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Abstract. Combining multiple information sources, typically from several data streams is a very
promising approach, both in experiments and to some extents in various real-life applications. A
system that uses more than one behavioural and physiological characteristics to verify whether a
person is who he/she claims to be is called a multimodal biometric authentication system. Due to
lack of large true multimodal biometric datasets, the biometric trait of a user from a database is
often combined with another different biometric trait of yet another user, thus creating a so-called
a chimeric user. In the literature, this practice is justified based on the fact that the underlying
biometric traits to be combined are assumed to be independent of each other given the user. To the
best of our knowledge, there is no literature that approves or disapproves such practice. We study
this topic from two aspects: 1) by clarifying the mentioned independence assumption and 2) by
constructing a pool of chimeric users from a pool of ¢rue modality matched users (or simply “true
users”) taken from a bimodal database, such that the performance variability due to chimeric user
can be compared with that due to true users. The experimental results suggest that for a large
proportion of the experiments, such practice is indeed questionable. Biometric authentication is a
process of verifying an identity claim using a person’s behavioral and physiological characteristics.
Due to vulnerability of the system to environmental noise and variation caused by the user, fusion
of several biometric-enabled systems is identified as a promising solution. In the literature, various
fixed rules (e.g. min, max, median, mean) and trainable classifiers (e.g. linear combination of
scores or weighted sum) are used to combine the scores of several base-systems. Despite many
empirical experiments being reported in the literature, few works are targeted at studying a wide
range of factors that can affect the fusion performance. Some of these factors are: 1) dependency
among features to be combined, 2) the choice of fusion classifier/operator, 3) the choice of decision
threshold, 4) the relative base-system performance, 5) the presence of noise (or the degree of
robustness of classifiers to noise), and 6) the type of classifier output. To understand these
factors, we propose to model Equal Error Rate (EER), a commonly used performance measure in
biometric authentication. Tackling factors 1-5 implies that the use of class conditional Gaussian
distribution is imperative, at least to begin with. When the class conditional scores (client or
impostor) to be combined are based on a multivariate Gaussian, factors 1, 3, 4 and 5 can be
readily modeled. The challenge now lies in establishing the missing link between EER and the
fusion classifier mentioned above. Based on the EER framework, we can even derive such missing
link with non-linear fusion classifiers, a proposal that, to the best of our knowledge, has not
been investigated before. The principal difference between the theoretical EER model proposed
here and previous studies in this direction is that scores are considered log-likelihood ratios (of
client versus impostor) and the decision threshold is considered a prior (or log-prior ratio). In
the previous studies, scores are considered posterior probabilities whereby the role of adjustable
threshold as a prior adjustment parameter is somewhat less emphasized. Several issues which
are untreated in the EER models are also discussed and supported by some 1186 experiments.
These issues are 1) what if the scores are known to be not approximately normally distributed
(for instance those due to Multi-Layer Perceptron outputs); 2) what if scores among classifiers to
be combined are not comparable in range (their distributions are different from each other); 3)
how to evaluate the performance measure other than EER using the proposed EER models.
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1 Introduction

1.1 Background

Biometric authentication (BA) is a process of verifying an identity claim using a person’s behavioral
and physiological characteristics. BA is becoming an important alternative to traditional authenti-
cation methods such as keys (“something one has”, i.e., by possession) or PIN numbers (“something
one knows”, i.e., by knowledge) because it is essentially “who one is”, i.e., by biometric information.
Therefore, it is not susceptible to misplacement or forgetfulness. Examples of biometric modalities are
fingerprint, face, voice, hand-geometry and retina scans [12]. Despite its great potential, automatic
BA systems suffer a major drawback as compared to the traditional alternatives: its relatively low
accuracy and reliability (as compared to manual process). For this reason, combining multiple BA
systems is identified to be a promising solution. Fusion of several systems can be performed at ab-
stract, rank or measurement levels [5]. In the first case, only the most probable class label is returned
by the system. In the second case, a list of most probable class labels is returned. Finally, in the third
case, the raw output scores are used for further combining. We will focus in the last case as most in-
formation is preserved. Fusion of several systems of different biometric modalities is called multimodal
fusion whereas fusion involving the same modality but different architectural configurations (due to
different features or classifiers) is called intramodal fusion. The latter includes multi-classifier and
multi-feature fusion. Another mode of fusion is to combine multiple samples, also called multi-sample
fusion. All these mode of fusions are the central subject of this paper.

1.2 Factors Influencing Fusion Performance

To understand the factors influencing a BA system’s performance, one has to know that a BA system
can commit two types of error upon making a decision after comparing a score with a pre-defined
threshold: falsely accepting an impostor and falsely rejecting a genuine user, or client. They are
respectively Type I and Type II errors in statistics. We list here a possibly non-exhaustive unordered
list of factors that could affect a combined system’s performance:

e the dependency among features of base-systems. If features of two BA systems are de-
pendent on the same sample (in intramodal fusion) or in time (e.g., multi-sample fusion), then,
the observed scores will be likely to be dependent as well. On the other hand, the system scores
derived from multimodal biometric features will be less likely to be dependent. The multi-sample
fusion was examined in [14] whereby it was shown both theoretically and empirically that such
approach can indeed reduce the system error by as much as 40%. It was observed that “satura-
tion” may happen, i.e., using more instances of the same biometric trait cannot help improve the
performance further. Using the XM2VTS database, Kittler et al. [15] examined intramodal and
multimodal expert fusion. According to this empirical study, for multimodal fusion, there is no
strong evidence that trainable fusion strategies (based on Decision Template [17] and Behavior
Knowledge Space [10]) offer better performance than simple rules (based on sum and vote).
They remarked that although adding more experts can reduce (class-dependent) variance of the
combined system output, such gain is downplayed by the increased ambiguity due to the weak
systems. For intramodal fusion, where the system scores are highly correlated, increasing the
number of experts improve monotonically with fusion results. This empirical work complements
well with our previous study [22] which, using the mean operator, can explain this phenomenon.

e the type of output of classifier of the base-systems. A classifier is constructed often
based on a set of assumptions, more or less corresponding to the problem at hand. There are in
general two broad categories of classifiers, as long as BA applications are concerned: template-
based or model-based. A template-based system compares (extracted) features known to belong
to an identity with features representing an access request. A model-based system derives a set
of parameters to represent the identity of a person. Often, a template-based system outputs
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a distance measure or a correlation coefficient. A model-based system can output a posterior
probability (of being a client), a log-likelihood ratio (LLR) or a similarity score. All these
outputs are generally called scores. Combining heterogeneous scores of different systems has
been treated in [11] in BA applications or [19] in other domains, for instance.

e the choice of fusion operator. There are two broad categories of fusion classifiers, namely
fixed rules and trainable classifiers. As their names imply, fixed rules do not have free pa-
rameters to adjust while trainable classifiers do. Examples of fixed rules are AND, OR, mean
and ordered statistics (OS) classifiers such as minimum, maximum and median. Examples of
trainable classifiers are weighted sum (or linear opinion pool), weighted product (or log-opinion
pool) and standard machine-learning algorithms such as Multi-Layer Perceptrons (MLPs) and
Support Vector Machines (SVMs).

e the choice of decision threshold. Often, a reported performance due to a particular combined
system’s setting could be over-confidently stated just because the choice of threshold favors this
particular setting. Changing this threshold would favor another particular setting. This is a
well-known dilemma in ROC-based analysis.

e the relative performance of base-systems. It was reported in [7], that “a better biometric
system is better used alone than combining it with a weaker one”. Taking this remark out of its
context would have been a grave mistake as the author was referring to the use of AND and OR
operators, with a particular strategy of choosing the threshold of each base-system. However,
to what extent this statement is true in a more general context (say substituting the AND and
OR operators with other fixed rule operators)? Vermuulen et al. [32] studied empirically the
case of combining two systems with equal performance, with unequal performance and when one
system outperforms the other under some specific conditions. They observed that fusing two
systems is advantageous when the errors committed by both systems are not correlated, i.e., the
combined system may benefit from the case where, for the same access, one system commits an
error and the other makes the right decision and vice-versa.

e the presence of noise. Some BA systems are more vulnerable to noise than other systems.
With the presence of noise, how will the combined system behave? This problem was treated
in [31] in multimodal fusion and in [24] in intramodal fusion.

The citations above are but a small yet representative sampling of literature that treat the listed
factors. Due to the empirical approach adopted, most of these factors are studied in isolation. Our
aim here is precisely to propose a theoretical model that can address jointly most if not all the factors
mentioned.

1.3 Literature on Theoretical Aspects of Fusion

While many fusion experiments have been reported in the literature over the past few years, the
theoretical models to explaining why fusion works (or fails) also follow closely. We review several of
them here. In [9], it was demonstrated that combining several multimodal system scores using AND
and OR will result in improved performance. The underlying assumption is that multimodal system
scores are independent. As we understood, the issue of relative performance among systems and the
strategy of choosing the decision threshold prior to fusion were not thoroughly considered.

In [18], the theoretical classification error of six classifiers are thoroughly studied for a two-class
problem. This study assumes that the base classifier scores are probabilities € [0, 1]. Hence probability
of one class is one minus the probability of the other class and the optimal threshold is always set to
0.5. It also assumes that all base classifier scores are drawn from a common distribution. Gaussian
and uniform distributions are studied. The first assumption is not always applicable to biometric
authentication. This is because the output of a biometric system is often not necessarily a probability
but a distance measure, a similarity or a log-likelihood ratio. Moreover, decisions are often taken by
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comparing a classifier score with a threshold. The second assumption, in practice, is also unrealistic
in most situations, particularly in multimodal fusion. This is because the (class-dependent) score
distributions are often different across different classifiers.

In [34], order statistics (OS) combiners, i.e., min, max and median, are examined both theoreti-
cally and empirically. Two concepts are introduced: biased and unbiased. Unbiased classifiers have
optimal decision boundary whereas biased classifiers have a systematic offset from the optimal decision
boundary. The unbiased classifier has an inherent error (or Bayes error) due to the (limited training)
data itself, whereas the biased classifier has an added error due to the boundary offset, in addition
to the same inherent error. It was shown in [34] that the added error due to the OS combiners can
be reduced with respect to the average of any single classifier’s added error. Although it was claimed
that OS combiners are good alternatives to taking the average of scores (the mean operator), em-
pirical evidences only show that the performance of the OS combiners are comparable to that of the
mean operator. While the analysis in [34] is certainly interesting, there is no direct way of inferring
the overall classification performance given a data set. It is also unclear how correlation affects the
OS combiners. This is partly due to the fact that incorporating correlation into the OS combiners
is analytically intractable. In intramodal fusion of biometric authentication tasks, scores are often
correlated as they are derived from the same biometric sample, i.e, the same source of information.

In [13], sum and product rules are discussed in a Bayesian framework. According to this study,
several fixed rules such as min, max, median and majority vote can be seen as approximations to
the aforementioned rules. In particular, it was shown that the sum rule (or mean in our context)
outperforms the rest of the fixed rules and even better than the single best underlying system. A
further investigation showed that the sum rule is most resilient to estimation error of individual
classifier than the product rule. This study, too, uses the probability framework similar to [18], i.e.,
the decision threshold is always 0.5. Another similarity between [13] and [18] is the common probability
distribution assumption across scores of different classifiers. Hence, if scores are not probabilities, they
have to be transformed into the range [0, 1] and treated as probabilities. Such is the approach adopted
in [11] or [19].

1.4 Contribution and Organization

In this paper, we adopt a rather different approach from those proposed in [18, 34, 13]. Firstly, we
remark that in BA systems, scores are not always probabilities. For instance, most fingerprint-based
systems are template-based and output a distance measure, the state-of-the-art speaker verification
system, based on Gaussian Mixture Model [29], outputs LLR, popular face verification systems based
on Principal Component Analysis or Linear Discriminant Analysis output a correlation measure (but
not necessarily corresponding to a probability) or a distance measure [35], the commonly used Sup-
port Vector Machine in general pattern recognition task outputs also a score proportional to the
distance (in the feature space defined by its kernel) of a sample from the decision hyperplane [36], etc.
Secondly, the threshold often used in the decision making should reflect a system’s prior. Hence, the
performance/error measure should be a function of this threshold. To the best of our knowledge, there
is no theoretical model that can adequately address this issue. Our preliminary work [22] addressed
this subject to a limited extent. In order that the error measure be a function of the decision thresh-
old, one cannot avoid making some assumptions about the conditional score distributions. In [22]
and in this study as well, we assume that class conditional scores (client or impostor) are normally
distributed. Although this seems to be rather naive at first, some 1186 experiments showed that
the error measure estimated using the Gaussian assumption is fairly robust to deviation from this
Gaussian. In particular, the error measure used is called Equal Error Rate (EER). This is the error
rate where the probability of false acceptance equals that of false rejection. By proposing this model,
our ultimate goal is to address all of the factors listed in Section 1.2. Without an error model, it
is almost impossible to generalize empirical results due to a particular experimental setting. On the
other hand, realizing that a theoretical model cannot answer all possible settings, simulations such
as [] can be a handy tool to study the error behaviour.
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This work can be seen as an extension to [22] in the following ways: 1) proposing many more fusion
classifiers to the EER model (weighted sum, weighted product, OS classifiers, linear and quadratic
classifiers) and 2) studying the joint effects of base-system performance imbalance and correlation
on fusion classifiers. Realizing that the greatest weakness about the proposed EER model lies in its
Gaussian assumption, we propose a probabilistic inversion procedure such that some BA systems with
probabilistic output! can be fitted well in the picture. Finally, as a possible outlook, we show that
removing the Gaussian assumption is actually possible.

This paper is organized as follows: Section 2 introduces the notations and presents the theoretical
EER models of commonly used fusion classifiers/rules as well as a novel non-linear (quadratic) clas-
sifier. Section 3 presents the databases used. Several issues not directly treated by the EER models
are discussed in Section 4. This is followed by the conclusions in Section 5.

2 Theoretical EER

We first present notations and fusion classifiers in Section 2.1. The first group of fusion classifiers
based on sum and product rules are discussed in Section 2.2 whereas the second group of fusion
classifiers based on OS are discussed in Section 2.3. The EER models for a family of polynomial
classifiers, representing one possible but important representation of non-linear classifiers, are discussed
in Section 2.4. Finally, a comparison with existing fusion theories is made in Section 2.5.

2.1 Preliminary

Let us denote C and I as the one of the two class labels k can take, client and impostor classes,
respectively, i.e., k € {C,I}. To decide whether to accept or reject an access requested by a person,
[Ay)

denoted as “p”, one can evaluate the posterior probability ratio in logarithmic domain (called log-
posterior ratio, LPR):

— 1o (B _ o, (PRIC)IE(C)
b= lg(Pumf> lg(mmmpu>)
P(C)

p(p|C) _
O TR YT o

g

where we introduced the term y (also called a Log-Likelihood Ratio, LLR) and a threshold A to
handle the case of different priors. This constant also reflects the different costs of false acceptance
and false rejection. In both cases, the threshold A has to be fixed a priori. The decision of accepting
or rejecting an access is then:

accept if LPR >0
reject otherwise.

decision(LPR) = { (2)

or

accept ify>A
reject otherwise.

decisiona (y) = { (3)

Although both forms are equivalent, the explicit presence of a threshold in the second decision function
shows that the log-prior ratio can be adjusted separately from the score y. Note that y is a direct
function of the person and the whole system. This relationship can be explicitly written as:

y = fo(fe(s(p))), (4)

1Probabilistic scores are not normally distributed.
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where, s is a sensor, f. is a feature extractor, 6 is a set of classifier parameters associated to the
classifier fy.

Note that there exists several types of classifiers in BA, all of which can be represented by Eqn. (4).
They can be categorized by their output y, i.e., probability (within the range [0,1]), distance metric
(more than or equal to zero), or log-likelihood ratio (a real number). In the context of multimodal
BA, y is associated to the subscript i, which takes on different meanings in different context of fusion,
as follows:

fo E feES(Fl))) if multi-sample
_ fo(fe(si(p))) if multimodal
vi(p) = f:(fe,i(s(p))) if multi-feature (5)
fo.i(fe(s(p))) if multi-classifier.

Note that ¢ is the index of the i-th sample in the context of multi-sample fusion. i can also mean the
i-th biometric modality in multimodal fusion, etc. In a general context, we refer to y;(p) as the i-th
response and there are altogether N responses (i = 1,..., N), but all from the same person and from
the same access. We write y; instead of y;(p) for simplicity, while bearing in mind that y; is always
dependent on the person.

To decide if an access should be granted or not, all y;|V; have to be combined to form a single
output. This can be expressed as:

ycom = fcom(yi,...,yN) (6)

Several types of combination strategies are used in the literature, e.g., min, max, median, mean (or
sum), weighted sum, product and weighted product. They are defined as follow:

Ymin = mlln(yl) ) (7)
Ymax = m;‘iX(yz)a (8)
Ymea = median,(y;), (9)
N
Ywsum = Z W;Yi, (10)
1=1
N
Ywprod — H y;ﬂiv (11)
=1

where w;|V; are parameters that need to be estimated. The mean operator is a special case of weighted
sum with w; = % Similarly, the product operator is a special case of weighted product with w; = 1.
Kittler et al. [13] provides an explanation on how these fusion rules can arise as approximation to the
product and sum rules in a Bayesian framework.

The family of classifiers studied as shown in Eqn. (6) here should be contrasted with the one that
makes use of decision as input, i.e., decisiona, (y1), - . ., decisiona , (yn), where A; is the threshold for
system i. Note that in this case, to fuse IV systems, N thresholds will be needed. Examples of the
latter family are Behavioral Knowledge Space [10], AND and OR rules. It has several weaknesses as
compared to the former family of classifiers. Firstly, due to the threshold, precious information is lost.
Secondly, due to change of any threshold, the former may have to be retrained. Thirdly, to employ the
latter, N thresholds will have to be fixed in advance whereas the former will only have one threshold
to fix. Hence, the former family of classifiers is of our primary concern.

Because of the binary nature of decision, the system commits two types of error called False
Acceptance (FA) and False Rejection (FR) errors, as a function of the threshold A. FA is committed
when the access claims is from an impostor and is wrongly accepted by the system (as a client) whereas
FR is committed when the access claims is from a client and is wrongly accepted by the system. They
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can be quantified by False Acceptance Rate (FAR) and False Rejection Rate (FRR) as follow:

FAR(A) = % (12)
FRR(A) = Fi(g), (13)

where FA(A) counts the number of FA, FR(A) counts the number of FR, NI is the total number of
impostor accesses and NC' is the total number of client accesses.

At this point, it is convenient to introduce two conditional variables, Y* = Y|k, for each k being
client or impostor, respectively i.e., k € {C,I}. Hence, y* ~ Y* is the score y when person p is
k € {C,I}. Let p(y*) be the probability density function (pdf) of y*. Eqns. (12) and (13) can then
be re-expressed by:

FAR(A) = 1-p(Y! <A), (14)
FRR(A) = p(Y© <A), (15)
respectively. Because of Eqn. (3), it is implicitly assumed that E[YC] > E[Y!], where E[z] is the

expectation of z. When p(Y*) for both k € {C, I'} are assumed to be Gaussian (normally distributed),
they take on the following parametric forms (see [26]):

FAR(A) = % - %erf (AUI—\//%I) 7 (16)
FRR(A) = % - %erf (Aac_\j‘;) (17)

where ;¥ and o* are mean and standard deviation of p(Y'*), and the erf function is defined as follows:

2 z
erf(z) = —/ exp [—t?] dt. (18)
2 [l
At Equal Error Rate (EER), FAR=FRR. Solving this constraint yields (see [26]):

1 1 ¢ (F-ratio

EER = 3 3" 7 ) = eer(F-ratio), (19)

where,

chﬂl

F-ratio = .
o¢ 4+ !

(20)
The function eer is introduced here to simplify the EER expression as a function of F-ratio because
eer will be used frequently in this paper. Note that the threshold A is omitted since there is only one
unique point that satisfies the EER criterion.

A more general performance evaluation measure is called Half Total Error Rate (HTER) and is
defined as:

HTER(A) = %(FAR(A) + FAR(A)), (21)

for any arbitrary threshold A.

When the cost of false acceptance is not the same as false rejection, we can also associate a pair
of FAR and FRR with a particular cost. This function is sometimes called Decision Cost Function
(DCF) in the NIST evaluation [20]. It is defined as:

DCF(A) = P(I)Cost(I)FAR(A) + P(C)Cost(C)FRR(A), (22)
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Table 1: Summary of theoretical EER based on the assumption that class-independent scores are
normally distributed.

Fusion meth- | EER
ods
1Sy — 1
EER 4y = eer (44—t )
k 1 AV L AV
average Wiy = 77 2 Mg
baseline! kE \2_ 1 k)2
(chv) =55 (o] )C ;
single-best EER}.s; = cer (maxi (%%%))
classifier t
EER Hepean—Hincon
— eer mean mean
mea: ga’rcneanJra-TIn,ean )
mean rule :u’meag =2
k 1 k
(Umean) — N2 Zz ] Ei,j
B e —
E—— (i
; k k
We1ghte? Mwsugn = Zi Wi fb;
sum, near k _ Z Wik
_ o =3, cwiw; B
classifier? (Psum) J i
Bos—He
EEROS = eer (#clsﬁi)
OS k k oS oS
bi 3 fos :2 e 2
combiners k k
(8s)” =12 (*)

Remark 1: This is not a classifier but the average performance of baselines when used independently
of each other. By its defintion, scores are assumed independent as classifiers function independently
of each other. Remark 2: The weighted product takes the same form as weighted sum, except that
log-normal distribution is assumed instead. Remark 3: OS classifiers assume that scores across
classifiers are i.i.d. The reduction factor + is listed in Table 2. The mean and weighted sum classifiers
do not assume that scores are i.i.d.

and it requires the costs to be specified in advance so as the prior probabilities. We will use a similar
but simplified function, called Weighted Error Rate (WER), which has only one parameter to be
specified in advance. It is defined as:

WER(A) = aFAR(A) + (1 — a)FRR(A), (23)

where o balances between the contribution of FA and FR. As can be seen, WER and DCF is equivalent
when o = P(I)Cost(I) and Cost(I) = Cost(C) = 1. HTER is also a special case of WER when
a=0.5.

2.2 Theoretical EER of Fusion Classifiers

We now derive several parametric forms of fused scores using different types of classifiers, namely the
single-best classifier, mean, weighted sum, product rule and Order Statistics (OS)-combiners such as
min, max and median. The OS-combiners are further discussed in Section 2.3.

The analysis in this section is possible due to the simple expression of F-ratio, which is a function
of four parameters: {u”, O’k|vk:{c7[}} as shown in Eqn. (19). Suppose that the i-th response is y¥
sampled from p(Y}¥) and there are N classifiers, i.e.,i = 1,..., N.  The average baseline performance
of classifiers, considering that each of them works independently of the other, is shown in the first
row of Table 1. The (class-dependent) average variance, affw, is defined as the average over all the
variances of classifier. This is in fact not a fusion classifier but the average performance of classifiers
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measured in EER. The single-best classifier in the second row chooses the baseline classifier that
maximizes the F-ratio. This is the same as choosing the one with minimum EER because F-ratio is
inversely proportional to EER, as implied by the left part of Eqn. (19).

The derivation of EER of weighted sum (as well as mean) fusion can be found in [25]. The
central idea consists of projecting the N dimensional score onto a one dimensional score via Eqn. (11).
Suppose that the class conditional scores (prior to fusion) are modeled by a multivariate Gaussian with
mean (p*)T = u¥, ..., uk and covariance >k of N-by-N dimensions. Let Eﬁj be the i-th row and

j-th column of covariance matrix X* for k = {C,I}. E[] is the expectation operator (over samples)
and w; ~ WF is an instance of a while noise associated to classifier i for all k. The linear score
projection from N dimensions to one dimension has the same effect on the Gaussian distribution:
from N multivariate Gaussian distribution to a single Gaussian distribution with mean u* =~ and
variance (awsum)2 defined in the fourth row of Table 1 for each class k. The mean operator is derived
similarly with w; = %Vi. Note that the weight w; affects both the mean and variance of fused
scores. In [22], it was shown mathematically that the EER of mean, EER,,cqn, is always smaller
than or equal to the EER of the average baseline performance (EER 4y ). This is closely related to
the ambiguity decomposition [16] often used in the regression context (as opposed to classification as
done in [22]). However, there is no evidence that EER,cqn < EERpest, i.e., the EER of the best-
classifier. In [4], it was shown that o%_ =~ < ¢k _ = supposing that the w;V; are optimal. In [8],
when the correlation among classifiers is assumed to be zero, w; o< (EER;)™!. As a result, this
implies that EERysum < EERsean. The finding in [4] is more general than that of [8] because
the underlying correlation among baseline classifiers is captured by the covariance matrix. Hence,
fusion using weighted sum can, in theory, have better performance than the mean rule, assuming
that the weights are tuned optimally. Although there exists several methods to tune the weights in
the literature, to the best of our knowledge, no standard algorithm directly optimizes EER (hence
requiring further investigation which cannot be dealt here). For the product operator, it is necessary
to bound Y to be within the range [0, 1], otherwise the multiplication is not applicable. Consider the
following case: two instances of classifier score can take on any real value. The decision function as
in Eqn. (3) is used with optimal threshold being zero. With an impostor access, both classifier scores
will be negative if correctly classified. Their product, on the other hand, will be positive. This is
clearly undesirable.

The weighted product (and hence product) at first seems slightly cumbersome to obtain. However,
one can apply the following logarithmic transform instead: 1og(Yu’jpmd) =Y, w;log(Y), for any yF
sampled from p(Y;¥). This turns out to take the same form as weighted sum. Assuming that Y;* is
log-normally distributed, we can proceed the analysis in a similar way as the weighted sum case (and
hence the mean rule).

2.3 Theoretical EER of Order Statistics Combiners

Attempting to analyze analytically the EER values of as fixed rule order statistics (OS) such as
the maximum, minimum and median combiners, as done in the previous section, is difficult without
making (very) constraining assumptions. The first assumption is that the instance of scores must be
comparable. If scores of various types of classifiers are involved for fusion, their range may not be
comparable. Hence, score normalization is imperative while this pre-processing step is unnecessary
in the previous section. The second assumption assumes that scores are i.i.d. In this case, there
exists a very simple analytical model®>. Although this model seems too constraining, it is at least
applicable to fusion with multiple samples which satisfies some of the assumptions stated here: scores
are comparable; and they are identically distributed but unfortunately not necessarily independently
sampled.

2This assumption will be removed during experimentation with synthetic data.
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Table 2: Reduction factors v; and 7, versus different fixed rules assuming i.i.d samples (zero correla-
tion)

N o values 71 values
OS combiners mean || OS combiners
min, max, | median (%) min max
1 1.000 1.000 | 1.000 || 0.00 0.00
2 0.682 0.682 | 0.500 || -0.56 | 0.56
3 0.560 0.449 | 0.333 || -0.85 | 0.85
4 0.492 0.361 | 0.250 || -1.03 | 1.03
5 0.448 0.287 | 0.200 || -1.16 | 1.16

Reduction factor «2 (2 for the second moment) with respect to the standard normal distribution due
to fusion with min, max (the second column) and median (third column) OS combiners for the first
five samples (indicated by N) according to [1]. The fourth column is the mazimum reduction factor
due to mean (at zero correlation), with minimum reduction factor being 1 (at perfect correlation).
The fifth and sixth columns show the shift factor 71 (for the first moment) as a result of applying
min and max for the first five samples. These values also exist in tabulated forms but here they are
obtained by simulation. For median, 7; is relatively small (in the order of 10~%) beyond 2 samples
and hence not shown here. 77 approaches zero as N is large and 7, approaches 1/N.

All OS combiners will be collectively studied. The subscript OS can be replaced by min, max and
median. Suppose that yf ~ Yl’C is an instance of i-th response knowing that the associated access
claim belongs to class k. y¥ has the following model:

k k k
Yi = Fwis (24)
where ,ui? is a deterministic component and Wf is a noise component. Note that in the previous section
wF is assumed to be normally distributed with zero mean. The fused scores by OS can be written

as: ybs = OS(yF) = u* + OS(wF), where i denotes the i-th sample (and not the i-th classifier output
as done in the previous section). Note that u* is constant across i and it is not affected by the OS
combiner. The expectation of yg g as well as its variance are shown in the last row of Table 1, where
42 is a reduction factor and 7 is a shift factor, such that y2(c*)? is the variance of OS(wF) and
0¥ is the expected value of OS(w¥). Both 7’s can be found in tabulated form for various noise
distributions [1]. A similar line of analysis can be found in [34] except that class-independent noise is
assumed. The reduction factors of combining the first five samples, assuming Gaussian distribution,
are shown in Table 2. The smaller ~s is, the smaller the associated EER. The fourth column of Table 2
shows the reduction factor due to mean (as compared to the second and third columns). It can be
seen that mean is overall superior under the i.i.d. assumption and common class-conditional variance
(but different class-conditional mean, of course)

2.4 Beyond Linear Classifiers

The EER models discussed in 2.2 are limited to linear classifiers so far. The next more flexible (with
higher capacity) than linear is perhaps a quadratic classifier of the form:

N

Yquad = Z Wi, jYiY; (25)
i=1,j=1
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where w; ; is the i-th row and j-th column of the weight matrix w. Note that the threshold constant
is absent because this threshold adjusts for the prior in Eqn. (1). Another possible form would be:

N N
2 1
Yquad,2 = Z wi}l]i%‘ + Zwl( )yz (26)
1=1

i=1,j=1

which includes a linear interaction term found in the weighted sum classifier. We will first study
the first form and generalize to the second form. In order to estimate the F-ratio of the quadratic
classifier, we need to estimate the conditional mean and standard deviation of the resultant combined

scores. Let us denote these two parameters by /L];uad and J(’;uad. Let the class conditional variable of

. k
the combined score be Yquad.

Eqn. (24) is assumed here. The noise model due to y;y; can thus be expressed by>:

To be consistent with the previous models, the same noise model as in

Yiyj = Pifty + piws + prjwi + wiw; (27)
Using Eqn. (27), the mean is:
Phwad = B wijviyj]
]

= F Zwi’j (MZM] + HiWj + HjWi + wiwj)
g

= E W j i fhj,
%]

since E[zw] = 0 for any constant z. The variance is:

2
k 2 k
(Jquad) = F Z Wi,jYilYj — E[Yquad]
4,7
- 2
= FE Z Wi jYiYj — Z Wi j i fh
4,7 %]
- 2

= B> wi(paw; + pw; + wiw;

.3

This result can be further expanded by considering the product between p;w; + pjw; + wiw; and
ImWn + W + Wmwy, for all possible integer m,n, 4,5 in 1,..., N. The result can be summarized by
introducing the class-conditional matrix z, whose element is:

. HmWn (Wi fhm i (iW5  hm P WiW
Zm,n,i,j = HnWmjWi  p bm f(iW5  n UmWiWj
WmWn hjWi  WmWnpiW; Wy WnWiW;

where w; = ,/ZZZ- and w;; = Ef, j (the i-th and j-th element of the class k covariance matrix for

k ={C,I}). Hence, the variance of the combined scores is:

k 2 _ } : ok
(Uquad) - wmy"whjzm,n,i,j'

m,n,t,)

3 All these terms are conditioned on the class label k. They are deliberately removed here for simplicity.
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Figure 1: Probabilistic Density Functions of client (right) and impostor (left) classes fitted on a
speech experiment. The threshold Ay is due to an unbiased classifier who commits the Bayes error
(also known as EER in our context). This is the smallest error the system can commit. The threshold
A, is due to a biased classifier and hence it commits an added error apart from the Bayes error.

The second form can be easily generalized to incorporate the additional term ), w;y;. In this case,
the resultant mean and standard deviation will be:

(M];uad,2>2 = Mlguad + Mfusum
(O—écuad,2)2 = (o-tl;uad>2 + Z Ws,jWiWs,
,J

respectively. Polynomial of degree three and higher can be derived in the same way as the steps
presented here, i.e., first write down the noise model y,yq¥yr . . . and then its two Gaussian parameters,
with the help of zfﬁt etc. Hence, the EER model presented here is not limited to linear
classifier models.

Usee ey Dy 5T

2.5 Compatibility and Comparison with Existing Theory

The theoretical analysis proposed here is different from [34, 8] in terms of application, context and
methodology. In [34, 8], two types of errors are introduced, namely Bayes (inherent) error and added
error. The former is due to an unbiased classifier whose class posterior estimates correspond to the true
posteriors. The latter is due to a biased classifier which results in wrongly estimated class posteriors.
In the context of a binary classification problem, both Bayes and added errors can be illustrated by
Figure 1. From the application point of view, the EER used here is commonly found in binary
classification problems while the error (sum of Bayes error and added error) applies to any number of
classes. It is tempting to conclude that EER is equivalent to the Bayes error for a two-class problem.
However, in the context of [34, 8], the Bayes error is due to additive error in the feature space
near the decision boundary. This additive error causes a slight change in the outputs (posteriors) of
the respective classifier (one output for each class). This change between input features and output
posteriors is linearly approximated around features near the decision boundary, although the classifier
model may be non-linear. In EER, the input measurement is not a set of features but a set of scores
of one or more base-classifiers. The output posteriors between the two classes are assumed to be
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(integral of) Gaussian. The local continuity at the boundary is implicitly assumed. Since the Bayes
error cannot be reduced, it is understandable that the analyzes in [34, 8] focus on reducing the locally
defined added error (on features near the decision boundary between a pair of class posteriors). To
the best of our understanding, this error cannot be (or is not useful to be) calculated explicitly due to
the local definition. Only the final effect of classification error can be measured. EER, on the other
hand, is a performance measure (hence explicitly calculated) and can only be measured globally over
the whole data set. As a result, it is defined everywhere in the score space (not just near the decision
boundary) contrary to the error terms in [34, 8] which are local. It is hence unavoidable in EER to
make assumption about the two class posteriors (known as False Acceptance Rate and False Rejection
Rate). Since Bayes error cannot be reduced, the focus in [34, 8] is to reduce the added error. This is
understandable because features are susceptible to noise. On the contrary, our focus is to reduce EER
(the analogous term of Bayes error) at the decision boundary and other errors (e.g., Half Total Error
Rate, Weighted Error Rate) not necessarily near the decision boundary. Perhaps the most remarkable
difference is that Bayes error cannot be reduced due to is definition, whereas EER can [22]. Putting
our work in the context of [34, 8], in this study, we focus only on unbiased classifiers. The biased case
has been studied for the mean rule in [22].

In terms of methodology, for simplicity, additional assumptions are made at some points of discus-
sion in [34, 8]. For instance, class-independent variance and correlation is assumed in [30, Sec. ITI-C]
(extension from [8]) when studying unbiased and correlated estimation errors; and in [34, Secs. 3,4],
the indeterministic noise component (error) is assumed to be identical for different classifiers when
discussing combination of biased and unbiased classifiers through OS and linear combiners. While
such simplifications are necessary to allow studying of multiple classes, they are simply too unrealistic
to be useful in biometric authentication since only two classes are involved (we know that in practice,
the class-dependent variances are not the same even for Gaussian-distributed scores). Finally, despite
the differences, both theoretical analyzes lead to rather similar forms. In fact, it is possible to write
the added error in the terms used in EER.

Before doing so, it is useful to define the total error, which is a sum of Bayes error and added
error. In terms of FAR and FRR, this is:

Eiot(A) = FAR(A) + FRR(A), (28)

where A is a threshold. Figure 1 shows two instances of the threshold, namely A, (for Bayes) and A,
(for added). By definition, at Ay,

Eio1(Ay) = FAR(A}) + FRR(A,) = 2EER

since FAR(A) = FRR(A;,) = EER.
The added error can be written as:

Eadded = Etot (Aa) - Etot (Ab)
= FAR(A,) — FAR(Ap) +
FRR(A,) — FRR(Ay) (29)
The added error can also be written in terms of client and impostor distributions, as follows:
Eodded =
P(A, <YCPA,) — P(A, <YTA,)  ifAp <A,
P(A, <YIA,) = P(A, <YCOAY)  ifA, <Ay (30)
0 ifA, = Ay
3 Database

Before dealing with several critical issues to be discussed in Section 4, we present the two datasets
used: BANCA [2] and XM2VTS [3, 21]. The experimental scores of these two databases are publicly
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available?. Both databases contains face and speech modalities. The BANCA score dataset contains
1186 experimental outcomes and they cover a large range of HTER values. They are used principally
to test the proposed theoretical EER model. The XM2VTS score dataset contains 13 baseline exper-
iments and several fusion protocols are defined [21]. One fusion protocol contains 32 intramodal and
multimodal fusion experiments and this will be used in a user-independent manner.

4 Discussion

The fundamental assumption about the EER proposed in the previous section is that both classes
of conditional scores are each normally distributed. What if this assumption is not true? This is
addressed in Section 4.1. For the OS classifiers to work, it is assumed that the scores to be combined
are drawn from the same distribution. What if they are not? This is typically the case when combining
heterogeneous classifiers (with different output type and value range). This is addressed in Section 4.2.
Section 4.3 treats two important issues not addressed so far: performance measure other than EER
and relaxing the Gaussian assumption.

4.1 Handling Class-Dependent Gaussian Assumption

It should be warned that the analysis here is founded on the assumption that class-dependent pdf is
normally distributed. Consider the case where the base-classifier output is an MLP which outputs
posterior probability (within the range [0, 1]) typically due to using a logistic activation function or
outputs scores within the range [—1, 1] typically due to using hyperbolic tangent activation function.
Then, one knows that the scores cannot be adequately modeled by Gaussian distributions because
simply they are indeed not normally distributed. Ideally, one should always use the output just before
applying any one of the two squashing functions mentioned. However, when this is not possible, (for
instance, due to using a commercial-off-the-shelf product), reversing this process is possible, to a
certain extent. The usual definition of sigmoid and tangent hyperbolic are:

L 1
Slngld(Z) = HTP(—Z)
sinh(z
tanh(z) = rsh((z))

respectively. If y is an output of a sigmoid or a hyperbolic tangent function, its inverse is:

sigmoid ™! (y) = — log (é - 1> (31)
_ 1 1+y

h(y) = = log [ —Y P

tanti ™1 (9) = 5108 (12 ). (32)

respectively.

Another more principled way of handling posterior is to turn them into LPR (log-posterior ratio).
Consider y to be the posterior probability of being client given the person p, i.e., P(C|p). Then the
posterior of being the impostor, P(I|p), is simply 1 — P(C|p). By definition, LPR is

P(Clp)

(33)

4BANCA: “ftp://ftp.idiap.ch/pub/bengio/banca/banca-scores” and XM2VTS: “http://www.idiap.ch/~norman /fusion”
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Figure 2: (a): The probabilistic inversion based on LPR and sigmoid functions. For both curves,
when £ = 0, y = —oco and when z = 1, y = co. (b) and (c): Scatter plots of one of the 32 fusion
data sets using (b) the original score prior to fusion and (c) probabilistic inversed scores. The two
base-classifiers use the same modality but different feature set. The X-axis is a face expert based
on histogram features and an MLP classifier, labeled as (FH,MLP). The Y-axis is also a face expert
based on DCTMod2 features and an MLP classifier, labeled as (DCTs,MLP). Hence, they are expected
to be somewhat correlated. Their corresponding correlations are measured to be 0.382 for (a) and
0.471 for (b). In all 32 datasets involving MLPs, the correlation among classifiers are systematically
under-estimated in the original score space with respect to the probabilistic inverse space.

Under such system, the decision function as in Eqn. (2) is effective. This is equivalent to making the
accept decision when P(C|p) > P(I|p) or P(C|p) > 0.5 and vice-versa for making the reject decision.
Figure 2(a) shows transformation using Eqn. (33) and compares it with that of Eqn. (31). As can
be seen, both approaches are equivalent (proof omitted); these transformations are linear around the
mid-range and non-linear towards the range limit. As a result, when y is near the range limits, its
inversion will be limited to the machine precision represented by the value y. Hence, such remedial
procedure cannot “reverse” perfectly the process. Fortunately, we now know that data points near
the range limits cannot influence the decision function. On the other hand, only those data points
near the decision boundary, which is found to be in the mid-range, typically those found within the
margin, can influence the decision function [36].

Figures 2(b) and (c) show the effect before and after applying probabilistic inversion on one of the
32 XM2VTS fusion dataset. This example is chosen such that the two underlying face systems are
based on MLP architecture. Stronger correlation is expected since both systems operate on the same
biometric sample for each access request. The supposedly observed correlation is squashed by each of
the MLP output activation. The probabilistic inversion reveals that the correlation is indeed much
stronger than before applying the procedure. Furthermore, the scores are also much more normally
distributed than before.  To evaluate more objectively the probabilistic inversion, we use the 1186
experiments in BANCA. The goal is to measure how “far” the score distributions are before and after
applying the probabilistic inversion. For this purpose, we applied the Lillie-test [6]. It evaluates the
hypothesis that a set of (client or impostor) scores has a normal distribution with unspecified mean
and variance against the alternative that the set of scores does not have a normal distribution. This
test is similar to Kolmogorov-Smirnov (KS) test, but it adjusts for the fact that the parameters of
the normal distribution are estimated from the set of scores rather than specified in advance. In the
BANCA score database, there are 474 experiments based on MLP, 514 on GMM and 182 on SVM.
For the MLP classifiers, we measured the KS-statistics twice, once before the probabilistic inversion
and once after. The results are shown in Figure 3.  As can be seen, the output of MLPs (trained
using sigmoid output function) gives high KS-statistics whereas the outputs of SVMs and GMMs
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Figure 3: Absolute EER difference between theoretical EER and empirical EER versus the average
KS-statistics between the corresponding client and impostor distributions. Each data point represents
the pair of values (absolute EER difference, average KS) over 1186 experiments of the BANCA score
database. Three sets of classifiers are distinguished here: MLP, SVM and GMM. The fourth type
of classifier shown here (denoted as “mlp-inv”) is the MLP classifier output preprocessed with the
probabilistic inversion procedure before calculating its theoretical EER and KS-statistics. KS-statistics
measures the degree of deviation from Gaussian assumption.

conform better to the Gaussian assumption. Furthermore, the scores after probabilistic inversion are
more conforming to the Gaussian distribution than those before, although they are still far (in KS-
statistics sense) from those of GMMs and SVMs. Prior to this experiment, we thought that deviation
from Gaussian would mean large absolute EER difference. If this were to be the case, absolute EER
difference would have been increasing proportionally with respect to the KS-statistics. It turns out
that this is not the case. Hence, despite the use of Gaussian assumption, the empirical EER is still
somewhat predictable.

4.2 Handling Score-Comparability Assumption

Score-comparability is somewhat crucial to the success of fixed rule classifiers (OS classifiers and mean).
As long as application in BA is concerned, a pioneer study in [11] shows that score-normalization is
important especially when combining heterogeneous classifier output. Another study in this direction
can be found in [19] which deals with fusion of posterior outputs. For the purpose of this study, we
will begin with an illustration in Figure 4. Suppose that both the client and the impostor scores of two
systems to combine are normally distributed, but the distribution of these two systems are not well
aligned (see Figure 4, left). One well-known technique to mitigate this miss-alignment is called Z-score
normalization. This normalization attempts to center the scores such that the impostor score distri-
bution is aligned. Such alignment, unfortunately can cause the client distribution to be miss-aligned
(see Figure 4, middle). Another normalization that does not suffer from this drawback is called F-
score normalization [28]. This procedure aims to align both the client and impostor score distribution
simultaneously (see Figure 4, right). The above illustration motivates the need to normalize scores
obtained from heterogeneous systems, such that the order relationship “<” is meaningful. Although
the EER model of OS classifier assumes common score distribution for convenience, in practice, one
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Figure 4: The pdf of a client score distribution (thick line) and that of an impostor score distribution
(thin line) of two systems to combine (dotted and continuous lines) before score normalization (left),
after applying Z-score normalization (middle) and after applying F-score normalization.

only needs to make sure that the order relationship is respected. Z-score normalization is often used
in speaker verification tasks whereby the score variation due to different client models can be high. It
is used in a user-specific manner (one per client model). This same technique is useful in combining
heterogeneous system outputs as well. For both techniques, the major assumption is that the class
conditional scores are normally distributed.  All linear normalization techniques have the following
form:

y'" = A(y - B) (34)

where B is a bias and A is a scaling factor. Suppose the mean and standard deviation of the class
conditional distribution is p* and o, respectively, for k € {C, I}, such that p(y) = N (y*|u*, (c¥)?).
Z-norm can be defined by B = p! and A = (¢/)~!. To define F-norm, one needs to define two anchor

points, each defining the “desired” class center c*.

C I

F c” - I I
Y= ———(y—p')+ . (35)
HC,MI

When ¢! = 0 and ¢ = 1, one can write this formulation using Eqn. (34), with B = u/ and A = (u© —
uh)~L. Other linear normalization techniques can be found in [11], such as min-max normalization:

B = min(y) and A = (max(y) — min(y)) ", (36)

decimal scaling normalization:
B=0  and A= (100s0maxy)t (37)

and median normalizations:

B = median(y) and

A = median(|y — median(y)|)_1. (38)
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These linear transformations “preserve” the distribution since they only shift and scale the original
distribution. Non-linear normalization techniques can change the distribution drastically and can
force the scores to be aligned. Two such techniques are proposed in [11]. They are the double sigmoid
function:

(yrm)) if y; < m,

Y; (39)

otherwise ,

1 _ ,k=C
ytu/ﬂh — 5 {tanh (001 (%)) } , (40)

respectively. Note that the double sigmoid function has free parameters such as m, sl and s2. There
is no clear way to estimate these parameters and it is done by cross-validation [11] (as we understood).
Motivated by robust statistics, u*=¢ and ¢*=¢ in the tanh-estimator are estimated using the Hampel
estimator. Here, we introduce a margin-based normalization. It is defined as (see [23]):

1

dsig _ 1+exp(—2
- 1

2

and the tanh-estimator

y" 9™ = FRR(y) — FAR(y),

where FRR and FAR are empirically estimated from the (training) data set using Eqns. (14 and 15).
It has the property that y™79" is confined in [—1, 1], making it attractive to be interpreted as a con-
fidence measure. Furthermore y™"9" /2 + 0.5 can be naively interpreted as a probability (having the
range [0,1]) (although they do not necessarily correspond to the true class posterior). The advantage
of margin-derived score is that it has no free parameters to estimate and is entirely dependent on the
training data (to estimate FAR and FRR curves). Figure 5 compares the resultant scatter plot of
applying these three normalization techniques with the original one.

4.3 Beyond EER and Gaussian Assumption

Lastly, although only the EER value is studied here, one can extend the present finding to a more
general case, whereby the EER constraint by its definition, i.e, EER(A) = FAR(A) = FRR(A), does
not hold anymore.

Suppose ngjo v and o(kjo a are mean and standard deviation of any of the fusion techniques pre-
sented in Table 1. Then all performance measures not satisfying EER such as DCF Eqn. (22), WER
Eqn. (23), and HTER Eqn. (21) can still be evaluated using Eqns. (16) and (17).

It is also possible to replace the class conditional Gaussian assumption with a mixture of Gaussians
or Gaussian Mixture Model (GMM) such that:

C
p(ycom|k) = Z Q§N (ycommlzom,cv (Ugom,c)Q) (41)
c=1

where ¢ is the Gaussian prior, u* the mean and o* the standard deviation for the c-th component
and for class k = {C,I}. The FAR and FRR can be numerically evaluated (by integration over a
range of A values) using Eqns. (14 and 15), respectively.

To illustrate this idea, we calculated WER with o« = {0.1,0.5,0.9} over 1186 BANCA datasets
using three approaches, namely Mixture of Gaussians as in Eqn. (41), Gaussian without probabilistic
inversion preprocessing for the MLP output and Gaussian with preprocessing. The results are shown
in Figure 6 for Gaussian without probabilistic inversion preprocessing and GMM. The number of
Gaussian components in GMM is selected by validation on a subset of training scores not used by
the Expectation-Maximization (EM) algorithm to tune the GMM parameters. As can be roughly
observed, the WER estimated by GMM matches better the true WER (that is calculated from the
scores directly), as compared to the WER estimated using the Gaussian assumption (with probabilistic
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inversion), across different costs. The WER estimated using the Gaussian assumption without pre-
processing is not shown. They are similar to its Gaussian counterpart (with pre-processing). To
measure objectively the estimated WER, we calculated the WER difference between a WER estimate
and the true WER. The distribution of WER difference for the three methods are shown in Figure 7 for
the three different costs of a. Narrower WER difference distribution implies better performance. The
GMM approach provides the best estimates of WER compared to those using Gaussian assumption.
Hence, as can be seen, extending the finding from EER to the more general case is possible.

When is Eqn. (41) applicable? Or, how did one obtain the multiple-component Gaussian score
distribution in the first place?  Suppose we model the class-conditional (multi-dimensional) input
scores with a GMM of the form:

C
pylk) =N (yluk,o") (42)

c=1

Let us suppose further that a linear decision hyperplane is used and whose weight is w; for each i-th
system. Then, for each component ¢, the mean and variance will be:

k _ § : ok
/Lcom,c - Wi fb;
i
k N Z Z k
(Ucom,c) - wiwjzi,j,c’
i g
k

respectively (based on Table 1), where & is the i-th and j-th element of k-th class covariance of

,J,¢
the ¢ — th component. The Gaussian priors ¢ for all ¢ and k remain the same in Eqns. (41 and 42).
These Gaussian priors are found by (typically) the EM algorithm trained on the N dimensional score
space. Although a linear decision function is used here for illustrative purpose, a possible extension

is to use a non-linear decision function.

5 Conclusions

Several important factors that can influence the performance of multimodal and intramodal BA sys-
tems are: 1) the dependency of features of base-systems, 2) the type of output of classifier of the
base-systems, 3) the choice of fusion operator, 4) the choice of decision threshold, 5) the relative
performance of base-systems and 6) the presence of noise. The above aspects have been studied in
isolation by different authors, for instance, [15, 11, 7, 31] However, trying to study simultaneously all
these factors is almost impossible by experiments. This empirically driven approach is difficult to carry
out due to the combinatorial factors of correlation, classifier performance imbalance, fusion classifiers
used, among others. The first and foremost obstacle is that the datasets simply do not permit one to
test the joint effects. In this paper, we propose to study the above issues, especially 1-5 (see [22] for
the 6-th factor) by proposing theoretical EER models. The fundamental and seemingly the most naive
assumption is that class conditional scores (for client and impostor classes) are normally distributed.
The EER of several classifiers based on this assumption is then proposed. These classifiers can be
divided into two categories: sum and product rule-motivated classifiers (e.g., mean, weighted sum,
product, weighted product) and Order Statistics (OS) classifiers (e.g., min, max, median). We even
further propose to model EER of a family of polynomial classifiers with the quadratic classifier as a
concrete example. To the best of our knowledge, as long as fusion is concerned, a theoretical analysis
on non-linear classifier has not been found elsewhere in the literature. This can be a good starting
point to answer the question: “Could a non-linear fusion classifier be better than a linear fusion clas-
sifier?”. Some empirical studies such as [33] based on a reduced polynomial expansion discriminant
function do support this hypothesis.
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One justification that we put forward is to use the Log-Posterior Ratio (LPR). It can be decomposed
into Log-Likelihood Ratio (LLR) and a log-prior ratio probability. We interpret a system’s output
score as a LLR and the threshold used to make the accept/reject decision to be the log-prior ratio
probability. This is to be contrasted with the previous proposed Bayesian framework by [18, 13],
whereby a BA system output is interpreted as a probability. Our justification is that the threshold
often used in a practical BA system corresponds to one’s prior belief and it is tailored to a specific
application. Hence, LPR should be more appropriate in reflecting BA applications. We identify our
proposed work with that of [34] but with significant differences. The most important differences can
be summarized as follows: 1) EER is reducible and Bayes error in [34] is not; 2) EER is defined
globally (after observing all scores); Bayes error is defined locally around a given feature sample near
the decision boundary; 3) EER is measurable; Bayes is not (since it is defined locally); and, 4) the
local continuity of FAR and FRR around EER is enforced by the Gaussian assumption; the added
error is linear around a local feature by approximation using Taylor expansion.

In the case where a BA system output is posterior probability (typically due to Multi-Layer
Perceptrons trained with a logistic/sigmoid function), whereby scores are no longer approximately
normally distributed, we propose to use the scores just before passing through the non-linear activation
function of the classifier. When this is not possible due to some reasons (e.g., using an off-the-
shelf system), we propose to invert this process using probabilistic inversion procedures. Using 1186
XM2VTS experimental scores, we showed our proposed EER model can estimate EER and other
performance errors not satisfying EER. fairly robustly, despite the fact that the scores are not exactly
normally distributed. As a possible outlook, we also proposed to remove the Gaussian assumption
central to this work. As a replacement, we propose a semi-parametric approach, realized using a
mixture of Gaussian. Although experimentally shown to be very powerful, by so doing, one looses
the interpretability offered by those models based on Gaussian assumption. There are basically two
contradictory goals here: to understand the influencing factors or to model/predict the performance.
If the goal is the former, then the EER models proposed here are useful and relevant. If the goal
is the latter, then one can simply carry out a fusion experiment and then empirically measure the
performance. The proposed semi-parametric approach is particularly useful when empirically carrying
out the experiments is prohibitive. This is the case, for instance, in the problem of choosing a subset
of candidates for fusion. This is a combinatorial problem with a complexity of 2 —1 with N classifiers
to choose from. In this case, the semi-parametric approach will solve this problem by inferring the
performance directly after modeling the data with conditional mixture of Gaussians, without actually
carrying out experiments. Finally, although no actual empirical fusion experiments are performed here,
interested readers can refer to a preliminary version of this paper in [27] which contains some 256 fusion
experiments. It also contains some simulation of performance of several fixed rules and the weighted
sum classifier. These simulations are carried out to study the joint effects of correlation and the
relative strengh between classifiers to be combined on the performance of a particular fusion classifier.
Under some restricted assumptions, weighted sum can be showned to theoretically outperform other
fixed rule classifiers. The mean rule turns out to be very competitive.
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(¢) F-norm (d) margin

Figure 5: Scatter plots of one of the fusion data sets using (a) the original score, (b) Z-norm, (c)
F-norm and (d) margin-transformed scores scaled into the range [—0.5,0.5]. The X- and Y-axes are
the output of two BA systems. For (a)—(c), a bi-variate Gaussian fit is also shown on each class of
scores with mean marked as a big plus sign and width displayed as an oval. The client cluster of
scores (small plus signs) are on the upper right corner and the those of impostor (small dots) are on
the lower left corner. Note that for (b), the impostor centers are always zero for the two systems
whereas the client centers could take on any values. In (c), not only the impostor centers are always
zero, the client centers are also fixed to 2 in this case (or any number desired). Due to being linear
transformations, both Z- and F-norms preserve the score distribution linearly whereas margin-score
transformation changes the original score distribution.
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Figure 6: Empirical WERs (a, ¢ and e) versus approximated WERs (b, d and f) using class conditional
Gaussian assumption with probabilistic inversion pre-processing and GMM with three different «
values, namely 0.1 (a vs. b), 0.9 (¢ vs. d) and 0.5 (e vs. f), evaluated over 1186 BANCA datasets.
The 1186 WERs approximated using class conditional Gaussian assumption without probabilistic
inversion pre-processing are not shown as they are very similar to a, ¢ and e.
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WER with respect to the true WER that is calculated from scores directly.



