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Abstract. We introduce a new method for approximate inference in Hybrid Dynamical Graph-
ical models, in particular, for switching dynamical networks. For the important special case of
switching linear Gaussian state space models (switching Kalman Filters), our method is a novel
form of Gaussian sum smoother, consisting of a single forward and backward pass. Our method
is particularly well suited to switching observation models, since one of the key approximations
is obviated. We compare our method very favourably against a range of competing techniques,
including sequential Monte Carlo and Expectation Propagation, for which we also derive a novel
numerically more stable implementation using the ‘auxiliary variable trick’. We show that the use
of mixture representations for both filtering and smoothing can dramatically improve the quality
of the approximation.
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1 Introduction

Hybrid graphical models are stochastic systems which contain both continuous and discrete hid-
den/latent variables. Such models appear naturally in applications where a continuous state space dy-
namics can switch between different behavioural regimes, which affects useful form of non-stationarity.
Here we will be interested in temporal models of the form

p(v1:T , h1:T , s1:T ) =
T∏

t=1

p(vt|ht, st)p(ht|ht−1, st)p(st|st−1) (1)

where t is a discrete time index, ht is the state of the continuous hidden vector, st is a discrete
switch variable, and vt is the visible/observed vector (usually this is continuous). The notation x1:T is
shorthand for x1, . . . , xT . At time t = 1, p(s1|s0) simply denotes the prior p(s1). The graphical model
corresponding to this distribution is depicted in fig(1), which represents a temporal chain; extending
our considerations in this work to tree structures and higher order processes is straightforward.

1.0.1 Switching Linear State Space models

A special case of the above framework is the switching linear Gaussian state space model, also known
as the Switching Kalman Filter/Smoother (SKF), which is well known in many different disciplines
[3, 9, 21, 19, 12]. It is useful to describe these models as stochastic linear recursions with additive
Gaussian noise. The observation or visible variable vt is linearly related to the hidden state ht by

vt = B(st)ht + ηv(st), ηv(st) ∼ N (v̄(st), Σ
v(st)) (2)

where v̄(st) is the mean of the switch dependent observation (emission) noise at time t. Similarly,
Σv(st) is the covariance. The transition dynamics is linear,

ht = A(st)ht−1 + ηh(st), ηh(st) ∼ N
(
h̄(st), Σ

h(st)
)

(3)

where h̄(st) is the mean of the transition noise, and Σh(st) the corresponding covariance. This is an
example of a form of switching dynamics since the variable st controls which of a discrete set of linear
hidden dynamics and emissions will be used. The discrete switch variable st itself is Markovian, with
transition p(st|st−1). For notational simplicity, we dropped time suffices, and the reader should bear
in mind that all that follows holds also when the SKF parameters are time dependent. Usually, we
will set the means to zero, but they may be used, for example, to model time dependent external
inputs. An equivalent probabilistic formulation of the above equations is given by equation (1) with

p(vt|ht, st) = N (v̄(st) + B(st)ht, Σ
v(st)) , p(ht|ht−1, st) = N

(
h̄(st) + A(st)ht, Σ

h(st)
)

1.1 Forward-Backward Equations (Belief Propagation)

We are interested in how to perform inference in models of the form equation (1), both for the SKF
and more general scenarios. In particular we desire the so-called filtered estimate p(ht, st|v1:t) and
the smoothed estimate p(ht, st|v1:T ), for any 1 ≤ t ≤ T . From the general theory of graphical models,
since the distribution has the form of a chain, straightforward belief propagation (a special case of
the Junction Tree algorithm) over the pair ht, st will produce the exact inferences [11]. Normally,
therefore, such chain like structures would not cause much anxiety. However, the hybrid networks we
consider are formally intractable since the representation of the messages in belief propagation (or any
other exact approach) is exponentially complex in time.
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Figure 1: A Switching State-Space model. Square nodes denote discrete variables, round nodes
continuous variables. The variables ht are continuous. Most commonly the visible output variables vt

are continuous. The switch variables st are discrete, and control the hidden dynamics, and possibly
also the emissions. Links which are not allowed are those from continuous hidden variables to discrete
variables.

For readers less familiar with the probabilistic approach, we’ll briefly describe here how to perform
inference on chains [11, 20]. The presentation here follows [10]. First, let’s simplify the notation, and
write the distribution as

p =
∏

t

φ (xt−1, vt−1, xt, vt)

where xt ≡ ht ⊗ st, and φ (xt−1, vt−1, xt, vt) ≡ p(xt|xt−1)p(vt|xt). Our aim is to define ‘messages’ ρ,
λ (these correspond to the α and β messages in the Hidden Markov Model framework [16]) which
contain information from past observations and future observations respectively. Explicitly, we define
ρt(xt) ∝ p(xt|v1:t) to represent knowledge about xt given all information from time 1 to t. Similarly,
λt(xt) represents knowledge about state xt given all information from the future observations from
time T to time t + 1. In the sequel, we drop the time suffix for notational clarity. We define λ(xt)
implicitly through the requirement that the marginal smoothed inference is given by

p(xt|v1:T ) ∝ ρ (xt) λ (xt) (4)

Hence λ (xt) ∝ p(vt+1:T |xt, v1:t) = p(vt+1:T |xt) and represents all future knowledge about p(xt|v1:T ).
From this

p(xt−1, xt|v1:T ) ∝ ρ (xt−1) φ (xt−1, vt−1, xt, vt) λ (xt) (5)

Taking the above equation as a starting point, we have

p(xt|v1:T ) ∝
∫

xt−1

ρ (xt−1) φ (xt−1, vt−1, xt, vt) λ (xt) (6)

Consistency with equation (4) requires (neglecting irrelevant scalings)

ρ (xt) λ (xt) ∝
∫

xt−1

ρ (xt−1) φ (xt−1, vt−1, xt, vt) λ (xt) (7)

Similarly, we can integrate equation (5) over xt to get the marginal at time xt−1 which by consistency
should be proportional to ρ (xt−1) λ (xt−1). Hence

ρ (xt) ∝
∫

xt−1
ρ (xt−1) φ (xt−1, xt) λ (xt)

λ (xt)
, λ (xt−1) ∝

∫

xt
ρ (xt−1) φ (xt−1, xt) λ (xt)

ρ (xt−1)
(8)

where the divisions can be interpreted as preventing overcounting of messages. In an exact implemen-
tation, the common factors in the numerator and denominator cancel to give

Forward Recursion: ρ (xt) ∝
∫

xt−1

ρ (xt−1) φ (xt−1, vt−1, xt, vt) (9)
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Backward Recursion: λ (xt−1) ∝
∫

xt

φ (xt−1, vt−1, xt, vt) λ (xt) (10)

which are the usual definitions of the messages, defined as a set of independent recursions. The exten-
sion to more general singly connected structures is straightforward and results in partially independent
recursions which communicate only at branch points of the tree [11].

Why is inference intractable?

Without loss of generality, let’s write the forward message ρ(ht, st) as ρ (st) ρ(ht|st). Then the forward
recursion equation (9) is

ρ (st) ρ(ht|st) ∝
∑

st−1

ρ (st−1) p(st|st−1)

∫

ht−1

p(ht|ht−1, st−1)p(vt|ht, st)ρ(ht−1|st−1)

Even if the integral is tractable, due to the summation over st−1, for each state st, the distribution
ρ(ht|st) is a mixture. At each time step the number of mixture component parameters that need to be
passed increases by a factor of S, resulting in an exponential increase in the complexity of representing
the messages with time. Hence, the intractability here arises not because of the structure of the graph,
but because the messages cannot be represented in a compact way.

1.2 Approximation Strategies

Whilst much of what we consider in this article extends readily to more general noise models, by
far the most popular scenario studied in the literature are SKFs, and most reported approximation
strategies are specific to this case.

For the SKF, the filtered estimate ρ(ht|st) will be a mixture of Gaussians, with an exponen-
tial explosion of components with time. One useful strategy for filtering, therefore, is to represent
ρ(ht−1|st−1) by a set of K Gaussians, and project the set of K × S Gaussians that represent ρ(ht|st)
back to a mixture of K Gaussians. This is the so-called Gaussian Sum approximation [2], and is
a form of Assumed Density Filtering (ADF) [14]. The fact that λ (xt) is not a distribution in xt

has important consequences for any approximation method since it is not clear how to perform such
collapse or projection methods on non-distributions. For this reason, approximate filtering is ‘easier’
than smoothing.

To make a Gaussian Sum approximation suitable for smoothing, [13] used a two-filter method in
which the dynamics of the chain are reversed, and the Gaussian Sum approximation on the forward
and reversed dynamics combined. In principle, such an approach is potentially attractive, although
the implementation in [13] is somewhat inelegant in the specific approach used to form the dynamics
reversal, appealing to unnecessary heuristics. Our approach may be viewed as somewhat similar
to a form of dynamics reversal, but is formulated consistently within the given constraints of the
probabilistic framework.

Expectation Propagation (EP) [14] addresses the fact that λ(xt) is not a distribution by using equa-
tion (8) to form the projection (or ‘collapse’). In the numerator, the terms

∫

xt−1
ρ (xt−1) φ (xt−1, xt) λ (xt)

and
∫

xt
ρ (xt−1) φ (xt−1, xt) λ (xt) represent the joint distributions p(xt|v1:T ) and p(xt−1|v1:T ). Since

these are distributions (albeit a mixture in the hybrid case), they may be projected/collapsed to a
single or smaller number of components. The update for the ρ message is then given by division by
the λ potential, and vice versa. The resulting recursions, due to the approximation, are no longer
independent and [10] show that using more than a single forward sweep and backward sweep often
improves on the quality of the approximation. However, Expectation Propagation is notoriously un-
stable. In order to eliminate numerical instabilities in our experimental comparisons, we have used
our own implementation of EP, see section (4), which is numerically relatively stable and based on
the work in [4]. A difficulty with EP is that division of potentials only makes sense for members of
the exponential family. More complex methods could be envisaged in which rather than an explicit
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st−1 st st+1 st+2
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Figure 2: The approximation used in the GPB2 method. One approximates p(st|st+1, v1:T ) by
p(st|st+1, v1:t). In general, one wouldn’t expect this approximation to improve much upon the fil-
tered estimate, since all the future observations are discarded. The only additional information,
beyond that used by the filtered estimate, is the state of st+1. The green (darker) node is the variable
we wish to find the posterior state of. The yellow(lighter shaded) nodes are variables in known states,
and the hashed nodes are variables whose states are indeed known, but assumed unknown for the
approximation.

division, the new messages are defined by minimising some measure of divergence between ρ(xt)λ(xt)
and

∫

xt−1
ρ (xt−1) φ (xt−1, xt) λ (xt), such as the Kullback-Leibler divergence. Whilst this is certainly

feasible, it is somewhat unattractive computationally since this would require for each timestep an
expensive minimization.

Variational methods [9] are interesting since they are able to exploit the structure in the hidden
space. For example, if the switch st has a factorial structure, the variational methods can still be
tractably implemented. Many other methods are more difficult since they scale exponentially with the
number of hidden factors. Whilst the variational methods are therefore potentially useful, they suffer
in the sense that their goal is not to approximate the marginal inference p(ht|v1:T ), but rather the
joint distribution p(h1:T |v1:T ). This puts them at a disadvantage when compared to other methods
that more directly approximate the marginal [18]. In this work, we consider only the case where st

has a tractably small number of states, and therefore we will not consider them further in this article.
Generalised Pseudo Bayes2 (GPB2) [3, 12, 15] is a popular approximation method for smoothed

inference. In order to form a tractable recursion for the smoothed switch variables, the approximation
p(st|st+1, v1:T ) ≈ p(st|st+1, v1:t) is used, see fig(2). This corresponds to a potentially severe loss of
future information and, in general, GPB2 cannot be expected to improve much on ADF.

Some of the most popular approaches to filtering and smoothing are based on sequential Monte
Carlo [8]. Whilst potentially powerful, these non-analytic methods typically suffer in high-dimensional
latent/hidden spaces since they are often based on naive importance sampling, which restricts their
practical use. Implementations of Rao-Blackwellisation (see for example [7]) may not help in difficult
problems where the continuous posterior is highly non-Gaussian, and we are unaware of methods that
have addressed this.

2 Expectation Correction

Our aim is to introduce a method for computing the smoothed estimate p(ht|v1:T ) that is numerically
stable and extendable. Essentially, we replace the λ message with a recursion that works directly on
distributions. The approach is analogous to the Rauch-Tung-Striebel ‘correction’ smoother for Kalman
Filters [17], although its application in the Hybrid framework requires some care. Our approach will be
essentially a Gaussian sum approximation for a single forward and backward pass. We will show that
this gives similar performance to competing methods for inference in SKFs when a single Gaussian is
used in the approximation. More importantly, we will show how to extend our method to use mixture
representations which can lead to dramatic improvements in difficult cases where the posterior is
strongly multimodal. We’ll do this in some generality, and then in section (3) apply this to the special
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st−1 st

ht−1 ht

vt

Figure 3: Structure of the forward pass. Essentially, the forward pass defines a ‘prior’ distribution at
time t− 1 which contains all the information from the variables v1:t−1.

case of SKFs. In this general derivation, we’ll assume that the forward propagation of posterior
estimates from one time step to the next is unproblematic. First we’ll describe the forward pass, since
this is required to be precomputed for our backpass.

2.1 Forward Pass (Filtering)

Our approach for the forward pass is fairly standard, and is essentially Assumed Density Filtering. The
forward pass is a distribution p(st, ht|v1:t) and it is convenient to write this in the form p(st, ht|v1:t) =
p(ht|st, v1:t)p(st|v1:t). Then, rather than using the single forward recursion, equation (9), we can form
a separate recursion for p(st|v1:t) and p(ht|st, v1:t).

A recursion for p(ht|st, v1:t)

This can be obtained as follows:

p(ht|st, v1:t) =
∑

st−1

p(ht, st−1|st, v1:t)

∝
∑

st−1

p(ht|st−1, st, v1:t)p(vt|st−1, st, v1:t−1)p(st|st−1)p(st−1|v1:t−1) (11)

The factor p(st|st−1) is given by the model, and p(st−1|v1:t−1) comes from recursion at the previous
timestep. The term p(ht|st−1, st, v1:t) can be found using the dynamics as follows

p(ht|st−1, st, v1:t) ∝ p(ht, st−1, st, v1:t) ∝ p(ht, vt|st−1, st, v1:t−1) (12)

We can find the joint distribution p(ht, vt|st−1, st, v1:t−1), and then condition on vt to easily find the
distribution p(ht|st−1, st, v1:t). Similarly, the factor p(vt|st−1, st, v1:t−1) in equation (11) is straight-
forward since this corresponds to a single forward iteration of the dynamics with known switch states,
integrated over all ht−1, ht. We assume that this, in general, would cause little difficulty.

Using the above results, we are now in a position to calculate equation (11). For each setting of
the variable st, we will therefore have a mixture of S distributions p(ht|st, st−1, v1:t), with a suitable
mixture coefficient. Since, with time, this will entail an exponential growth St of mixture components,
we need to approximate the mixture p(ht|st, v1:t) with a simpler representation q(ht|st, v1:t). Perhaps
the simplest idea is to project/collapse each mixture back to a single component at each timestep.
Many different collapse methods can be envisaged. Arguably the most natural is to impose that that
the sufficient statistics of the projection q(ht|st, v1:t) match those of p(ht|st, v1:t). For example, if
p(ht|st, v1:t) is a mixture of Gaussians, and q(ht|st, v1:t) is a single Gaussian, it would be reasonable
that the mean and covariance of q should be set to the mean and covariance of the mixture of Gaussians
– this is straightforward to do, as shown in appendix (B).
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it−1

ht−1 ht

vt

Figure 4: Structure of the mixture representation of the forward pass. Essentially, the forward pass
defines a ‘prior’ distribution at time t−1 which contains all the information from the variables v1:t−1.

A recursion for p(st|v1:t)

p(st|v1:t) ∝
∑

st−1

p(st, st−1, vt, v1:t−1) =
∑

st−1

p(vt|st, st−1, v1:t−1)p(st|st−1)p(st−1|v1:t−1) (13)

The factor p(vt|st, st−1, v1:t−1) is straightforward to calculate, since this just requires forward propa-
gation with known switch states. The factor p(st|st−1) is trivial, whilst the factor p(st−1|v1:t−1) comes
from the previous timestep.

2.2 Forward Pass : mixture representation

Here we extend the forward pass so that the collapse has, for each state st, not just a single component,
but a set of I components.

q(ht|st, v1:t) =
∑

it

p(ht|it, st, v1:t)p(it|st, v1:t) (14)

We use it ∈ 1, . . . , I to represent the mixture component1.

A recursion for p(ht|st, v1:t)

As in the single component case, our strategy will be to find first p(ht|st, v1:t). We will assume that
the mixture coefficients p(it−1|st−1, v1:t−1) have been given to us from a previous timestep. We will
address how to set these for the current time step p(it|st, v1:t) in due course. We may then proceed
as follows:

p(ht|st, v1:t) ∝
∑

it−1,st−1

p(ht|it−1, st−1, st, v1:t)p(vt|it−1, st−1, st, v1:t−1)

p(st|st−1)p(it−1|st−1, v1:t−1)p(st−1|v1:t−1) (15)

The term p(ht|it−1, st−1, st, v1:t) can be found from

p(ht|it−1, st−1, st, v1:t) ∝ p(ht, vt|it−1, st−1, st, v1:t−1) (16)

The right hand side of the above equation is easy to find since it corresponds to a single forward propa-
gation from the previous filtered state. Then conditioning the joint distribution p(ht, vt|it−1, st−1, st, v1:t−1)

1In our code we include the possibility of using a time dependent number of components, It, since there may be some
regions where a smaller or larger number is useful. Also, a little care is required at the beginning of the chain since at
time t = 1, the exact filtered estimate p(h1|v1, s1) is not a mixture, and in general we require It ≤ S × It−1.
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ht ht+1
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Figure 5: Structure of the backward pass.

on vt gives p(ht|it−1, st−1, st, v1:t). Using the above results, we are now in a position to calculate equa-
tion (15). For each setting of the variable st, we will therefore have a mixture of I × S distributions
p(ht|it−1, st−1, st, v1:t) which we can collapse back to a mixture of S distributions, which defines the
mixture weights p(it|st, v1:t). How to collapse a mixture to another mixture is partly a matter of taste.
For computational expediency, we recommend either a simple merging of components that have low
weight, or retention of the largest components. For the SKF case we describe explicitly the method
we use in appendix section (B.1).

A recursion for p(st|v1:t)

By analogy with the single component case, we have:

p(st|v1:t) ∝
∑

it−1 ,st−1

p(st, it−1, st−1, vt, v1:t−1)

=
∑

st−1

p(vt|st, st−1, v1:t−1)p(st|st−1)p(it−1|st−1, v1:t−1)p(st−1|v1:t−1) (17)

where all factors in the final expression are known.

2.3 Backpass

In the following, we describe a general ‘correction’ smoother. This will consist of ‘correcting’ the
filtered expected (or marginal) estimates p(st, ht|v1:t) obtained from the Forward Pass into smoothed
estimates p(st, ht|v1:T ). Let’s try to write a backward recursion for the (smoothed) posteriors, in a
way analogous to the Rauch-Tung-Striebel (RTS) correction method for SKFs [17].

p(ht, st|v1:T ) ∝
∑

st+1

∫

ht+1

p(ht, st|ht+1, st+1, v1:T )p(ht+1, st+1, v1:T )

∝
∑

st+1

∫

ht+1

p(ht, st|ht+1, st+1, v1:t)p(ht+1, st+1|v1:T ) (18)

The first factor may be written

p(ht, st|ht+1, st+1, v1:t) ∝ p(ht|ht+1, st+1, st, v1:t)p(st|ht+1, st+1, v1:t) (19)

Using the above formula, we can write the backward recursion as

p(ht, st|v1:T ) =
∑

st+1

∫

ht+1

p(ht|ht+1, st+1, st, v1:t)p(st|ht+1, st+1, v1:t)p(ht+1, st+1|v1:T ) (20)

Formally, this is sufficient to define a backwards recursion directly for the smoothed estimate p(ht, st|v1:T ).
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st−1 st st+1 st+2

ht−1 ht ht+1 ht+2

vt−1 vt vt+1 vt+2

st−1 st st+1 st+2

ht−1 ht ht+1 ht+2

vt−1 vt vt+1 vt+2

Figure 6: Backpass approximation. Left: Our approximation replaces p(ht+1|st+1, st, v1:T ) by
p(ht+1|st+1, v1:T ). Motivation for this is that st only influences ht+1 through ht. However, ht will
most likely be heavily influenced by v1:t, so that not knowing the state of st is likely to be of secondary
importance. Right : In the case that the switches affect only the observations, and not the dynamics,
the ‘approximation’ is exact since, given the other evidence, st has no influence on ht+1. The green
(darker) node is variable we wish to find the posterior state of. The yellow(lighter shaded) nodes are
variables in known states, and the hashed nodes are variables whose states are indeed known, but
assumed unknown for the approximation.

However, it’s clear that, in general, the representation p(ht, st|v1:T ) will contain an exponential num-
ber of mixture components since the number of mixtures increases by a factor S at each iteration.
Furthermore, the integral in this representation needs to be approximated, for which this form of the
recursion is not particularly suited since the variable ht+1 is entwined in different places. A simple
approximation would be to replace p(st|ht+1, st+1, v1:t) by p(st|st+1, v1:t) and there may be some merit
in this. However, we prefer to replace ht+1 by some kind of average value although, in the above form,
it is not clear what the distribution of ht+1 is, and therefore what average value it should take. For
these reasons, we prefer to find an alternative where we have more confidence that we can replace
problematic terms with reasonable approximations. Consider therefore

p(ht, st|v1:T ) =
∑

st+1

p(ht, st, st+1|v1:T )

=
∑

st+1

p(ht|st, st+1, v1:T )p(st|st+1, v1:T )p(st+1|v1:T )

=
∑

st+1

p(ht|st, st+1, v1:T )p(st+1|v1:T )

∫

ht+1

p(st|ht+1, st+1, v1:t)p(ht+1|st+1, v1:T )

(21)

This form of the recursion is potentially more useful since it is clearly a mixture of the distributions
p(ht|st, st+1, v1:T ) with an associated set of mixture weights p(st+1|st, v1:T ). Usually, both the distri-
butions p(ht|st, st+1, v1:T ) and weights p(st+1|st, v1:T ) will be difficult to obtain exactly. We’ll consider
both of these terms now separately.

2.3.1 Evaluating p(ht|st, st+1, v1:T )

We can write p(ht|st, st+1, v1:T ) as the marginal of the joint distribution p(ht, ht+1|st, st+1, v1:T ). This
joint distribution is somewhat difficult to find exactly, and we seek an approximation that is in keeping
with the RTS spirit. This motivates the following factorisation

p(ht, ht+1|st, st+1, v1:T ) = p(ht|ht+1, st, st+1, v1:T )p(ht+1|st, st+1, v1:T )

= p(ht|ht+1, st, st+1, v1:t)p(ht+1|st, st+1, v1:T ) (22)

The first factor in equation (22) may be found from considering the joint distribution

p(ht, ht+1|st, st+1, v1:t) = p(ht+1|ht, st, st+1, v1:t)p(ht|st, v1:t) (23)
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which itself can be found from a simple forward dynamics from the filtered estimate p(ht|st, v1:t).
Then conditioning equation (23) to find p(ht|ht+1, st, st+1, v1:t) effectively constitutes a reversal of the
forward dynamics.

The second factor p(ht+1|st, st+1, v1:T ) in equation (22) may cause some difficulty, and is de-
picted in fig(6). When the switch variables affect only the observations and not the dynamics,
then p(ht+1|st, st+1, v1:T ) ≡ p(ht+1|st+1, v1:T ). Since we know p(ht+1|st+1, v1:T ) from the previous
smoothed estimate, for the case of a switching observation model, no additional approximations are
required. Otherwise, we make the simple approximation p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ).
Other approximations may also be suitable, but we have found that, at least in the context of SKFs,
this often produces a reasonable approximation. Compared with the GPB2 method, fig(2), the drop-
ping of this dependence is rather delicate and, reiterating, introduces no approximation in the case of
switching observation models.

2.3.2 Evaluating p(st|ht+1, st+1, v1:t)

We also need to consider

p(st|ht+1, st+1, v1:t) =
p(ht+1|st+1, st, v1:t)p(st|st+1, v1:t)

∑

s′

t
p(ht+1|st+1, s

′
t, v1:t)p(s′t|st+1, v1:t)

(24)

The term p(ht+1|st+1, st, v1:t) is readily found by marginalising equation (23). The only term we
haven’t discussed is

p(st|st+1, v1:t) ∝ p(st, st+1|v1:t) ∝ p(st+1|st)p(st|v1:t)

which is straightforward.

2.3.3 Approximating the Average 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T )

We now have all the ingredients required to look at the integral in equation (21), namely
∫

ht+1

p(st|ht+1, st+1, v1:t)p(ht+1|st+1, v1:T )

which we recognise as the average 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ). Perhaps the simplest approx-

imation is to replace ht+1 by it’s mean value. Replacing ht+1 with 〈ht+1|st+1, v1:T 〉 means that the
integral is approximated by

〈p(st|ht+1, st+1, v1:t)〉 ≈
1

Z
p(ht+1 = 〈ht+1|st+1, v1:T 〉 |st+1, st, v1:t)p(st|st+1, v1:t) (25)

where Z is a constant to ensure normalization over st.
More sophisticated approximations of the average would correspond to the ‘correction’ of higher

order moments. Fluctuation expansions ht+1 ≈ 〈ht+1|st+1, v1:T 〉+ ηt+1 spring to mind as an obvious
extension.

Forming the Recursion

It is useful to put the smoothed estimate in the form

p(ht, st|v1:T ) = p(st|v1:T )p(ht|st, v1:T )

The distribution p(ht|st, v1:T ) is readily obtained from the joint equation (21) by conditioning on st

to form the mixture

p(ht|st, v1:T ) =
∑

st+1

p(st+1|st, v1:T )p(ht|st, st+1, v1:T )
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st st+1

it jt+1

ht ht+1

vt vt+1

Figure 7: Structure of the backward pass for mixtures.

which may be collapsed to a single distribution using a standard approach.
The term p(st|v1:T ) is given by (using our approximation for the average)

p(st|v1:T ) =
∑

st+1

p(st+1|v1:T )
p(ht+1 = 〈ht+1〉 |st+1, st, v1:t)p(st|st+1, v1:t)

∑

s′

t
p(ht+1 = 〈ht+1〉 |st+1, s

′
t, v1:t)p(s′t|st+1, v1:t)

(26)

In many applications it is quite likely that a single component collapse would be sufficient since
the forward pass p(ht|st, v1:t), which is a mixture, is simply being corrected to form the smoothed
estimate. Indeed, in most cases, the smoothed estimate is indeed ‘smoother’, so that we might not
anticipate much need for a backpass using mixtures. Nevertheless, we describe below how to do this
in the contingency that such an extension might be useful, depending on the application at hand.

2.3.4 Backward pass : mixture representation

Here we show how to collapse p(ht|st, v1:T ) to a mixture
∑

jt
p(jt|st, v1:T )p(ht|jt, st, v1:T ). This will

make use of the mixture representation of our forward messages. Analogously to the case with a single
component, we can write

p(ht, st|v1:T ) =
∑

it,jt+1,st+1

p(st+1|v1:T )p(jt+1|st+1, v1:T )p(ht|jt+1, st+1, it, st, v1:T )

×
∫

ht+1

p(it, st|ht+1, st+1, v1:t)p(ht+1|jt+1, st+1, v1:T ) (27)

As in the case of a single component, we need to approximate the average in the last line of the above
equation. As before, a simple minded approximation is to replace the average of p(it, st|ht+1, st+1, v1:t)
over ht+1 with p(it, st|ht+1, st+1, v1:t) evaluated with ht+1 set to its average value 〈ht+1|jt+1, st+1, v1:T 〉.
Again more sophisticated approximations may readily be considered. In the above,

p(it, st|ht+1, st+1, it, v1:t) ∝ p(ht+1|it, st, st+1, v1:t)p(st+1|st)p(it|st, v1:t)p(st|v1:t)

where p(ht+1|it, st, st+1, v1:t) is found from marginalising the joint distribution

p(ht+1, ht|st+1, it, st, v1:t) = p(ht+1|ht, st+1)p(ht|it, st, v1:t) (28)

Again, we need to approximate p(ht|it, st, jt+1, st+1, v1:T ). We can use the same method as before by
considering this as the marginal of the joint distribution

p(ht, ht+1|it, st, jt+1, st+1, v1:T ) = p(ht|ht+1, it, st, jt+1, st+1, v1:t)p(ht+1|it, st, jt+1, st+1, v1:T )

≈ p(ht|ht+1, it, st, jt+1, st+1, v1:t)p(ht+1|jt+1, st+1, v1:T ) (29)
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Integrating equation (27) over ht, we have

p(st|v1:T ) ≈
∑

it,jt+1,st+1

p(st+1|v1:T )p(jt+1|st+1, v1:T )p(it, st|ht+1, st+1, jt+1, v1:T )

where ht+1 ≡ 〈ht+1|jt+1, st+1, v1:T 〉. Using the above, we can form the distribution

p(ht|st, v1:T ) =
∑

it,jt+1,st+1

p(it, jt+1, st+1|st, v1:T )p(ht|it, st, jt+1, st+1, v1:T )

This mixture can then be collapsed to smaller mixture using any method of choice, to give

p(ht|st, v1:T ) ≈
∑

jt

p(jt|st, v1:T )p(ht|jt, v1:T )

3 Switching Linear State Space models

We apply the previous general framework to the linear switching model (Switching Kalman Filter) of
section (3). Our method will then consist of a standard forward pass using a Gaussian Sum approx-
imation to calculate the filtered estimate, following by a correction backpass to form the smoothed
estimate. In the following, for notational clarity, we derive the associated recursions for the case
that the mean of the Gaussian noise is zero, although their inclusion is given in the algorithm in the
appendices.

Here we will just derive Expectation Correction using only a single Gaussian for both the forward
and backward passes. The straightforward extension to the mixture case is given in appendix (D),
with corresponding pseudo-code and the required initialisations for the recursions. We also give in
appendix (C) the likelihood p(v1:T ) approximation using mixtures of Gaussians.

3.1 The Forward Pass

The forward pass is a distribution p(st, ht|v1:t). It is convenient to write this is the form

p(st, ht|v1:t) = p(ht|st, v1:t)p(st|v1:t)

where the continuous message will be approximated by a Gaussian with mean ft(st) and covariance
Ft(st). The discrete message p(st|v1:t) will be written as rt(st). Expectation Correction will therefore
produce a recursion for ft, Ft and rt.

A recursion for p(ht|st, v1:t)

We will use the approach outlined in section (2.1), in which we will first find equation (12). That
is, we find the joint distribution p(ht, vt|st−1, st, v1:t−1), and condition on vt to find the distribution
p(ht|st−1, st, v1:t). The joint distribution p(ht, vt|st−1, st, v1:t−1) is easily evaluated by realising that
for each setting of the switch variables st−1, st the distribution over ht, vt is jointly Gaussian. In the
sequel we use 〈·|c〉 to denote averages conditional on the switch states expressed by c. ∆ denotes
a fluctuation, namely the deviation from the average, ∆x ≡ x − 〈x〉. Hence the covariance matrix
between vt and ht, knowing the switch states st, st−1 is denoted

〈
∆vt∆hT

t |st, st−1

〉
. The means and

covariances are easily found from the relations

vt = B(st)ht + ηv(st), ht = A(st)ht−1 + ηh(st)

Using the above, the covariance elements of the joint distribution are given by

〈
∆vt∆vT

t |st, st−1

〉
= B(st)

〈
∆ht∆hT

t |st, st−1

〉
BT (st) + Σv(st)
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〈
∆ht∆hT

t |st, st−1

〉
= A(st)

〈
∆ht−1∆hT

t−1|st−1

〉
AT (st) + Σh(st) (30)

〈
∆vt∆hT

t |st, st−1

〉
= B(st)

〈
∆ht∆hT

t |st, st−1

〉

whilst the means of the two variables are given by

〈vt|st, st−1〉 = B(st)A(st) 〈ht−1|st−1〉 , 〈ht|st, st−1〉 = A(st) 〈ht−1|st−1〉
In the above, using our moment representation of the forward messages

〈ht−1|st−1〉 ≡ ft−1(st−1),
〈
∆ht−1∆hT

t−1|st−1

〉
≡ Ft−1(st−1)

Using the above results, we are now in a position to calculate equation (11). We can find p(ht|st−1, st, v1:t)
by conditioning the joint Gaussian, using the results in the appendix (B). Similarly, p(vt|st−1, st, v1:t−1)
is a Gaussian with mean and covariance given by 〈vt|st, st−1〉 and

〈
∆vt∆vT

t |st, st−1

〉
above. For each

setting of the variable st, we will therefore have a mixture of S Gaussians, which can easily be collapsed
to a single Gaussian using the results in the appendix (B).

Calculating the filtered estimate p(st|v1:t)

p(st|v1:t) ∝
∑

st−1

p(st, st−1, vt, v1:t−1) =
∑

st−1

p(vt|st, st−1, v1:t−1)p(st|st−1)p(st−1|v1:t−1) (31)

The factor p(vt|st, st−1, v1:t−1) is straightforward to calculate, since this is just a mixture of Gaussians.
The factor p(st|st−1) is trivial, whilst the factor p(st−1|v1:t−1) comes from the previous timestep.

3.2 The Backward Pass

The backpass will directly yield an estimate of the smoothed posterior. Using a single Gaussian, our
approximation to p(ht|st, v1:T ) will have mean gt(st) and covariance Gt(st). Expectation Correction
will therefore produce a recursion for gt, Gt and lt ≡ p(st|v1:T ). The reader is directed to appendix
(D) for details of the mixture of Gaussians calculation.

Evaluating p(ht|st, st+1, v1:T )

From section (2.3.1), we need p(ht|ht+1, st, st+1, v1:T ) and p(ht+1|st, st+1, v1:T ) which can be found
from the joint distribution p(ht, ht+1|st, st+1, v1:T ). Following the strategy presented in section (2.3.1),
first we find the distribution p(ht|ht+1, st+1, st, v1:t). This is given by conditioning the joint distribu-
tion

p(ht+1, ht|st+1, st, v1:t) = p(ht+1|ht, st+1)p(ht|st, v1:t)

which is used to define the backward equation

ht|ht+1, st, st+1, v1:t =
←−
A (st, st+1)ht+1 +←−m(st, st+1) +←−η (st, st+1)

where
←−
A and←−m and←−η (st, st+1) ∼ N (0,

←−
Σ t(st, st+1)) are easily found using the conditioned Gaussian

results in appendix (A). Then the joint distribution p(ht, ht+1|st, st+1, v1:T ) = p(ht|ht+1, st, st+1, v1:t)p(ht+1|st, st+1, v1:T )
has the following mean and covariance

〈ht|st, st+1, v1:T 〉 =
←−
A (st, st+1)gt+1(st+1) +←−m(st, st+1) (32)

〈ht+1|st, st+1, v1:T 〉 = gt+1(st+1)
〈
∆ht+1∆hT

t+1|st, st+1, v1:T

〉
= Gt+1(st+1)

〈
∆ht∆hT

t |st, st+1, v1:T

〉
=
←−
A (st, st+1)Gt+1(st+1)

←−
AT (st, st+1) +

←−
Σ t(st, st+1)

〈
∆ht∆hT

t+1|st, st+1, v1:T

〉
=
←−
A (st, st+1)Gt+1(st+1)

From this, we can find easily the marginal p(ht|st, st+1, v1:T ).
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Approximating the average 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T )

In the approximation, equation (25), we replace the average with respect to ht+1 by the integrand
evaluated with ht+1 set to its mean value gt+1(st+1). (A more refined approximation would also make
use of the covariance Gt+1(st+1). Replacing ht+1 with 〈ht+1|st+1, v1:T 〉 means that the integral is
approximated by

1

Z

e−
1
2
zT

t+1(st,st+1)Σ−1(st,st+1|v1:t)zt+1(st,st+1)

√

det Σ(st, st+1|v1:t)
p(st|st+1, v1:t)

where zt+1(st, st+1) ≡ 〈ht+1|st+1, v1:T 〉 − 〈ht+1|st, st+1, v1:t〉 and Z is a constant to ensure normal-
istion over st. The covariance Σ(st, st+1|v1:t) ≡ 〈∆ht+1∆ht+1|st, st+1, v1:t〉 is given by time shifting
equation (30). Whereas as in Expectation Propagation we divide potentials (which corresponds to
subtracting the canonical parameters), here we subtract moments, if only the first moment in this
simple approximation. More complex approximations using fluctuation expansions or Gaussian Field
approximations [5] immediately spring to mind. Variational approximations would likely prove too
expensive.

The final mixture representation of the smoothed posterior can then be collapsed to a single
Gaussian using the usual approach. The extension to the mixture collapse is given in appendix (D).

4 Expectation Propagation for SKF: the Auxiliary variable
trick

Following along the same lines as Belief Propagation, we denote the Filtered posterior p(ht, st|v1:t)
by ρ(ht, st) (up to a neglectable proportionality constant), which represents the state of ht, st given
all past observations v1:t up to the present t. Similarly, we all future information about ht, st, is is
contained in the quantity p(vt+1:T |ht, st) which is denoted by λ(ht, st). Without loss of generality, we
may factorise these functions as ρ(ht, st) ≡ ρ(ht|st)ρ(st), and λ(ht, st) ≡ λ(ht|st)λ(st)

The two–times potential p(ht−1, st−1, ht, st | v1:T ) is then proportional to:

ρt−2,t−1(ht−1, st−1)p(vt |ht, st)p(ht |ht−1, st)p(st | st−1)λt+1,t(ht, st)

Hence

p(ht−1, ht|st−1, st, v1:T )p(st−1, st|v1:T )

∝ ρ(ht−1|st−1)p(vt|ht, st)p(ht|ht−1, st)λ(ht|st)ρ(st−1)p(st|st−1)λ(st)

Integrating the above, we find

p(st−1, st|v1:T )

∝ ρ(st−1)p(st|st−1)λ(st)

∫

ht−1,ht

ρ(ht−1|st−1)p(vt|ht, st)p(ht|ht−1, st)λ(ht|st)

To find p(ht−1, ht|st−1, st, v1:T ), we only need to take into account those terms in the joint two time
potential that depend on ht−1 and ht for fixed st, st−1. Also, we know that this will be a Gaussian
distribution. Therefore, we search for the Gaussian

p(ht−1, ht|st−1, st, v1:T ) ∝ ρ(ht−1|st−1)p(vt|ht, st)p(ht|ht−1, st)λ(ht|st)

Once we have found p(ht−1, ht|st−1, st, v1:T ) and p(st−1, st|v1:T ), we can use them do define the Belief
Propagation recursions:
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Forward Pass:

ρ(ht, st) ∝
∑

st−1

∫

ht−1
p(ht−1, st−1, ht, st|v1:T )

λ(ht, st)

∝
∑

st−1
p(st−1, st | v1:T )

∫

ht−1
p(ht−1, ht|st−1, st, v1:T )

λ(st)λ(ht|st)

∝
∑

st−1
p(st−1, st | v1:T )p(ht|st−1, st, v1:T )

λ(st)λ(ht|st)

Backward Pass:

λ(ht−1, st−1) ∝
∑

st

∫

ht
p(ht−1, st−1, ht, st|v1:T )

ρ(ht−1, st−1)

∝
∑

st
p(st−1, st|v1:T )

∫

ht
p(ht−1, ht|st−1, st, v1:T )

ρ(st−1)ρ(ht−1|st−1)

∝
∑

st
p(st−1, st|v1:T )p(ht−1|st−1, st, v1:T )

ρ(st−1)ρ(ht−1|st−1)

We will use the following parameterisations of the messages:

ρt−1,t(ht | st) ∝
1

∣
∣F̃ (st)

∣
∣
1/2

e−
1
2
(ht−f̃(st))

T F̃−1(st)(ht−f̃(st))

λt+1,t(ht | st) = e−
1
2 (htG(st)ht−2htG(st)gt(st))

The reader should bear in mind that where previous we used G to parameterise the smoothed estimate
in Expectation Correction, here in Expectation Propagation, we use G to parameterise the λ message
only. The smoothed posterior is given then by the product of the associated λ and ρ messages. In
general, our notation in Expectation Propagation is to used tilded parameters such as F̃ to denote the
moment representation, and untilded messages to denote the canonical representation, as will become
clearer throughout the derivation.

4.0.1 The Auxiliary variable Trick

The auxiliary variable trick [1] is useful for deriving recursions involving λ messages simply, and avoids
the explicit appearance of inverse noise covariance parameters, which improves numerical stability.
Our use of the trick here is slightly different to that presented in [1] since here more care is needed
with proportionality terms that in the simpler Kalman Filter may be neglected.

The potential λ(ht | st) can be expressed as a probability distribution of an auxiliary variable at

which represents the amount of information coming from the future. If at has the following probability
distribution:

p(at|ht, st) = N(ht, cov = G−1(st)) ∝ |G(st)|1/2e−
1
2
(at−ht)

T Gt(st)(at−ht)

then

λ(ht|st) =
e

1
2
gT (st)G(st)g(st)

|G(st)| 12
p(at|ht, st)|at=g(st)

Note that the prefactor only plays a role in the discrete variable case p(st−1, st|v1:T ) and does not
affect p(ht−1, ht|st−1, st, v1:T ).
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4.1 Forward Pass

p(ht|st−1, st, v1:T ) ∝ p(ht, vt, at|st−1, st, v1:t−1)|at=g(st)

where we use the auxiliary variable to represent information coming from the future. This former
expression is proportional to:

exp







−1

2





ht − 〈ht〉
vt − 〈vt〉
at − 〈at〉





T 



Chh Chv Cha

CT
hv Cvv Cva

CT
ha CT

va Caa





−1



ht − 〈ht〉
vt − 〈vt〉
at − 〈at〉











〈ht〉 = A(st)f̃(st−1)

〈vt〉 = 〈B(st)ht + ηv(st)〉 = B(st)A(st)f̃(st−1)

〈at〉 = 〈ht + ηa(st)〉 = 〈ht〉 = A(st)f̃(st−1)

Chh = 〈∆ht∆hT
t 〉 = A(st)F̃ (st−1)A

T (st) + Σh(st)

Chv = 〈∆ht∆vT
t 〉 = ChhBT (st)

Cha = Chh

Cvv = 〈∆vt∆vT
t 〉 = B(st)ChhBT (st) + Σv(st)

Cva = B(st)Chh

Caa = 〈∆at∆aT
t 〉 = Chh + G−1(st)

C−1
aa = (G(st)Chh + I)−1

G(st)

After conditioning on at and vt, we get:

p(ht|st−1, st, v1:T ) = p(ht|at, st−1, st, v1:t)|a(st)=g(st) ∝ e−
1
2
(ht−q̃(st−1,st))

T Q̃−1(st−1,st)(ht−q̃(st−1,st))

with:

Q̃(st−1, st) = Chh −
(

Chv

Cha

)T (
Cvv Cva

CT
va Caa

)−1(
CT

hv

CT
ha

)

(33)

q̃(st−1, st) = 〈ht〉+
(

Chv

Cha

)T (
Cvv Cva

CT
va Caa

)−1(
vt − 〈vt〉

g(st)− 〈at〉

)

(34)

A difficulty with these expressions is that G(st) is not formally invertible. To avoid this difficulty, we
need to reexpress the equations using C−1

aa , which is well defined. We can do this by using partitioned
matrix inverse results:

(
Cvv Cva

CT
va Caa

)−1

=

(
Dvv Dva

DT
va Daa

)

Daa =
(
Caa − CT

vaC−1
vv Cva

)−1
=
(
I − C−1

aa CT
vaC−1

vv Cva

)−1
C−1

aa

Dva = −C−1
vv CvaDaa

Dvv = C−1
vv + C−1

vv CvaDaaCT
vaC−1

vv

To ensure that the above does not explicitly contain formally invertible terms, we can rewrite the
contribution to q̃(st−1, st) as

(
Chv

Cha

)T (
Cvv Cva

CT
va Caa

)−1(
vt − 〈vt〉

g(st)− 〈at〉

)

(
Chv

Cha

)T (
Dvv(vt − 〈vt〉) + Dva(g(st)− 〈at〉)
Dav(vt − 〈vt〉) + Daa(g(st)− 〈at〉)

)

(35)
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Since Daa has always a postfactor G(st), and Dva = −C−1
vv CvaDaa, the awkward terms g(st) will

always be accompanied by a prefactor G(st). We can therefore replace each instance of G(st)g(st) in
the above by a redefined term ĝ(st). As we will see, we can find a recursion for ĝ(st), but not g(st)
alone.

Computing p(st−1, st|v1:T )

p(st−1, st|v1:T ) ∝ ρ(st−1)p(st|st−1)λ(st)

∫

ht−1,ht

ρ(ht−1|st−1)p(vt|ht, st)p(ht|ht−1, st)λ(ht|st)

∝ ρ(st−1)p(st|st−1)λ(st)e
1
2

gT (st)G(st)g(st)

|G(st)| 12

∫

ht−1,ht

ρ(ht−1|st−1)p(vt|ht, st)p(ht|ht−1, st)p(at = gt|ht, st)

∝ ρ(st−1)p(st|st−1)λ(st)e
1
2

gT (st)G(st)g(st)

|G(st)| 12
p(vt, at = gt|st−1, st, v1:t−1)

p(vt, at | st−1, st, v1:t−1) has the following form:

1

z(st−1, st)
exp

{

−1

2

(
vt − 〈vt〉
at − 〈at〉

)T (
Cvv Cva

CT
va Caa

)−1(
vt − 〈vt〉
at − 〈at〉

)}

and can also be written as:

p(vt, at | st−1, st, v1:t−1) = p(vt | at, st−1, st, v1:t−1)p(at | st−1, st, v1:t−1) (36)

By conditioning on at, we get:

p(vt | at, st−1, st, v1:t−1) ∝
1
∣
∣Σ
∣
∣
1
2

e−
1
2

(
vt−µ

)T

Σ−1
(
vt−µ

)

with:

Σ = Cvv − CvaC−1
aa CT

va

µ = 〈vt〉+ CvaC−1
aa (g(st)− 〈at〉) (37)

Note that, whilst g(st) occurs in the expression for µ(st), it always occurs in combination with G(st),
which arises from C−1

aa g(st) in equation (37). The other factor is given by

p(at | st−1, st, v1:t−1) ∝
1

∣
∣Caa

∣
∣
1/2

exp
{(

at − 〈at〉
)T

C−1
aa

(
at − 〈at〉

)}

Which, when at = g(st), is proportional to:

exp
{

− 1
2

(
g(st)−A(st)f̃(st−1)

)T (
G(st)Chh + I

)−1
G(st)

(
g(st)−A(st)f̃(st−1)

)}

∣
∣G(st)Chh + I

∣
∣
1
2 |G(st)|− 1

2

To cut down on the length of the expressions, we denote Gt ≡ Gt(st), and similarly for other quantities.
Putting this all together, we get

p(st−1, st|v1:T )

∝ ρ(st−1)p(st|st−1)λ(st)e
1
2

gT
t Gtgt

|Σt−1,t| 12 |GtChh + I | 12
e−

1
2 ((vt−µt)

T Σ−1

t−1,t
(vt−µt)+(gt−Atf̃t−1)T (GtChh+I)−1Gt(gt−Atf̃t−1))

∝ ρ(st−1)p(st|st−1)λ(st)

|Σ| 12 |Lt| 12
e−

1
2
(vt−µ)T Σ−1(vt−µ)+ 1

2
ĝT

t ChhL−1

t ĝt− 1
2
f̃T

t−1AT
t L−1

t GtAtf̃t−1+f̃t−1AT
t L−1

t ĝt

(38)
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where

L(st) = G(st)Chh(st) + I, ĝ(st) = G(st)g(st)

The above equations are convenient since we do not need to assume invertibility of G. We then
collapse the mixture of Gaussians defined by:

∑

st−1

p(st−1 | st, v1:T )p(ht | st−1, st, v1:T )

into a single Gaussian with mean x̃(st) and covariance X̃(st):

p(ht | st, v1:T ) ∝ 1

|X̃(st)| 12
e−

1
2
(ht−x̃(st))

T X̃−1(st)(ht−x̃(st)) (39)

with the following prefactor:

p(st | v1:T ) =
∑

st−1

p(st−1, st | v1:T )

Calculating p(st−1|st, v1:T ) is straightforward by using equation (38). We now divide the Gaussian
equation (39) by the corresponding backward message:

p(st|v1:T )

λ(st)

e−
1
2
(ht−x̃(st))

T X̃−1(st)(ht−x̃(st))

|X̃(st)| 12
e

1
2 (hT

t G(st)ht−2htG(st)g(st))

=
p(st|v1:T )

λ(st)|X̃(st)| 12
e−

1
2 (htFtht−2hT

t ft)e−
1
2
x̃T

t X̃−1x̃t (40)

where Ft = X̃−1 −Gt and ft = X̃−1x̃t −G(st)gt

p(st|v1:T )

λ(st)|X̃(st)| 12
e

1
2
fT

t F−1

t ft

e
1
2
x̃T

t X̃−1x̃t

e−
1
2 (ht−F−1

t ft)
T

Ft(ht−F−1

t ft) (41)

In the moment representation of the forward message:

F̃ (st) =
(
X̃−1(st)−G(st)

)−1

f̃(st) = F̃ (st)
(
X̃−1x̃(st)−G(st)g(st)

)

with the following prefactor:

ρ(st) ∝
p(st|v1:T )

λ(st)

|F̃ (st)|
1
2

|X̃(st)| 12
e

1
2

f̃t(st)
T F̃−1

t (st)f̃t(st)

e
1
2
x̃t(st)T X̃−1(st)x̃t(st)

4.2 Backward Pass

We restate the backward equations:

λ(ht−1, st−1) ∝
∑

st
p(st−1, st|v1:T )p(ht−1|st−1, st, v1:T )

ρ(st−1)ρ(ht−1|st−1)

The term p(st−1, st|v1:T ) has already been computed in the forward pass. Hence, we just need

p(ht−1|st−1, st, v1:T ) ∝ p(ht−1, vt, at | st−1, st, v1:t−1)|at=g(st)
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which is proportional to:

exp







−1

2





ht−1 − 〈ht−1〉
vt − 〈vt〉
at − 〈at〉





T 



Chh Chv Cha

CT
hv Cvv Cva

CT
ha CT

va Caa





−1



ht−1 − 〈ht−1〉
vt − 〈vt〉
at − 〈at〉











The only difference between this and the forward pass occurs in the time shift for h. Hence the
statistics involving at and vt alone are the same as for the forward pass. For the statistics involving
ht−1, we have

〈ht−1〉 = f̃(st−1)

Chh = 〈∆ht−1∆hT
t−1〉 = F̃ (st−1)

Chv = 〈∆ht−1∆vT
t 〉 = F̃ (st−1)A

T (st)B
T (st)

Cha = 〈∆ht−1∆aT
t 〉 = F̃ (st−1)A

T (st)

We need to compute

p(ht−1|st−1, st, v1:T ) = p(ht−1 | at, st−1, st, v1:t)|at=g(st)

This can be now done exactly as in the forward pass using equations (33,34), with just the definitions
of the covariances changed to be those used in the backpass. We then collapse the mixture of Gaussians
defined by:

∑

s

p(st | st−1, v1:T )p(ht | st−1, st, v1:T )

into a single Gaussian with mean x̃(st−1) and covariance X̃(st−1):

p(ht−1 | st, v1:T ) ∝ 1

|X̃(st−1)| 12
e−

1
2
(ht−1−x̃(st−1))T X̃−1(st−1)(ht−1−x̃(st−1)) (42)

with the following pre–factor:

p(st−1 | v1:T ) =
∑

st

p(st−1, st | v1:T )

We now divide the Gaussian by the corresponding forward message:

p(st−1|v1:T )

ρ(st−1)

e−
1
2
(ht−1−x̃(st−1))T X̃−1(st−1)(ht−1−x̃(st−1))

e−
1
2
(ht−1−f̃(st−1))T F̃−1(st−1)(ht−1−(st−1))

|F̃ (st−1)| 12
|X̃(st−1)| 12

(43)

In the canonical representation of the backward message:

G(st−1) = X̃−1(st−1)− F̃−1(st−1)

ĝ(st−1) ≡ G(st−1)g(st−1) = X̃−1(st−1)x̃(st−1)− F̃−1(st−1)f̃(st−1)

with the following prefactor:

λ(st−1) ∝
p(st−1|v1:T )

ρ(st−1)

|F̃ (st−1)|
1
2

|X̃(st−1)| 12
e−

1
2
x̃(st−1)T X̃−1(st−1)x̃(st−1)

e−
1
2
f̃(st−1)T F̃−1(st−1)f̃(st−1)

Note that g(st) only ever occurs in combination with G(st). This means that, in both the forward
and the backward passes, one can replace throughout G(st)g(st) by a new variable ĝ(st).

The reader may notice that in both the forward and backpasses, effectively, we multiply and divide
by λ(st) and ρ(st−1) respectively. In our implementation, therefore, to aid numerical stability, this
unnecessary multiplication and division by the same value is removed.
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Figure 8: Results on a typical example from our ‘hard’ problem for the methods of Expectation
Propagation (EP), Assumed Density Filtering using a mixture of 4 Gaussians (ADFM), Expectation
Correction using a Single Gaussian (ECS), and Expectation Correction using a mixture of 4 Gaussians
(ECM). Plotted is the one dimensional visible signal, with a marker coloured by the most probable
posterior estimated switch variable, which can be one of two states. A cross indicates a switch variable
inference ‘error’. Only methods which have mixture representations of the posterior succeed – indeed,
the ECM method gives no errors. See the caption of fig(9) for details of the experimental setup.

5 Experiments with Switching Linear Gaussian Dynamics

We would like to test our Expectation Correction smoothing method in a problem with a reasonably
long temporal sequence, T . An obvious difficulty arises here in that, since the exact computation is
exponential in T , a formally exact evaluation of the method is infeasible. A reasonable approach under
these circumstances, is to suppose that generated switch variables will be close to the most probable
state of the true posterior p(st|v1:T ). That is, we sample a hidden state s1 and h1 from the prior, and
then a visible observation v1. Then, sequentially, we generate hidden states and visible states for the
next time steps. The task for smoothing inference is, given only the parameters of the model and the
visible observations (but not any of the hidden states h1:T , s1:T ), to infer p(ht|v1:T ) and p(st|v1:T ).
A simple performance measure is to assume that the original sample states s1:t are the ‘correct’
inferences, and compare how our most probable posterior smoothed estimates argmaxst

p(st|v1:T )
compare with the assumed correct st. The reader should bear in mind, of course, that this is just a
tractable surrogate for comparing our estimate of p(st|v1:T ) with the exact value of p(st|v1:T ).
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(a) Easy problem
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(b) Difficult problem

Figure 9: Histograms of the number of errors over 1000 experiments. Particle Filter(PF), Rao-
Blackwellised Particle Filter(RBPF), Assumed Density Filtering, Single Gaussian (ADFS), Gener-
alised Pseudo Bayes 2(GPB2), Assumed Density Filtering, Multiple Gaussians (ADFM), Generalised
Pseudo Bayes 2 with Multiple Gaussians (GPB2M), Expectation Propagation (EP), Our Implemen-
tation of Expectation Propagation (EP2), Expectation Correction Smoothing with a Single Gaus-
sian (ECSS), Expectation Correction Smoothing with Multiple Gaussians (ECSM). Throughout,
S = 2, V = 1, T = 100, with zero output bias. For the multiple Gaussian methods, I = J = 4
Gaussians were used. For EP, 3 iterations were performed. Using partly MATLAB notation,
A(s) = 0.9999 ∗ orth(randn(H, H)), B(s) = randn(V, H), v̄t ≡ 0, h̄1 = 10 ∗ randn(H, 1), h̄t>1 = 0,
Σh

1 = IH , p1 = uniform. (a) Results on a relatively easy problem. H = 3, Σh(s) = IH , Σv(s) = 0.1IV ,
p(st+1|st) ∝ 1S×S + IS . (b) Results on a relatively hard problem. H = 30, Σv = 30IV ,Σh = 0.01IH ,
p(st+1|st) ∝ 1S×S.

We look at two sets of experiments, fig(9), both on time series of length T = 100 with S = 2
switch states2. In both sets of experiments, we compared methods using a single Gaussian, and
methods using multiple Gaussians. The number of Gaussians used was set to 2× S throughout. One
is relatively ‘easy’ and the other relatively ‘hard’. From the viewpoint of classical signal processing,
both experiments are extremely difficult in the sense that they cannot be solved by short time Fourier
methods, since changes occur in the dynamics at a much higher rate than the typical frequencies in
the signal, see fig(8).

In the easy experiments, we used a small hidden dimension H = 3, with a moderate amount of
transition and observation noise. As can be seen from fig(9a), Particle Filtering performs reason-

2In fact we looked at time series of length T = 105, and computed the number of errors made on the time points 5
to 105. The reason for this is that we are restricted in the number of Gaussians that can be used in the first two time
steps, and this means that the performance is atypically worse on the first couple of time points.
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ably well, although its performance is enhanced by Rao-Blackwellisation (RBPF). Assumed Density
Filtering using a single Gaussian and with a mixture performed roughly the same as RBPF, as did
the methods based on Generalised Pseudo Bayes 2, using either the ADF single Gaussian results, or
the Gaussian mixture results. A standard implementation of Expectation Propagation, even in this
case, suffers from many numerical stability problems, but is improved somewhat by our own more
stable implementation. The Expectation Correction method using a single Gaussian dramatically
improves on the ADF single Gaussian filtered estimate. Using a small number of mixture components
in Expectation Correction improves the situation further.

In the hard case, fig(9b) we used a larger hidden dimension, H = 30, with a small amount of
transition noise, and a large amount of observation noise. We chose these parameters since this
will most likely result in highly multi-modal posteriors. In this case, only those methods that used a
mixture of Gaussians performed well – otherwise, the methods were little better than random guessing.
Expectation Correction with a small number of mixture components, apart from a small number of
errors, dramatically gives almost perfect performance. Readers interested in Particle Filters may
wonder why Rao-Blackwellisation doesn’t seem to perform well. Our explanation is that the standard
implementation we used [7] still makes the assumption that a single Gaussian is adequate to describe
the posterior filtered estimate p(ht|st, v1:t). In our ‘hard’ experiment, any method which does not deal
with multi-modality of the posterior is doomed.

6 Discussion

We have presented a method that can be used in switching dynamical models, best suited to distri-
butions conditional on the switch variable which are from the exponential family. We were motivated
to use a mixture approximation since we know that the exact result for the posterior distribution is
a mixture, albeit of a number of components exponential in time. However, in practice, due to the
Markovian nature of the dynamics, we expect that the effective correlation length of the posterior
will be very much shorter than the length of the time series. For this reason, a much smaller effective
number of mixture components may be expected to produce a reasonable approximation.

Specifically, our method contains three approximations : (a) collapse of p(ht|st, st−1, v1:T ) to a
mixture; (b) dropping of a dependence p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), which for switching
observation models is exact; (c) approximation of the average of p(st|ht+1, st+1, v1:t) with respect to
the distribution p(ht+1|st+1, v1:T ). In (b), our approximation is relatively delicate, when compared
with the popular Generalised Pseudo Bayes method, which discards all future information. A partic-
ularly appealing aspect of our approach is that steps (a) and (c) above can be made more accurate.
Certainly in the case of Switching Linear Gaussian models, we have found experimental conditions
where increasing the number of Gaussians in the approximation results in a dramatic improvement
in performance. The complexity of each iteration of the Forward Pass scales linearly with the num-
ber of mixture components. However, the backpass is more complex, and scales with the number
of forward mixtures used multiplied by the number of backward mixtures used. Our experience is
that, in practice, a smaller number of backward mixtures may be sufficient since usually most of the
improvement in performance comes from using mixtures in the forward pass. Indeed, often a single
mixture is sufficient in the backward pass.

In the current work, only the simplest average approximation was considered, namely evaluation
of the integrand at the mean, and more sophisticated methods may give better results. In this sense,
the current work can be seen as a useful starting point.

Whilst the current method has many attractive properties, it cannot be feasibly applied to factorial
representations of the switch variables, and this would require further approximations. Another area
that we are currently investigating is dependencies of the discrete hidden variables on the continuous
hidden variables, see for example [6], since this would enable us to have a powerful general purpose
approximation method for a large class of practically useful models.

MATLAB software for Expectation Correction for Switching Linear Gaussian State Space models
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is at http://www.idiap.ch/∼barber/ecskf.zip.
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A Finding the Conditional Gaussian from the joint

For the joint Gaussian distribution over the vectors x and y

p(x, y) =
1√

det 2πΣ
exp

(

−1

2

(
x− µx

y − µy

)T (
Σxx Σxy

Σxy Σyy

)−1(
x− µx

y − µy

))

(44)

the conditional is given by

p(x|y) = N(mean = µx + ΣxyΣ−1
yy (y − µy) , cov = Σxx − ΣxyΣ−1

yy Σyx) (45)

B Collapsing a Mixture of Gaussians

Consider a normalised (
∑

i pi = 1) mixture of Gaussians distribution p(x) =
∑

i piN (x|µi, Σi). The
mean and covariance of this distribution is

µ =
∑

i

piµi, Σ =
∑

i

pi

(
Σi + µiµ

T
i

)
− µµT

B.1 Collapsing a Mixture of N Gaussians to a smaller Mixture of K Gaus-
sians

There are many ways to do this. Ideally, one might use a method such as minimal Kullback-Leibler
divergence between the large and the small mixture. Unfortunately, this is difficult and computa-
tionally expensive to approximate. The method that we use in the experiments is to simply retain
the K − 1 Gaussians with the largest mixture weights in the mixture we wish to approximate. The
remaining N − K Gaussians are simply merged to a single Gaussian using the above method. Of
course, a disadvantage of such a simple approach is that no spatial information is taken into account
in the approximation. A similarly non-spatial approach is to recursively merge the two Gaussians
with the lowest mixture weights; this gave similar experimental performance.

C The Likelihood

One of the most elegant approaches is to use Bayes’ rule recursively:

p(v1:T ) = p(v1)p(v2|v1)p(v3|v1:2) . . . p(vT |v1:T−1) (46)

Consider

p(vt|v1:t−1) =
∑

st−1

∫

ht−1

p(vt, ht−1, st−1|v1:t−1)

=
∑

st−1

∫

ht−1

p(vt|ht−1, st−1)p(ht−1, st−1|v1:t−1)

=
∑

st−1,st

∫

ht−1,ht

p(vt, ht, st|ht−1, st−1)p(ht−1, st−1|v1:t−1)

=
∑

st−1,st

p(st|st−1)p(st−1|v1:t−1)

∫

ht−1,ht

p(vt|ht, st)p(ht|ht−1, st)p(ht−1|st−1, v1:t−1)

︸ ︷︷ ︸

p(vt|st,st−1,v1:t−1)

(47)
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Under our approximation scheme p(ht−1|st−1, v1:t−1) is a single Gaussian (the extension to the mixture
case is trivial). Then p(vt|st, st−1, v1:t−1) is a Gaussian distribution with mean and covariance given
by

c(st, st−1) = B(st)A(st)f(st−1)

C(st, st−1) = B(st)
(
A(st)F (st−1)A

T (st) + Σh(st)
)
BT (st) + Σv(st)

Thus

p(vt|st, st−1, v1:t−1) =
e−

1
2
(v(t)−c(st,st−1))T C−1(st,st−1)(v(t)−c(st,st−1))

√

det 2πC(st, st−1)

which can be used directly in equation (47) and equation (46) to find the likelihood.

D Switching Linear Gaussian State Space Models : EC mix-

ture approximation

D.1 Forward Pass

Here we extend the forward pass so that the collapse has, for each state st, not just a single Gaussian,
but a set of Gaussians. We use it ∈ 1 : I to represent the Gaussian mixture component. From the
factorisation p(st, ht|v1:t) = p(ht|st, v1:t)p(st|v1:t), as for the single Gaussian case, our strategy will be
to find, first p(ht|st, v1:t). The term p(ht, vt|it−1, st−1, st, v1:t−1) may be easily evaluated by realising
that for each setting of the switch variables it−1, st−1, st the distribution is a Gaussian. The means
and covariances of this Gaussian are easily found from the relations

vt = B(st)ht + ηv(st), ht = A(st)ht−1 + ηh(st)

Using the above, we readily find

〈
∆vt∆vT

t |st, it−1, st−1

〉
= B(st)

〈
∆ht∆hT

t |st, it−1, st−1

〉
BT (st) + Σv(st)

〈
∆ht∆hT

t |st, it−1, st−1

〉
= A(st)

〈
∆ht−1∆hT

t−1|it−1, st−1

〉
AT (st) + Σh(st)

〈
∆vt∆hT

t |st, it−1, st−1

〉
= B(st)

〈
∆ht∆hT

t |st, it−1, st−1

〉

〈vt|st, it−1, st−1〉 = B(st)A(st) 〈ht−1|it−1, st−1〉
〈ht|st, it−1, st−1〉 = A(st) 〈ht−1|it−1, st−1〉

In the above, using our moment representation of the forward messages

〈ht−1|it−1, st−1〉 ≡ ft−1(it−1, st−1)

〈
∆ht−1∆hT

t−1|st−1

〉
≡ Ft−1(it−1, st−1)

Using the above results, we are now in a position to calculate equation (15). For each setting of the
variable st, we will therefore have a mixture of I × S Gaussians. There are many different strategies
conceivable for approximating this mixture of Gaussians, and we use the one outlined in section (B.1),
to give

p(ht|st, v1:t) ≈
∑

it

p(it|st, v1:t)p(ht|it, st, v1:t)

In this way the new mixture coefficients p(it|st, v1:t), it ∈ 1, . . . , I are defined.
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Algorithm 1 The Switching Kalman Filter : Forward Pass using Mixtures. We require I1 = 1, I2 ≤
S, It ≤ S × It−1.

1: procedure SwitchingKalmanForwardMixture

2: F0 ← 0, f0 ← 0, ρ0 ← 1,w0 ← 1
3: for t← 1, T do

4: for st ∈ S do

5: for st−1 ∈ S do

6: for it−1 ∈ I do

7: h̃t ← A(st)ft−1(it−1, st−1) + h̄t(st)
8: ṽt ← B(st)h̃t + vb(st) + v̄t(st)
9: Σhh ← A(st)Ft−1(it−1, st−1)A

T (st) + Σh
t (st)

10: Σvv ← B(st)Σhh + Σv(st)
11: Σvh ← B(st)Σhh

12: Σx|y(it−1, st−1)← Σhh − ΣT
vhΣ−1

vv Σvh

13: µx|y(it−1, st−1)← h̃t + ΣT
vhΣ−1

vv (vt − ṽt)

14: p̂← 1√
detΣvv

exp
(

− 1
2 (vt − ṽt)

T
Σ−1

vv (vt − ṽt)
)

15: (t = 1) : p′(it−1, st−1)← pt=1(st)p̂
16: (t = 2) : p′(it−1, st−1)← p(st|st−1)ρt−1(st−1)p̂
17: (t > 2) : p′(it−1, st−1)← wt−1(it−1, st−1)p(st|st−1)ρt−1(st−1)p̂
18: end for

19: end for

20: Normalise p′ to a distribution over it−1, st−1

21: ρt(st) =
∑

it−1 ,st−1
p′(it−1, st−1)

22: (t = 1) No Collapse
23: (If t > 1) Collapse Gaussian with means µx|y, covariances Σx|y and mixture weights p′

to a Gaussian with I components
24: This defines the new means ft(it, st), covariances Ft(it, st) and mixture weights wt(it, st)
25: end for

26: normalise ρt

27: end for

28: end procedure

D.2 Backward pass

Our aim is to make a recursion for a mixture representation of p(ht|st, v1:T ). This is straightforward
and follows from the approach given in section (2.3.4). We need to find p(ht|it, st, jt+1, st+1, v1:T ) and
p(ht+1|ht, it, st, jt+1, st+1, v1:T ), which we do as follows. First we find the distribution p(ht|ht+1, st+1, it, st, v1:t),
which is itself found from conditioning the joint distribution

p(ht+1, ht|st+1, it, st, v1:t) = p(ht+1|ht, it, st+1, v1:t)p(ht|it, st, v1:t)

= p(ht+1|ht, st+1)p(ht|it, st, v1:t)

This is used to define the backward equation

ht|ht+1, it, st, st+1, v1:t =
←−
A (it, st, st+1)ht+1 +←−m(it, st, st+1) +←−η (it, st, st+1)

Then the joint distribution p(ht, ht+1|it, st, jt+1, st+1, v1:T ) has the following mean and covariances

〈ht|it, st, jt+1, st+1, v1:T 〉 =
←−
A (it, st, st+1)gt+1(jt+1, st+1) +←−m(it, st, st+1)

〈ht+1|it, st, jt+1, st+1, v1:T 〉 = gt+1(jt+1, st+1)
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〈
∆ht+1∆hT

t+1|it, st, st+1, v1:T

〉
= Gt+1(jt+1, st+1)

〈
∆ht∆hT

t |it, st, jt+1, st+1, v1:T

〉
=
←−
A (it, st, st+1)Gt+1(jt+1, st+1)

←−
AT (it, st, st+1) +

←−
Σ t(it, st, st+1)

〈
∆ht∆hT

t+1|it, st, jt+1, st+1, v1:T

〉
=
←−
A (it, st, st+1)Gt+1(jt+1, st+1)

From this, we can find the marginal p(ht|it, st, jt+1, st+1, v1:T ). Using again the simple approximation
for the average in equation (27),

p(ht, st|v1:T ) ≈
∑

it,jt+1,st+1

p(st+1|v1:T )p(jt+1|st+1, v1:T )p(it, st|ht+1, st+1, jt+1, v1:T )

× p(ht|jt+1, st+1, it, st, v1:T )

Integrating over ht, we have

p(st|v1:T ) ≈
∑

it,jt+1,st+1

p(st+1|v1:T )p(jt+1|st+1, v1:T )p(it, st|ht+1, st+1, jt+1, v1:T )

Using the above, we can form the distribution

p(ht|st, v1:T ) =
∑

it,jt+1,st+1

p(it, jt+1, st+1|st, v1:T )p(ht|it, st, jt+1, st+1, v1:T )

This mixture can then be collapsed to another mixture of Gaussians using the usual approach to define

p(ht|st, v1:T ) ≈
∑

jt

p(jt|st, v1:T )p(ht|jt, v1:T )
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Algorithm 2 The Switching Kalman Filter : Expectation Correction using Mixtures. We require
I1 = 1, I2 ≤ S, It ≤ S × It−1. JT = IT , Jt ≤ S × It × Jt+1

1: procedure SwitchingKalmanBackward

2: GT ← FT , gT ← fT , λT ← ρT , uT ← wT

3: for t← T, 1 do

4: for st ∈ S do

5: for st+1 ∈ S do

6: for it ∈ It do

7: 〈ht+1|v1:t〉 (it)← A(st+1)ft(it, st) + h̄t+1(st+1)
8:

˙

∆ht+1∆hT
t+1|v1:t

¸

(it)← A(st+1)Ft(it, st)A
T (st+1) + Σh(st+1)

9:
˙

∆ht+1∆hT
t |v1:t

¸

← A(st+1)Ft(it, st)

10:
←−
Σ(it)← Ft(it, st)−

˙

∆ht+1∆hT
t |v1:t

¸T ˙

∆ht+1∆hT
t+1|v1:t

¸−1 ˙

∆ht+1∆hT
t |v1:t

¸

11:
←−
A (it)←

˙

∆ht+1∆hT
t |v1:t

¸T ˙

∆ht+1∆hT
t+1|v1:t

¸−1

12: ←−m(it)← ft(it, st)−
←−
A (it) 〈ht+1|v1:t〉 (it)

13: for jt+1 ∈ Jt+1 do

14: 〈ht|v1:T 〉 (it, st, jt+1, st+1)←
←−
A (it)gt+1(jt+1, st+1) +←−m(it)

15:
˙

∆ht∆hT
t |v1:T

¸

(it, st, jt+1, st+1)←
←−
A (it)Gt+1(jt+1, st+1)

←−
AT (it) +

←−
Σ(it)

16:
˙

∆ht∆hT
t+1|v1:T

¸

←
←−
A (it)Gt+1(jt+1, st+1)

17: p(it, st, st+1|v1:t)← p(st+1|st)wt(it, st)ρt(st)
18: z = gt+1(jt+1, st+1)− 〈ht+1|v1:t〉 (it)

19: p(it, st|jt+1, st+1, v1:T ) =
p(it,st,st+1|v1:t)

q

det 〈∆ht+1∆hT
t+1

|v1:t〉(it)
exp

“

− 1
2
zT

˙

∆ht+1∆hT
t+1|v1:t

¸−1
(it)z

”

20: end for

21: end for

22: end for

23: end for

24: Normalise p(it, st|jt+1, st+1, v1:T ) to ensure a distribution over it, st

25: for st ∈ S do

26: for it ∈ It, st+1 ∈ S, jt+1 ∈ Jt+1 do

27: p(it, st, jt+1, st+1|v1:T )← p(st+1|v1:T )(st+1)ut+1(jt+1, st+1)p(it, st|jt+1, st+1, v1:T )
28: end for

29: p(st|v1:T )←
P

it,jt+1,st+1
p(it, st, jt+1, st+1|v1:T )

30: Collapse the mixture over the joint set of indices it, jt+1, st+1 defined by
weights p(it, st+1, jt+1|st, v1T

), means 〈ht|v1:T 〉 (it, st, jt+1, st+1) and covariances
˙

∆ht∆hT
t |v1:T

¸

(it, st, jt+1, st+1). This defines the new means gt(jt, st), covariances
Gt(jt, st) and mixture weights ut(jt, st)

31: end for

32: end for

33: end procedure
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