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Abstract. It is often acknowledged that speech signals contain short-term and long-term tempo-
ral properties that are difficult to capture and model by using the usual fixed scale (typically 20ms)
short time spectral analysis used in hidden Markov models (HMMs), based on piecewise station-
arity and state conditional independence assumptions of acoustic vectors. For example, vowels are
typically quasi-stationary over 40-80ms segments, while plosives typically require analysis below
20ms segments. Thus, fixed scale analysis is clearly sub-optimal for “optimal” time-frequency
resolution and modeling of different stationary phones found in the speech signal. In the present
paper, we investigate the potential advantages of using variable size analysis windows towards
improving state-of-the-art speech recognition systems. Based on the usual assumption that the
speech signal can be modeled by a varying autoregressive (AR) Gaussian process, we estimate
the largest piecewise quasi-stationary speech segments, based on the likelihood that a segment
was generated by the same AR process. This likelihood is estimated from the Linear Prediction
(LP) residual error. Each of these quasi-stationary segments is then used as an analysis window
from which spectral features are extracted. Such an approach thus results in variable scale time
spectral analysis, adaptively estimating the largest possible analysis window size such that the
signal remains quasi-stationary, thus the best temporal/frequency resolution tradeoff. Speech
recognition experiments on the OGI Numbers95 database show that the proposed multi-scale
piecewise stationary spectral analysis based features indeed yield improved recognition accuracy
in clean conditions, compared to features based on minimum cross entropy spectrum as well as
those based on fixed scale spectral analysis.
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1 Introduction

Most of the Automatic Speech Recognition (ASR) acoustic features, such as Mel-Frequency Cepstral
Coefficient (MFCC)[16] or Perceptual Linear Prediction (PLP)[17], are based on some sort of repre-
sentation of the smoothed spectral envelope, usually estimated over fixed analysis windows of typically
20ms to 30ms of the speech signal [16, 15]. Such analysis is based on the assumption that the speech
signal can be assumed to be quasi-stationary over these segment durations. However, it is well known
that the voiced speech sounds such as vowels are quasi-stationary for 40ms-80ms while, stops and
plosive are time-limited by less than 20ms [15]. Therefore, it implies that the spectral analysis based
on a fixed size window of 20ms-30ms has some limitations, including:

• The frequency resolution obtained for quasi-stationary segments (QSS) longer than 20ms is quite
low compared to what could be obtained using larger analysis windows.

• In certain cases, the analysis window can span the transition between two QSSs, thus blurring the
spectral properties of the QSSs, as well as of the transitions. Indeed, in theory, Power Spectral
Density (PSD) cannot even be defined for such non stationary segments [9]. Furthermore, on a
more practical note, the feature vectors extracted from such transition segments do not belong
to a single unique (stationary) class and may lead to poor discrimination in a pattern recognition
problem.

In this work, we make the usual assumption that the piecewise quasi-stationary segments (QSS)
of the speech signal can be modeled by a Gaussian AR process of a fixed order p as in [2, 8, 10,
11]. We then formulate the problem of detecting QSSs as a Maximum Likelihood (ML) detection
problem, defining a QSSs as the longest segment that has most probably been generated by the same
AR process.1 As is well known, given a pth order AR Gaussian QSS, the Minimum Mean Square
Error (MMSE) linear prediction (LP) filter parameters [a(1), a(2), ... a(p)] are the most “compact”
representation of that QSS amongst all the pth order all pole filters [9]. In other words, the normalized
“coding error”2 is minimum amongst all the pth order LP filters. When erroneously analyzing two
distinct pth order AR Gaussian QSSs in the same non-stationary analysis window, it can be shown that
the “coding error” will then always be greater than the ones resulting of QSSs analyzed individually
in stationary windows[14]. This is intuitively satisfying since, in the former case, we are trying to
encode ′2p′ free parameters (the LP filter coefficients of each of the QSS) using only p parameters
(as the two distinct QSS are now analyzed within the same window). Therefore, higher coding error
is expected in the former case as compared to the optimal case when each QSS is analyzed in a
stationary window. As further explained in the next sections, this forms the basis of our criteria
to detect piecewise quasi-stationary segments. Once the “start” and the “end” points of a QSS are
known, all the speech samples coming from this QSS are analyzed within that window, resulting in
(variable-scale) acoustic vectors.

Our algorithm is thus reminiscent of the likelihood ratio test based ML segmentation algorithm
derived by Brandt [10] and later on used in [11]. In [11], the author has illustrated certain speech
waveforms with segmentation boundaries overlaid. The validity of their algorithm is shown by a
segmentation experiment, which on an average, segments phonemes into 2.2 segments. This result is
quite useful as a pre-processor for the manual transcription of speech signals. However, the author
in [11] did not discuss or extend the ML segmentation algorithm as a variable-scale quasi-stationary
spectral analysis technique suitable for ASR, as done in the present work.

Before proceeding further, however, we feel necessary to briefly discuss certain inconsistencies
between variable-scale spectral analysis and state-of-the-art Hidden Markov models ASR using Gaus-
sian mixture models (HMM-GMM). HMM-GMM systems typically use spectral features based on a
constant window size (typically 20ms) and a constant shift size (typically 10ms). The shift size deter-
mines the Nyquist frequency of the cepstral modulation spectrum [6], which is typically measured by

1Equivalent to the detection of the transition point between the two adjoining QSSs.
2The power of the residual signal normalized by the number of samples in the window
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the delta features of the static MFCC or PLP features. In a variable-scale piecewise quasi-stationary
analysis, the shift size should preferably be equal to the size of the detected QSS. Otherwise, if the
shift size is x% of the duration of the QSS, then the next detected QSS will be the same but of
duration (100 − x)% and the following one will be of duration (100 − 2x)% and so on until we have
shifted past the entire duration of the QSS. This results in the undesirable effect that the same QSS
gets analyzed by successively smaller windows, hence increasing the variance of the feature vector of
this QSS. On the other hand, the use of a shift size equal to the variable window size will change
the Nyquist frequency of the cepstral modulation spectrum [6]. Therefore, the modulation frequency
pass-band of the delta filters [6] will vary from frame to frame and may suffer from aliasing for shift
sizes in excess of 20ms.

In [3], Atal has described a temporal decomposition technique to represent the continuous variation
of the LPC parameters as a linearly weighted sum of a number of discrete elementary components.
These elementary components are designed such that they have the minimum temporal spread (highly
localized in time) resulting in superior coding efficiency. However, the relationship between the op-
timization criterion of “the minimum temporal spread” and the quasi-stationarity is not obvious.
Therefore, the discrete elementary components are not necessarily quasi-stationary and vice-versa.

Coifman et al [5] have described a minimum entropy basis selection algorithm to achieve the
minimum information cost of a signal relative to the designed orthonormal basis. In [7], Srinivasan et.
al. have proposed a multi-scale QSS speech enhancement technique based on Coifman’s technique [5].
In [8], Svendsen et al have proposed a ML segmentation algorithm using a single fixed window size for
speech analysis, followed by a clustering of the frames which were spectrally similar for sub-word unit
design. We emphasize here that this is different from the approach proposed here where we use variable
size windows to achieve the objective of piecewise quasi-stationary spectral analysis. More recently,
Achan et al [13] have proposed a segmental HMM for speech waveforms which identifies waveform
samples at the boundaries between glottal pulse periods with applications in pitch estimation and
time-scale modifications.

Our emphasis in this paper is on better spectral modeling of the speech signal rather than achieving
better coding efficiency or reduced information cost. Nevertheless, we believe that these two objectives
are somewhat fundamentally related. The main contribution of the present paper is to demonstrate
that the variable-scale QSS spectral analysis technique can possibly improve the ASR performance as
compared to the fixed scale spectrum analysis. We identify the above mentioned problems and make
certain engineering design choices to overcome these problems. Moreover, we show the relationship
between the maximum likelihood QSS detection algorithm and the well known spectral matching
property of the LP error measure [4]. Finally, we do a comparative study of the proposed variable-
scale spectrum based features and the minimum cross-entropy time-frequency distributions developed
by Loughlin et al [1].

In the sequel of this paper, Section 2 formulates the ML detection problem for identifying the
transition points between QSS. In Section 3, we illustrate an analogy of the proposed technique with
spectral matching property of the LP error measure. Finally, the experimental setup and results are
described in Section 4.

2 ML Detection of the change-point in an AR Gaussian ran-

dom process

Consider an instance of a pth order AR Gaussian process, x[n], n ∈ [1, N ] whose generative LP filter pa-
rameters can either be A0 = [1, a0(1), a0(2)....a0(p)] or can change from A1 = [1, a1(1), a1(2)....a1(p)]
to A2 = [1, a2(1), a2(2)....a2(p)] at time n1 where n1 ∈ [1, N ]. As usual, the excitation signal is as-
sumed to be drawn from a white Gaussian process and its power can change from σ = σ1 to σ = σ2.



4 IDIAP–RR 05-19

The general form of the Power Spectral Density (PSD) of this signal is then known to be

Pxx(f) =
σ2

|1 −
∑p

i=1 a(i) exp(−j2πif) |2
(1)

where a(i)s are the LPC parameters. The hypothesis test consists of:

• H0: No change in the PSD of the signal x(n) over all n ∈ [1, N ], LP filter parameters are A0

and the excitation (residual) signal power is σ0.

• H1: Change in the PSD of the signal x(n) at n1, where n1 ∈ [1, N ], LP filter parameters change
from A1 to A2 and the excitation(residual) signal power changes from σ1 to σ2.

Let, Â0 denote the maximum likelihood estimate (MLE) of the LP filter parameters and σ̂0 denote the
MLE of the residual signal power under the hypothesis H0. The MLE estimate of the filter parameters
is equal to their MMSE estimate due to the Gaussian distribution assumption [2] and, hence, can be
computed using the Levinson Durbin algorithm [9] without significant computational cost.

Let x1 denote [x(1), x(2), ...x(n1)] and x2 denote [x(n1 + 1), ...x(N)]. Under hypothesis H1, (Â1,

σ̂1) are the MLE of (A1, σ1) estimated on x1, and (Â2, σ̂2) are the MLE of (A2, σ2) estimated on
x2, where x1 and x2 have been assumed to be independent of each other. A Generalized Likelihood
Ratio Test (GLRT) [14] would then pick hypothesis H1 if

log L(x) = log(
p(x1|Â1, σ̂1)p(x2|Â2, σ̂2)

p(x|Â0, σ̂0)
) > γ (2)

where γ is a decision threshold that will have to be tuned on some development set. Given that the
total number of samples in x1 and x2 are the same as in x0, their likelihoods can be compared directly
in (2). Under the hypothesis H0 the entire segment x = [x(1)...x(N)] is considered stationary and the

MLE Â0 is computed via the Levinson-Durbin algorithm using all the samples in segment x. It can
be shown that the MLE σ̂0 is the power of the residual signal [2, 14]. Under H1, we assume that there

are two distinct QSS, namely x1 and x2. The MLE Â1 and Â2 are computed via the Levinson-Durbin
algorithm using samples from their corresponding QSS. MLE σ̂1 and σ̂2 are computed as the power
of the corresponding residual signals. In fact, p(x|Â0, σ̂0) is equal to the probability of residual signal

reconstructed using filter parameters Â0, yielding:

p(x|Â0, σ̂0) =
1

(2πσ̂2
0)N/2

exp

[

−1

2σ̂2
0

N
∑

n=1

(e2
0(n))

]

(3)

where e0(n) is the residual error and

e0(n) = x(n) −

p
∑

i=1

a0(i)x(n − i), n ∈ [1, N ]

and

σ̂2
0 =

1

N

N
∑

n=1

e2
0(n))

Similarly, p(x1|Â1, σ̂1) and p(x2|Â2, σ̂2) are the likelihoods of the residual signal vectors of the AR
models A1 and A2, respectively, and have the same functional forms as above. Substituting these
expressions into (2) yields

log L(x) =
1

2
log

[

σ̂N
0

σ̂n1

1 σ̂
(N−n1)
2

]

(4)



IDIAP–RR 05-19 5

In the present form, the GLRT log L(x) has now a natural interpretation. Indeed, if there is a
transition point in the segment x then it has, in effect, 2p degrees of freedom. Under hypothesis H0,
we encode x using only p degrees of freedom (LP parameters Â0) and, therefore, the coding (residual)
error σ̂2

0 will be high. However, under hypothesis H1, we use 2p degrees of freedom (LP parameters

Â1 and Â2) to encode x. Therefore, the coding (residual) errors σ̂2
1 and σ̂2

2 can be minimized to
reach the lowest possible value.3 This will result in L(x) > 1. On the other hand, if there is no AR
switching point in the segment x then it can be shown that, for large n1 and N , the coding errors are
all equal (σ̂2

0 = σ̂2
1 = σ̂2

2). This will result in L(x) ≃ 1.
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discrete time sampled at 8Khz

100 200 300 400 500 600 700 800 900 1000 1100
−4
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4

Plot of GLRT

discrete time sampled at 8Khz

Figure 1: Typical plot of the Generalized log likelihood ratio test (GLRT) for a speech segment. The
sharp downward spikes in the GLRT are due to the presence of a glottal pulse at the beginning of
the analysis window. The GLRT peaks around the sample 500 which marks as a strong AR model
switching point

An example is illustrated in Figure 1. The top pane shows a segment of a voiced speech signal.
In the bottom figure, we plot the GLRT as the function of the hypothesized change over point n.
Whenever, the right window i.e the segment x2 spans the glottal pulse in the beginning of the window,
the GLRT exhibits strong downward spikes which is due to the fact that the LP filter cannot predict
large samples in the beginning of the window. However, these downward spikes do not influence our
decision significantly as we are interested in large positive value of the GLRT to detect a model change
over point. The minimum sizes of the left and the right windows are 160 and 100 samples respectively.
This explains the zero value of the GLRT at the beginning and the end of the whole test segment.
The GLRT peaks around sample 500 which marks a strong AR model switching point.

3 Relation of GLRT to Spectral Matching

As is well known the LP error measure possesses the spectral matching property [4]. Specifically,
given a speech segment x, let its power spectrum (periodogram) be denoted by X(ejω). Let the all

pole model spectrum of the segment x be denoted as X̂0(e
jω). Then it can be shown that the MMSE

error σ2
0 of the LP filter estimated over the entire segment x is given by [4]

3When Â
1

and Â
2

are estimated, strictly based on the samples from the corresponding quasi-stationary segments.
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σ2
0 =

∫ π

−π

X(ejω)

X̂0(ejω)
dω where, (5)

X̂0(e
jω) =

1

|1 −
∑p

i=1 a0(i) exp(−j2πif) |2
(6)

Therefore minimizing the residual error σ2
0 is equivalent to the minimization of the integrated ratio of

the signal power spectrum X(ejω) to its approximation X̂0(e
jω) [4]. Substituting (5) in (4) we obtain,

log L(x) =
1

2
log

(

∫ π

−π
X(ejω)
ˆX0(ejω)

dω

)N

(

∫ π

−π
X1(ejω)
ˆX1(ejω)

dω

)n1
(

∫ π

−π
X2(ejω)
ˆX2(ejω)

dω

)N−n1

(7)

where, X(ejω), X1(e
jω) and X2(e

jω) are the power spectra of the segments x, x1 and x2 respectively.

Similarly X̂0(e
jω), X̂1(e

jω) and X̂2(e
jω) are the MMSE pth order all-pole model spectra estimated

over the segments x, x1 and x2 respectively. Therefore, X̂0(e
jω), X̂1(e

jω) and X̂2(e
jω) are the best

spectral matches to their corresponding power spectra. One way of interpreting (7) is that it is a
measure of the relative goodness between the best spectral match achieved by modeling x as a single
QSS and the best spectral matches obtained by assuming x to consist of two distinct QSS, namely
x1 and x2. This is further explained as follows. If x1 and x2 are indeed two distinct QSS, then
X1(e

jω) and X2(e
jω) will be quite different and X(ejω) will be a gross average of these two spectra.

In other words, the frequency support of X(ejω) will be a union of those of the X1(e
jω) and X2(e

jω).

X̂1(e
jω) and X̂2(e

jω), having p poles each, will match their corresponding power spectra reasonably

well, resulting in a lower value of the denominator in (7). However, X̂0(e
jω) will be a relatively

poorer spectral match to X(ejω) as it has only p poles to account for the wider frequency support.
Therefore we incur a higher spectral mismatch by assuming x to be a single QSS when in fact it is
composed of two distinct QSS x1 and x2. This results in the GLRT log L(x) taking up a high value.
Whereas if x1 and x2 are the instances of the same quasi-stationary process, then so is x. Therefore
X1(e

jω), X2(e
jω) and X(ejω) are nearly the same with similar all-pole models, resulting in a value of

the GLRT close to zero. The above discussion points out to the fact that the QSS analysis based on
the proposed GLRT is constantly striving to achieve a better time varying spectral modeling of the
underlying signal as compared to single fixed scale spectral analysis.
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Figure 2: Quasi stationary segments (QSS) of a speech signal as detected by the algorithm with
γ = 3.5 and LP order p = 14.
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4 Experiments and Results

We have used the GLRT L(x) in (4) to perform QSS spectral analysis of speech signals for ASR
applications. We initialize the algorithm with a left window size W L = 20ms and a right window
size W R = 12.5ms. We compute their corresponding MMSE residuals and the MMSE residual of the
union of the two windows. Then, the GLRT is computed using (4) and is compared to the threshold.
The choice of the threshold γ = 3.5 was obtained by a visual inspection of the quasi-stationarity of
the segmented speech signal as returned by the algorithm. In figure (2), we illustrate the boundaries
of the QSS as detected by the algorithm with γ = 3.5. Realizing that the resulting segmentation
corresponded to reasonably quasi-stationary segments, we adopted the threshold value γ = 3.5 for
all the experiments reported in this paper. In general, the ASR results are slightly sensitive to the
threshold, although not in a huge way. If the GLRT is greater than the threshold γ, W L is considered
the largest possible QSS and we obtain a spectral estimate using all the samples in W L. Otherwise,W L is
incremented by INCR=1.25ms and the whole process is repeated until GLRT exceeds γ or W L becomes
equal to the maximum window size WMAX=60ms. The computation of a MFCC feature vector from a
very small segment (such as 10ms) is inherently very noisy.4 Therefore, the minimum duration of a
QSS as detected by the algorithm was constrained to be 20ms. Throughout the experiments, a fixed
LP order p = 14 was used.

The likelihood ratio test is quite widely used for speaker segmentation [12] where the average length
of a single speaker segment may last from 1sec to several seconds. This provides a relatively large
amount of samples to estimate the parameters of the probability density functions as compared to the
present problem where we have to detect stationarity change over point within 20ms to 60ms. As a
result, the GLRT in (4) is quite noisy and a criterion such as local maxima of the GLRT cannot be
used. However, when the model change occurs over longer time scales ( e.g. speaker change detection
where the smallest segment is of the order of a second), Ajmera et al. [12] have successfully used a local
maxima of the GLRT as a speaker change point detector, thereby, avoiding the use of a threshold.

To avoid fluctuating Nyquist frequency of the cepstral modulation spectrum[6], a fixed shift size
of 12.5ms was used in the algorithm. As explained in the Section (1), this sometime resulted in the
undesirable effect that the same QSS gets analyzed by progressively smaller windows. To alleviate
this problem, the zeroth cepstral coefficient c(0), which is a non-linear function of the windowed signal
energy and, hence, of the window size, was normalized such that its dependence on the window size
is mimimized.

In order to assess the effectiveness of the proposed algorithm, speech recognition experiments were
conducted on the OGI Numbers corpus [19]. This database contains spontaneously spoken free-format
connected numbers over a telephone channel. The lexicon consists of 31 words. Figure (3) illustrates
the distribution of the QSSs as detected by the proposed algorithm. Nearly 47% segments were
analyzed with the smallest window size of 20ms and they mostly corresponded to short-time limited
segments. However, voiced segments and long silences were mostly analyzed by using longer windows
in the range 30ms − 60ms. The short peak at 60ms is due to the accumulated value over all the
segments that should have been longer than 60ms but were constrained by our choice of the largest
window size.

Throughout the experiments, MFCC coefficients and their temporal derivatives were used as speech
features. However, five feature sets were compared:

1. [39 dim. MFCC:] computed over a fixed window of length 20ms.

2. [39 dim. MFCC:] computed over a window of length 50ms.

3. [78 dim. Concatenated MFCC:] a concatenation of the above two feature vectors.

4. [Minimum cross entropy,39 dim MFCC:] MFCC computed from the geometric mean of the
spectra computed from 20ms, 30ms, 40ms and 50ms long windows.

4Due to very few samples involved in the Mel-filter integration.
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Figure 3: Distribution of the QSS window sizes detected and then used in the training set

5. [Variable-scale QSS MFCC+Deltas:] For a given frame, the window size is dynamically chosen
using the proposed algorithm ensuring that the windowed segment is quasi-stationary.

In [1], Loughlin et al proposed using a geometric mean of multiple spectrograms of different window
sizes to overcome the time-frequency limitation of any single spectrogram. They showed that combin-
ing the information content from multiple spectrograms in form of their geometric mean, is optimal
for minimizing the cross entropy between the multiple spectra. We have followed their approach to
derive MFCC features from the geometric mean of the multiple power spectra computed over varying
window sizes, specifically 20ms, 30ms, 40ms and 50ms.

Hidden Markov Model and Gaussian Mixture Model (HMM-GMM) based speech recognition sys-
tems were trained using public domain software HTK [18] on the clean training set from the original
Numbers corpus. The speech recognition results in clean conditions for various spectral analysis
techniques are given in table 1. The fixed scale MFCC features using 20ms and 50ms long analy-
sis windows have 5.8% and 5.9% word error rate (WER) respectively. The concatenation of MFCC
feature vectors derived from 20ms and 50ms long windows has a 5.7% WER and it has twice the
number of HMM-GMM parameters as compared to the rest of the systems5. The slight improvement
in this case may be due to the multiple scale information present in this feature, albeit in an ad-hoc
way. The minimum cross-entropy MFCC features which were derived from the geometric mean of the
power spectra computed over 20ms, 30ms, 40ms and 50ms long analysis windows, have a WER of
5.7%. The proposed variable-scale system which adaptively chooses a window size in the range [20ms,
60ms], followed by the usual MFCC computation, has a 5.0% WER. This corresponds to a relative
improvement of more than 10% over the rest of the techniques

Table 1: Word error rate in clean conditions

MFCC 20ms 5.8
MFCC 50ms 5.9
Concat. MFCC (20ms, 50ms) 5.7
Min. Cross entropy based MFCC 5.7
Proposed Multi-scale QSS MFCC 5.0

5 Conclusion

We have demonstrated that the variable-scale piecewise quasi-stationary spectral analysis of speech sig-
nal can possibly improve the state-of-the-art ASR. Such a technique can overcome the time-frequency
resolution limitations of the fixed scale spectral analysis techniques. Comparisons were drawn with the

5Due to twice the feature dimension as compared to the rest of the systems
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other competing multi-scale techniques such as the minimum cross-entropy spectrum. The proposed
technique led to the minimum WER as compared to the rest of the techniques.
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