). We
also investigated the effect of the different resolution schemes on the same problem but with isotropic
coefficients. Experiments conducted on the BANCA database showed significant improvement in
terms of verification rate. The best results are obtained with the combination Weber diffusion and



8 IDIAP–RR 05-46

PSfrag replacements

(a)

(b)

(c)

Figure 3: Results of the anisotropic diffusion-based normalization algorithm: (a) input face image
(b) estimated luminance field (c) estimated reflectance. The first line show results obtained with
relaxation whereas images of the second line are obtained with the multigrid V-cycle resolution

V-cycle resolution: the error rate is reduced by a factor of 34% compared to simple histogram equal-
ization. The error rate on the realistic Pooled Test P is comparable with other state-of-the-art face
verification systems on the same database. Moreover, the multigrid V-cycle implementation allows
the preprocessing to be performed in real time since a face is processed in 40ms only.
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