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Abstract. Combining multiple information sources, typically from several data streams is a very
promising approach, both in experiments and to some extents in various real-life applications. A
system that uses more than one behavioural and physiological characteristics to verify whether a
person is who he/she claims to be is called a multimodal biometric authentication system. Due to
lack of large true multimodal biometric datasets, the biometric trait of a user from a database is
often combined with another different biometric trait of yet another user, thus creating a so-called
a chimeric user. In the literature, this practice is justified based on the fact that the underlying
biometric traits to be combined are assumed to be independent of each other given the user.
To the best of our knowledge, there is no literature that approves or disapproves such practice.
We study this topic from two aspects: 1) by clarifying the mentioned independence assumption
and 2) by constructing a pool of chimeric users from a pool of ¢rue modality matched users (or
simply “true users”) taken from a bimodal database, such that the performance variability due
to chimeric user can be compared with that due to true users. The experimental results suggest
that for a large proportion of the experiments, such practice is indeed questionable.
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1 Introduction

Biometric authentication (BA) is a problem of verifying an identity claim using a person’s behavioural
and physiological characteristics. BA is becoming an important alternative to traditional authentica-
tion methods such as keys (“something one has”, i.e., by possession) or PIN numbers (“something one
knows”, i.e., by knowledge) because it essentially verifies “who one is”, i.e., by biometric information.
Therefore, it is not susceptible to misplacement or forgetfulness. Examples of biometric modalities
are fingerprints, faces, voice, hand-geometry and retina scans [9].

Due to inherent properties in each biometric and external manufacturing constraints in the sensing
technologies, no single biometric trait can achieve 100% authentication performance. This problem
can be alleviated by combining two or more biometric traits, also known as the field of multimodal
biometric authentication. In the literature, there are several approaches towards studying fusion of
modalities. One practice is to construct a large database containing several biometric traits for each
user. This, however, can be very time-consuming and expensive. Another practice is to combine
biometric modalities from a database with biometric modalities of another biometric database. Since
both databases do not necessarily contain the same users, such combination results in chimeric users.
From the experiment point of view, these biometric modalities belong to the same person. While
this practice is commonly used in the multimodal literature, e.g., [18, 7] among others, it was ques-
tioned whether this was a right thing to do or not during the 2003 Workshop on Multimodal User
Authentication [6]. To the best of our knowledge, there is no work in the literature that approves
or disapproves such assumption. In general, the use of chimeric users is justified by the modality
independence assumption: that two or more biometric traits of a single person are independent of
each other. We set out to investigate the validity of this assumption by using two approaches, namely
: 1) by pinning down the concept of independence and 2) by simulating the effect of chimeric users
experimentally and measuring the discrepancy in terms of performance between the use of chimeric
users and the use of true users. To verify this hypothesis, we limit our scope to studying such effect to
bimodal as generalisation to more than two modalities is direct. It should be emphasised that the use
of chimeric users practice is not limited to biometric authentication, but may be in general applicable
to problems involving multimodal streams. Hence, this study is of interest to researchers studying
multimodal fusion.

Techniques that are designed to combine multimodal systems are referred to as fusion techniques.
From an architectural point of view, fusion can be done either at the feature level (extracted or internal
representation of the data stream) or score level (output of a single system). Among the two, the
latter is most commonly used in the literature. The use of chimeric users falls into the latter case as
well. Some studies further categorize three levels of score level fusion [5], namely, fusion using the
scores directly, using a set of most probable category labels (called abstract level) or using the single
most probable category label (called decision level). We will focus on the score for two reasons: the
last two cases can be derived from the score and more importantly, by using only labels instead of
scores, precious information is lost.

This paper is organised as follows: Section 2 underpins the concept of independence between
biometric traits; Section 3 describes the database to be used; Section 4 details the experimental
procedure and presents the results; and finally this is followed by conclusions in Section 5.

2 On the Independence Assumption

2.1 Preliminary

Suppose that each authorised person is identified by a unique identity claim j € 7 ={1,...,J} and
there are J identities. We sometimes call these users as clients to oppose a set of other unauthorised
persons known as impostors. Hence, a biometric authentication system is aimed at distinguishing
clients from impostors, which is an aggregated two-class problem, i.e., a two-class problem with J
distinctive users. In this problem, it is common to represent a user by his/her feature template or
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model, i.e, a set of parameters derived from the features. Suppose that the output due to comparing a
user model C; to a feature X is y;. For each client or user model C};, there is a corresponding impostor
model I;. Lacking a proper definition’, the impostor model is often naively defined as the model of
other finite users V;/|j’ € J — j. To decide whether to accept or reject the access request represented
by feature X claiming identity j, one can evaluate the posterior probability ratio in logarithmic domain
(called log-posterior ratio, LPR):

- P(Cy]X) B P(X|C;)P(C;)
LPR;, = log (W) = log (W)
= log P(X|C;) + log PG =y(j) - 4y,

P(X|L) P(I;)
—_— ——

where we introduced the term y(j) (also called a Log-Likelihood Ratio, LLR) and a threshold A to
handle the case of different priors. This constant also reflects the different costs of false acceptance
and false rejection. In both cases, the threshold A has to be fixed a priori. The decision of accepting
or rejecting an access is then:

accept if LPR; >0

decision(LPR;) = { (1)

reject otherwise.
or
o \ | accept if y(j) > A,
decision(y(j)) = { reject otherwise. 2

Although both forms are equivalent, the explicit presence of a threshold in the second decision function
shows that the log-prior ratio can be adjusted separately from the score y(j). Note that y(j) is a direct
function of X and the model variable associated to it (say 0;), i.e., y(j) = fo,(X). We use the function
f with parameter 0 to explicitly represent the functional relationship between the variables y(j) and
X. Suppose that y(j) is an instance of the variable Y (5) and is drawn from the distribution Y(j). The
decision function in Eqn. (2) then implies that Ey) c,[Y ()] > By, 1Y (4))], where Ez[Z] is the
expectation of Z under the law Z. Typically, on a per user basis, one has an extremely few number of
samples (depending on the protocols, there are 2 or 3 in the XM2VTS database [14], and 1 or 3 in the
BANCA database [1]) to estimate the genuine distribution Y(j)|C; whereas one has a relatively large
number of samples (typically in the order of hundreds) to estimate the impostor distribution Y(j)|I;.

Although y(j) is interpreted as an LLR here, many different machine-learning algorithms (e.g.,
Gaussian Mixture Models, Multi-Layer Perceptrons, Support Vector Machines) can be viewed as an
approximation to this relationship, without necessarily giving it a probabilistic interpretation, i.e.,
y(j) being a probability. This is to contrast with most Bayesian analyses, e.g., [12, 11], that start
by making an equivalence between y(j) and p(C;|X), i.e., y(j) = p(C;|X), such that the threshold
A = 0.5. Although this probabilistic interpretation is correct, it does not explicitly consider the fact
that the threshold changes with the priors of client and impostor classes. In fact, the prior has already
been integrated in p(C;|X) o« p(X|C;)p(C;), which is the product between likelihood and the client
prior. As a matter of fact, most biometric authentication systems crucially rely on this threshold
to make the accept/reject decision. For instance, if the matching score y(j) is based on a distance
between a user template X; and the submitted feature X, i.e., y(j) = dist(X, X;), where dist is a
distance measure, then our Bayesian model above is still valid by interchanging between C; and I},
such that Eyjyc,[Y (5)] < By, [Y(5)]. This distance measure simply cannot be interpreted in the
probabilistic framework with y(j) = p(C;|X).

Depending on the outcome of the decision (as a function of the threshold A;), a biometric authen-
tication system can commit two types of errors, namely, False Acceptance (FA) and False Rejection

Hdeally, this impostor model should be the world population minus the user j. In terms of computation and data
collection effort, this is not feasible and in practice not necessary.
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(FR). The error rates of FA and FR are defined as:

FAR(A;) = 1-p(Y(§)|I; < 4Ay)
FRR(4;) = p(Y(§)IC; <A4Ay),

where p(Y (j)|k; < Aj) is the cummulative density function of conditional variable Y'(j) within the
range [—oo, A;] for each class k;. Note that a unique point with A} where FAR(A}) = FRR(A}) is
called Equal Error Rate (EER). EER is often used to characterise a system’s performance. Another
useful performance evaluation point for any given threshold A; (not necessarily A7) is called Half
Total Error Rate (HTER) and is defined as the average of FAR and FRR, i.e.,:

HTER(A;) = %(FAR(A]-) + FRR(A))).

The discussion until here concerns only a particular client indexed by j. In reality, one has
extremely few examples of genuine accesses y(j)|C; and relatively large impostor accesses y(j)|1;,
as mentioned earlier. As a result, the estimation of the threshold Aj, i.e., user-specific threshold,
is extremely unreliable, and the user-independent versions of FAR, FRR and EER, as well as the
threshold are often used. Although there exists abundant literature to estimate user-specific threshold
(see for instance a survey in [16, 19]), common threshold is by far a standard practice.

2.2 Different levels of Dependency Assumption

We now introduce two notions of dependencies, i.e, feature-oriented dependency and score-oriented
dependency. The former assumes dependency at the feature-level while not considering the depen-
dency at the score level. The latter, on the other hand, assumes independence at the feature level but
handles dependency uniquely at the score level.

These two dichotomies thus give rise to four types of dependencies in decreasing order:

e Strict Feature Dependence. It is characterised uniquely by the feature-oriented dependence
assumption.

e Loose Feature Dependence It is characterised by feature-oriented independence but score-
oriented dependence

e Loose Feature Independence It is characterised by both feature-oriented and score-oriented
independence.

e Strict Feature Independence. It is characterised uniquely by the feature-oriented indepen-
dence assumption.

Suppose that X; and X, are features of two different biometric modalities. Using the same
Bayesian formulation (with focus on LLR) as in the previous Section, the four categories can be
formally stated as follows:

e Strict Feature Dependence:

p(X1, X2|C))
p(X1, Xa|Ij) ®)
= fej(XlaXQ)v (4)

ysp(j) = log

where the function f explicitly represents any classifier with the associated parameter ;. By so
doing, we actually provide a Bayesian interpretation of the classifier f. One possible weakness
of this approach is known as the “curse of dimensionality”, whereby modeling the joint features
in higher dimension can cause a degraded performance compared to methods resulting from the
other assumptions (to be discussed below).
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e Strict Feature Independence:

N p(X1|C)p(X2|Cy)
woili) = lom R ) ©)
_ e PG L p(Xa]|CY)
= B T L) )
y1(7) + v2(5) (7)
= [for(X1) + fo2(X2) (8)

where y;(j) = log % and 9Z is the model parameter associated to modality ¢ and user j.

Note that in theory the two cla551ﬁers involved, fyi
J

i = {1,2}, do not have to be homogeneous

(the same type). In practice, however, some form of normalisation may be needed if they are
not homogeneous, e.g., from different vendors or based on different algorithms. It can be seen
that using this Bayesian framework, the independence assumption leads to the well-known sum
rule. On the other hand, using the probabilistic framework y(j) = p(C;|X), this dependency
would have led to the well-known product rule (proof not shown here).

e Loose Feature Dependence:

N 1op PW10),¥2(1)IC5)
yrp(j) = lg (15, y2()|T )

= focon (11(),92(5)) (10)
= focon (fo(X1), fi2(X2)) (1)

where fycom can be considered as a second-level classifier, also called a fusion classifier. The
loose feature dependence is a result of committing to the feature independence assumption —
which means that the scores y1(j) and y2(j) can be derived separately — and score-oriented
dependence assumption — implying that the dependency at the score level should be modeled.
This formulation actually motivates the use of trainable classifiers in fusion. Suppose that
y(j) = [w1(5),92(5)]" is a vector and an instance of the variable Y'(5). If Y (j) is drawn from
a class-conditional Gaussian distributions and that both the client and impostor distributions
share a common covariance matrix 3, it is possible to show that:

focor = wi(5)y1(7) +w2(7)y2(5), (12)

where w(j) = [w1(5), w2(5)]T has the following solution:

w(j) o BTH(E[Y (7)IC)] - E[Y ()IL]) - (13)

The linear opinion pool (or weighted sum) shown here is a typical solution given by Fisher’s lin-
ear discriminant [3, Sec. 3.6]. Other solutions using the same linear discriminant function (but
possibly more powerful since they do not make the class-conditional Gaussian assumption) in-
cludes Support Vector Machines with a linear kernel [20] and the perceptron algorithm [3, Chap.
6], the latter of which generalises to the least square and the logistic discrimination/regression
solutions (depending on the error criterion). It can thus be seen that the loose feature depen-
dence assumption motivates the use of a fusion classifier. It should be noted that the Bayesian
framework using Eqn. (9) as a departure point does not dictate that a linear classifier has to
be used. In practice, however, to the best of our knowledge, non-linear classifiers have not been
reported to provide significantly better results over their linear counterparts in this application.
Often, due to small training sample size on a per user basis, the classifier at this level is trained
across all users. Although user-specific fusion classifiers have been proposed, e.g., [7], global fu-
sion classifier is by far the most commonly used approach. We will study this case here. Hence,
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as long as fusion is concerned, the index j in the term fycom of Egn. (10) can be dropped, so
J
as for the weights in Eqn. (12).

e Loose Feature Independence:

Y~ o Py ()IC)py2(7)I1C5)
verl) = o e pe )L (14
_ 10 P0OIG) o p(2()IC5) (15)

Py (H)I1;) p(y2(3) 1)
for (11(9)) + fo2 (y2(4)) (16)

= for (1 (X0) + for (£2(X2)) (17)

where fm is a classifier taking features X; and fm is another classifier taking the score y;(j), for

all i € {1 2}. Since fgl is a one-input one-output function, this procedure is also called score

normalisation [8]. Among the score normalisation techniques, user-specific Z-score normalisation
is perhaps the most representative one. Z-norm and other techniques are surveyed in [16]. It
turns out that the fusion classifier is a sum rule. Again, due to lack of user-specific data, the
score normalisation is treated the same across users. Hence, we can replace f(,;; by fgi (without

the subscript j) in Eqns. (16) and (17), for all ¢ = {1, 2}.

The above four types of architecture as a result of different levels of dependence assumption are
certainly not exhaustive. It is possible to combine say strict feature dependence and strict feature
independence assumption such that the resultant architecture compensates for both assumption (see
for instance [17]).

As can be seen, depending on the level of dependence between X; and X5 that one is willing to
commit to, one arrives at any of the four choices of architectures. In multimodal biometrics, where
two (or more) biometric modalities are captured using different sensors, it is well accepted that the
strict feature dependence assumption (the first one) is in general not true [18]. Hence, as long as
the use of chimeric users is concerned, only the last three levels of dependence are relevant. In the
experimental setting with chimeric users, one simply uses the concatenated score with modalities of
other users , i.e.,

Ychimeric = [yl (.7)5 Y2 (Jl)]T where .7 7é j/'

and combines the concatenated score by using classifiers such as Eqns. (7), (10) and (16), respectively
for the last three levels of dependency.

Thus we arrive at the crucial question: “Do the different levels of dependency allow to
switch the identities?”. If one follows strictly (and agrees with) the Bayesian framework presented
so far, none of these assumptions provide any hint about the use of chimeric users in practice. They
merely guide how one should model the final score y just before making the accept/reject decision.
Lacking any plausible justification and theoretical explanation, we resolve to an experiment-driven
approach to study the effects of switching identities. Before presenting the experimental approach,
we first present the database used in the next section.

3 The XM2VTS Database

There exists several bimodal biometric authentication databases for this purpose, e.g., M2VTS,
XM2VTS and BANCA databases. We will use the XM2VTS for two reasons: it has among the
largest number of users, i.e., 200 clients and 95 casual impostors; and the results of many single modal
experiments (in scores) are available for fusion. These scores are also publicly available? and are
reported in [15].

2http://www.idiap.ch/~norman/fusion
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Table 1: The Lausanne Protocols as well as the fusion protocol of XM2VTS database.

Data sets Lausanne Protocols Fusion
LP1 LP2 Protocols
LP Train client accesses 3 4 NIL
LP Eval client accesses 600 (3 x 200) | 400 (2 x 200) || Fusion dev
LP Eval impostor accesses 40,000 (25 x 8 x 200) Fusion dev
LP Test client accesses 400 (2 x 200) Fusion eva
LP Test impostor accesses 112,0007 (70 x 8 x 200) Fusion eva

1: Due to one corrupted speech file of one of the 70 impostors in this set, this file was deleted, resulting
in 200 less of impostor scores, or a total of 111,800 impostor scores.

The XM2VTS database [14] contains synchronised video and speech data from 295 subjects,
recorded during four sessions taken at one month intervals. On each session, two recordings were
made, each consisting of a speech shot and a head shot. The speech shot consisted of frontal face and
speech recordings of each subject during the recital of a sentence. The database is divided into three
sets: a training set, an evaluation set and a test set. The training set (LP Train) was used to build
client models, while the evaluation set (LP Eval) was used to compute the decision thresholds (as well
as other hyper-parameters) used by classifiers. Finally, the test set (LP Test) was used to estimate
the performance.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test
impostors. There exists two configurations or two different partitioning approaches of the training
and evaluation sets. They are called Lausanne Protocol I and II, denoted as LP1 and LP2 in this
paper. In both configurations, the test set remains the same. Their difference is that there are three
training shots per client for LP1 and four training shots per client for LP2. Table 1 is the summary of
the data. More details can be found in [13]. The first column shows the data set, divided into training,
evaluation and test sets. Columns two and three show the the partition of the data according to LP1
and LP2 whereas column four shows the partition of data for the fusion protocols that are consistent
with the Lausanne Protocols. As far as fusion is concerned, there are only two data sets, labeled as
“Fusion dev” (for development) and “Fusion eva” (for evaluation), since the data used in LP training
sets are reserved to construct the base systems.

Note that the fusion development set is used to calculate the parameters of fusion classifier as
well as the optimal global threshold. They are then applied to the fusion evaluation set. Since the
threshold is calculated from the development set, the reported HTER obtained from the evaluation set
is thus called an a priori HTER.

4 An Experimentally Driven Approach

This Section aims at answering the following question: “Is an experiment carried out using chimeric
users equivalent to the one carried out using true users in terms of a given performance measure?”.
Suppose that the performance measure of interest is a priori HTER. The above question can then
be rephrased as: “Is the a priori HTER obtained using chimeric users similar to (or not significantly
different from) the one obtained using the true users?”. We can formally specify the null hypothesis
and its corresponding alternative hypothesis as follows:

e Hy: The a priori HTER obtained from chimeric users is equivalent to the one obtained from
true users.

e Hi: The a priori HTER obtained from chimeric users is different from the one obtained from
true users.
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Figure 1: The distribution of a priori HTER (thin line) estimated from 1000 random samplings of
chimeric users versus the HTER of true users (bold line). All thresholds were calculated to minimise
HTER on the development set. The HTER of the true users is in the 87.7 percentil (or 1.42% HTER)
and is within the 2.5 (dashed line) percentil (or 0.69% HTER) and 97.5 percentil (dotted line) (or
1.62% HTER). Hence, this experiment supports the null hypothesis.

Suppose that the HTER value due to chimeric users, v, is an instance of a random variable V' which
follows an unknown distribution. We are interested in:

p(v € “[a,b]|Hoy) = (18)

where ©[a, b] is the complementary of [a,b] — or the critical region, i.e., the set of values for which we
will reject Hy — and « is the level of the test — or the Type I error, i.e., the probability of selecting
H; when Hy is true. By convention, « is usually set to 1% or 5%. Note that the critical region is
computed such that the Type I error is only meaningful for a given « level.

Since the distribution of HTER due to chimeric users is unknown, we need to estimate it using
a random permutation procedure such that in each permutation, a biometric modality of one user
is paired with another biometric modality of yet another user. This procedure is somewhat similar
to the bootstrap-based non-parametric statistical test [4, 10] but different in two aspects: a boot-
strap manipulates samples whereas the permutation process here manipulates user identities; and a
bootstrap draws samples with replacement whereas the permutation process, as its name implies,
permutes identities, which means it draws identity without replacement. Since each permutation cre-
ates a “new” set of fusion scores, a fusion classifier has to be constructed before the HTER value
can be computed. By repeatedly applying the random permutation procedure, we can then obtain a
set of HTER values, which represents our non-parametric estimate of the distribution V. Evaluating
Eqn. (18) is simply a matter of determining if the HTER due to true users is in [a, b] (hence in favour
of Hyp) or in its complement °[a, b] (hence in favour of H;). The values ¢ and b are chosen such that
p(v € [a,b]) =1 — « for a given « and p(v < a) = p(v > b). Under such constraints, it is obvious to
see that p(v < a) = p(v > b) = /2. To illustrate this idea, we took an experiment from the XM2VTS
score-level fusion benchmark database, and applied the hypothesis test procedure mentioned. The
results are plotted in Figure 1.

Two fusion classifiers are used in the experiments, namely the mean operator and the Gaussian
Mixture Model (GMM). Both of these fusion classifiers are representative approaches of the loose
feature independence assumption and the loose feature dependence assumption, respectively. For the
mean operator, prior to fusion, scores are normalised to zero mean and unit variance such that none
of the two expert scores dominate just because of a larger variance. The normalisation parameters are
calculated from the development set. For the GMM, the number of Gaussian components is tuned by
simple validation.
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Table 2: The HTER range (whose confidence falls between 2.5% and 97.5% quantiles, corresponding
to the usual middle 95% confidence bound) of 1000 samples of random identity match (chimeric-user
effect) versus the HTER of true identity match for both the mean operator and the GMM fusion
classifiers, for each of the 21 fusion datasets. For the values of HTER of true identity match falling

Wy

outside the confidence range, a “x” sign is marked.

HTER (%)
No. | LP | Data set Mean GMM

(Face) (Speech) experts chimeric true chimeric true

1| 1| (FE,MLP)(LFCC,GMM) [0.36, 1.02] | 0.79 | [0.10,0.60] | 0.35
2| 1| (FH,MLP)(PAC,GMM) 0.70,1.36] | 1.13 | [0.38, 1.13] | 1.08
3| 1| (FHMLP)(SSC,GMM) 0.54,1.24] | 0.87 | [0.32,1.03] | 0.72
4 1 | (DCTs,GMM)(LFCC,GMM) | [0.16, 0.68] 0.53 | [0.11, 0.58] 0.44
5| 1| (DCTs,GMM)(PAC,GMM) | [0.71, 1.59] | 1.44 | [0.69, 1.62] | 1.42
6| 1| (DCTs,GMM)(SSC,GMM) | [0.60,1.38] | 1.14 | [0.55, 1.39] | 1.21
7| 1| (DCTb,GMM)(LFCC,GMM) | [0.13,0.47] | = 0.55 | [0.04, 0.51] | 0.47
8 1 | (DCTb,GMM)(PAC,GMM) [0.30, 0.93] | % 1.13 | [0.29, 0.97] | * 1.06
9 1 | (DCTb,GMM)(SSC,GMM) [0.27, 0.82] 0.75 | [0.22, 0.82] | * 0.86
10| 1| (DCTsMLP)(LFCC,GMM) | [0.52, 1.16] | 0.84 | [0.09, 0.58] | 0.50
11| 1| (DCTsMLP)(PAC,GMM) | [0.95,1.77] | 1.12 | [0.54, 1.40] | 0.86
12 | 1 | (DCTs,MLP)(SSC,GMM) (0.84,1.64] | 1.37 | [0.45,1.19] | 1.02
13| 1| (DCTb,MLP)(LFCC,GMM) | [1.31,2.62] | 1.62 | [0.23,1.08] | 0.58
14 | 1| (DCTbMLP)(PAC,GMM) | [2.42,3.84] | 3.65 | [1.41,2.91] | 2.60
15| 1 | (DCTh,MLP)(SSC,GMM) 2.07,3.43] | 2.88 | [1.00,2.22] | 1.55
16 | 2| (FI,MLP)(LFCC,GMM) 034,091 | 0.69 | [0.01,0.64] | 0.13
17 | 2| (FH,MLP)(PAC,GMM) 0.53,1.21] | 1.14 | [0.27,0.98 | 0.73
18 2 | (FH,MLP)(SSC,GMM) [0.50, 1.10] 0.98 | [0.17, 0.83] | * 0.89
19 | 2| (DCTh,GMM)(LFCC,GMM) | [0.00, 0.33] | 0.13 | [0.00, 0.38] | 0.38
20 | 2 | (DCTb,GMM)(PAC,GMM) | [0.04, 0.46] | 0.18 | [0.03,0.51] | 0.16
21 | 2 | (DCTH,GMM)(SSC,GMM) | [0.01,0.38] | 0.18 | [0.01, 0.51] | 0.17

According to the fusion protocol, there are 21 available multimodal data sets. The HTER dis-
tribution due to random identity match is sampled 1000 times and there are 200 users. This means
that the 1000 samples are a sheer portion of 1000/200! = 0, i.e., one cannot possibly evaluate all the
possible permutations. Table 2 lists the HTER range at 95% of confidence due to 1000 samples of
random identity match (chimeric-user effect) and the corresponding HTER, of true identity match.
The first 15 are fusion datasets taken from LP1 while the rest are from LP2. For the values of HTER
of true identity match falling outside the confidence range, a * sign is marked. There are two %’s for
the mean operator and three for the GMM.

Since Table 2 is limited to the criterion of HTER only, we also plot the whole spectrum of the so-
called Expected Performance Curve (EPC) [2], which selects a different thresholds for various criteria,
on a separate validation set, as follows:

A, = arg mAin aFAR(A) + (1 — a)FRR(A) (19)

with a a parameter that ranges from 0 to 1. Using this threshold, the EPC then plots the corresponding
HTER on the test set, with respect to a. This enables to obtain unbiased estimates of the HTER
since all hyper-parameters, including the threshold, are selected on some separate validation set.
Figures 2 and 3 thus show EPC curves of the distribution due to random identity match (with
a 95% confidence interval) and the EPC curve of true identity match, for the mean operator and
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the GMM, respectively. As can be observed, there are much more points where the HTER of true
identity match falls out of the 95% confidence range. Precisely, exactly 8/21 of experiments for the
mean operator and 7/21 of experiments for the GMM. Hence, based on the available fusion datasets,
about one third of them shows that the experiments with chimeric users are inconsistent with those
carried out with the true identity match setting. Considering the fact that the mean operator has no
parameters to be estimated and that the GMM has some, the free parameters in the fusion classifier
does, to some extents, contribute to the variability observed by HTER due to the chimeric-user effect.
Note that in both experiments, the 1000 random identity permutations were constrained to be the
same. This is essential to keep the possible experiment-induced variation to be minimal.

5 Conclusions

In this paper, the following issue was addressed: “Can chimeric persons be used in multimodal bio-
metric authentication experiments?”. This topic was tackled by 1) identifying the different levels
of dependence assumptions as a result of two dichotomies: feature-oriented dependence and score-
oriented dependence; and 2) by experimentally comparing the effects due to using chimeric users with
those using the original true modalities of same users (or simply “true users”). One major conclu-
sion from the first approach is that the independence assumption does not imply that one can use
the chimeric users in experiments. Instead, such assumption only guides how one should construct a
classifier to combine information from different modalities. Neither does the second more empirical
approach support the use of chimeric users. Indeed based on 21 fusion datasets and two fusion classi-
fiers, only about two thirds of the data indicate that chimeric users can be used, or in other words, the
use of true users does not vary significantly, at 95% of confidence, compared to the case when chimeric
users are used in experiments. The rest of the rather large one-third of datasets suggest that the
use of chimeric users cannot appropriately replace the dataset of the true modality matched dataset.
Considering the high variability of HTER due to the effect of chimeric users, several runs of fusion ex-
periments with different identity match are strongly recommended. Although such remedial procedure
does not necessarily reflect the case when true modality matched identity is used, it at least gives a
more accurate figure about the possible range of HTER values when the true identities are used. If
the 21 fusion datasets are representative of this scenario, then, one might have a 2/3 chance of better
reflecting the real HTER, after performing a large number of fusion experiments (1000 in our case!).
However, one should probably not use the obtained HTER as a claim that the performance reflects the
actual case where the real multimodal datasets are used. The current experimental approach adopted
here is somewhat preliminary and in some ways limited in scope. It does not answer for instance,
“how far the score distribution estimated with the independence assumption is from the one estimated
with the dependence assumption?”. Secondly, it does not yet answer the question: “Are the relative
HTER values, in contrast to absolute values as done here (e.g., in comparing two fusion methods)
consistent between experiments with chimeric users and those with true users?” These issues will be
dealt with in the near future.
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Figure 2: The EPC curve range (due to 1000 samples of random identity match) at 95% of confidence
versus the EPC curve of true identity match, for each of the 21 experiments, using the mean operator
as the fusion classifier. They are labeled accordingly from 1 to 21 corresponding to the experiment
numbers in Table 2. A x sign is marked for the experiments whose one or more HTERs of true identity
match fall outside the confidence range. For these points, circles are plotted on the corresponding
EPC curve.



14 IDIAP-RR 05-20

(1] (2]~ (3] [4] 6]~ (71~

[3]
15 3 3 15 2.5 3 15
2 \
1 2 2 1 2 1
15 !
0.5 1 1 0.5 L 1 0.5

0 0 0 0 0.5 0 0——
0O 05 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1

(8]~ (] (10] (11] (12] (13] (14]
3 3 15 2.5

2 2 5
2 15 15 4

2 2 1
15 1 1 3

1 1 0.5
1 0.5 0.5 2

0 0 0 0.5 —— 0 0 1
0 65 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1

[15] [16] [17] [18] * [19] [20] [21] *
4 0.8 2 2 15 2 2
3 0.6 15 15 1 15 15
2 0.4 1 1 1 1
0.5
1 0.2 0.5 0.5 Tl 7717105 0.5
T SR /
0 0 0 0 0 0 0

0O 05 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1

Figure 3: As per Figure 2, except that a Gaussian Mixture Model fusion classifier is used in place
of the mean operator. There are 7 data sets reporting that the EER due to true identity match is
significantly different from the EER distribution due to random identity match at 95% of confidence,
contrary to 8 in Figure 2.



