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Abstract. Estimating thewandering visual focus of attention(WVFOA) for multiple people is an important
problem with many applications in human behavior understanding. One such application, addressed in this
paper, monitors the attention of passers-by to outdoor advertisements. To solve the WVFOA problem, we
propose a multi-person tracking approach based on a hybrid Dynamic Bayesian Network that simultaneously
infers the number of people in the scene, their body and head locations, and their head pose, in a joint
state-space formulation that is amenable for person interaction modeling.The model exploits both global
measurements and individual observations for the VFOA. For inference in the resulting high-dimensional
state-space, we propose a trans-dimensional Markov Chain Monte Carlo (MCMC) sampling scheme, which
not only handles a varying number of people, but also efficiently searches the state-space by allowing person-
part state updates. Our model was rigorously evaluated for tracking and its ability to recognize when people
look at an outdoor advertisement using a realistic data set.
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1 Introduction

An advertising firm has been asked to produce an outdoor display ad campaign for use in shopping malls and
bus stations. Internally, the firm has developed several competing designs, one of which must be chosen to
present to the client. Is there some way to judge the best placement and content of outdoor advertisements?
Currently, the outdoor advertising industry relies on recall surveys or traffic studies to measure the effectiveness
of advertisements [19, 20]. However, these approaches are often too impractical or expensive to be commer-
cially viable, and a tool that automatically measures the effectiveness of outdoor printed advertisements, such
as television’s Nielsen ratings system (which estimates television programs viewing based on a selected set of
people’s self reports) does not exist. A Nielsen-like system for outdoor display advertisements mustdetermine
the number of people who have actually viewed the ad as a percentage of the total number of people exposed
to it. In this application, the tasks are toautomatically detect and track a varying number of people exposed
to the advertisement, and estimate their visual focus of attention(VFOA) to determine whether they looked at
the ad. We have coined the termWandering VFOAto describe this type of problem. It is also relevant for other
areas including human-computer interaction, robot-humaninteraction, and surveillance.

The advertising literature contains a significant amount ofwork on determining VFOA from eye gaze
[3, 12]. However, people in such studies are typically subject to constrained conditions (e.g. they must place
their chin on a chin-rest and remain stationary as advertisements are placed in front of them), which renders
these approaches useless for measuring public reaction in areal-life outdoor setting. On the other hand, while
non-intrusive computer vision algorithms could determineeye gaze using high resolution head images (e.g.
[15]), a wide field-of-view is required to detect FOA in an outdoor advertisement scenario where people are
free to enter, leave, and move about an outdoor space freely.

In this paper, we present a probabilistic framework for estimating WVFOA for multiple people. Our paper
contains three key contributions. First, we propose a principled solution to the problem via a mixed-state
Dynamic Bayesian Network that jointly represents the number of people in the scene, their body and head
locations, their interactions, and their WVFOA, in a true multi-person state-space formulation. Secondly, we
present a method to do inference in the proposed model by trans-dimensional Markov Chain Monte Carlo
(MCMC) sampling techniques. Finally, we apply our framework to an outdoor advertisement application to
gather useful statistics such as the number of viewers, duration of viewing, and the total number of people
exposed to the advertisement. This application, to our knowledge, has not been addressed previously. We
rigorously evaluate our approach using realistic data and adetailed set of objective performance measures.

The remainder of the paper is organized as follows. Related work is discussed in Section 2. We present
our model in Section 3. We describe how to model WVFOA in Section 4. We objectively evaluate our model
on a video data set depicting people passing an outdoor advertisement in Section 5 and provides concluding
remarks in Section 6.

2 Related Work

To our knowledge, our work is the first attempt to tackle the problem of wandering visual focus of attention for
multiple people. However, some related problems have been studied. The 2002 workshop on Performance and
Evaluation of Tracking Systems (PETS) defined a number of estimation tasks on data depicting people passing
in front of a shop window, including 1) the number of people inthe scene, 2) the number of people in front
of the window, and 3) the number of people looking at the window [11]. Other research has studied detection
and tracking of shopping groups in a store, and estimation oftransaction time [6]. However, in these works,
attempts were made to estimate VFOA from body motiononly. Body motion alone does not contain enough
information to accurately determine VFOA. Although there is little related work on the specific problem we
address, a large body of research has been conducted on theseparateissues of multi-person tracking, head pose
tracking, and VFOA estimation.

Solving the multi-person tracking problem is a well studiedtopic, and many researchers have adopted a
rigorous Bayesian joint state-space formulation to the problem using particle filtering (PF) techniques [7, 9, 14].
However, sampling on a joint state-space quickly becomes inefficient as the space dimension increases when
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people are added. Recent work has concentrated on using MCMCsampling to track multiple people more
efficiently [9, 14, 24]. The model in [9] tracked a fixed numberof interacting people using MCMC. In [14]
this model was extended to handle varying numbers of people via reversible-jump MCMC. In this paper, we
significantly extend the model of [14] by handling a more complex state-space which requires the non-trivial
design of new jumps and proposal distributions (see Section3.4).

There are two general approaches to solving the head pose tracking problem. The first one independently
solves the head tracking and pose estimation problems: a head is first localized and then processed for pose
estimation [1, 22]. Speed is the main advantage of this approach, as head pose needs to be estimated from
a single location. However, as head pose estimation is very sensitive to head localization [1], the second
approach, which jointly tracks a head and estimates its pose, can overall improve performance [16].

Previous work on automatic eye gaze detection, which definesVFOA includes [15], where the VFOA of a
driver is determined from eye gaze as the driver’s pupils aretracked from a high-resolution monocular video.
Because the nature of WVFOA restrict us to lower resolutions,we follow previous works which have shown
that VFOA can be reasonably approximated by head pose [18]. However, most existing work has been limited
to situations with restricted head motion. In [18], the taskwas to estimate VFOA of a single person sitting in
a meeting room from his head pose. In other situations with less restricted motion, modeling VFOA is more
complex. Seminar room environments are such an example. In arecent work, head pose tracking was extended
to tracking the head pose of a single person (the lecturer) onlow resolution image using multi-view camera
setup [21]. As an alternative to the above techniques, face detectors, such as described in [8], that are able
to estimate face locations in images together with head posecould be used. However, such systems cannot
be applied to solve the multi-people WVFOA estimation problem because they don’t keep track of people’s
identities. To our knowledge, only the work by Otsukaet al (2005) deals with multiple people for VFOA
estimation, where the number of people is known and fixed, andthe problem of tracking is ignored as head
pose tracking is obtained with a sensor.

Our approach presents a principled Bayesian solution for a problem which has not yet been addressed
in literature, namely tracking the WVFOA for a varying numberof interacting people using visual tracking
techniques. The task involves the joint estimation of the number of people in a scene, the body and head
locations, and head pose for each of them. This is a difficult problem as the size of the state-space (which
consists of head and body location parameters and head pose parameters) can be quite large and changes
dimensions as people enter and exit the scene.

3 Our Approach

In a Bayesian approach, tracking can be seen as the estimation of the filtering distribution of a stateXt given
a sequence of observationsZt, p(Xt|Z1:t). In our model, the state is a joint multi-person configuration and
the observations consist of information extracted from a monocular image sequenceZ1:t = (Z1, ...,Zt). The
filtering distribution is recursively computed by

p(Xt|Z1:t) = C−1p(Zt|Xt) × (1)
∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1,

wherep(Xt|Xt−1) is a dynamic model governing the predictive temporal evolution of the state,p(Zt|Xt)
is the observation likelihood (measuring how the predictions fit the observations), andC is a normalization
constant.

Under the assumption that the posteriorp(Xt−1|Z1:t−1) can be approximated by a set of unweighted par-
ticles{X(n)

t ,

n = 1, ..., N} (whereX(n)
t denotes then-th sample) the Monte Carlo approximation of Eq. 1 becomes

p(Xt|Z1:t) ≈ C−1p(Zt|Xt)
∑

n

p(Xt|X
(n)
t−1). (2)

The filtering distribution of Eq. 2 can be inferred using MCMCsampling as outlined in Section 3.4.
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Figure 1:Left: The multi-person state for two people is defined by bounding boxes for the body and head, their related parameters, and
the head pose; Right: foreground pixels are segmented using background subtraction.

3.1 State Model for Varying Numbers of People

The dimension of the state vector must be able to vary along with the number of people in the scene. The state
at timet can contain from zero to an arbitrary number of people, and isdefined byXt = {Xi,t|i ∈ It}, where
It is the set of person indexes,mt = |It| denotes the number of people and| · | indicates set cardinality. The
special zero-person case is denoted byXt = ∅.

The state of a single person contains a body and a head component, and is denoted byXi,t = (Xb
i,t,X

h
i,t).

The body state vector isXb = (xb, yb, sb, eb) wherexb, yb is the 2D location of the body in the image,sb is
the height scale factor, andeb is the eccentricity defined by the ratio of the width over the height. The head
state vector is similarly defined asXh = (Lh, θh) whereLh = (xh, yh, sh, eh, γh) denotes the 2D spatial
configuration of the head, including the in-plane rotationγh, while θh is a discrete variable representing the
head pose exemplar accounting for out-of-plane rotation head appearance changes (see Figure 1).

3.2 Multi-Person Dynamics and Interaction

Our dynamic model for a variable number of people is

p(Xt|Xt−1) ∝
∏

i∈It

p(Xi,t|Xi,t−1)p0(Xt) (3)

def
= pV (Xt|Xt−1)p0(Xt), (4)

wherepV is the predictive distribution and
p0(Xt) = p01

(Xt)p02
(Xt) is a prior on the multi-person state configuration includinginteractions between

different people (p01
) and between a body and its head (p02

). Following [9, 14, 24], we definepV as

pV (Xt|Xt−1) =
∏

i∈It

p(Xi,t|Xt−1) (5)

whenXt−1 6= ∅ and constant otherwise. Additionally, we definep(Xi,t|Xt−1) as either the single-person
dynamics
p(Xi,t|Xi,t−1) if personi existed in the previous frame, or as a distributionpinit(Xi,t) over potential initial
person birth positions otherwise. The single person dynamic is given by

p(Xi,t|Xi,t−1) = p(Xb
i,t|X

b
i,t−1)p(Lh

i,t|L
h
i,t−1)p(θh

i,t|θ
h
i,t−1), (6)

where the dynamics of the body stateX
b
i , the head spatial state componentLh

i , and the head-pose exemplars
θh

i are modeled as 2nd order auto-regressive (AR) processes (a discrete version is exploited forθh).
As in [9], the interaction modelp01

(Xt) prevents two trackers from fitting the same person. This is achieved
by exploiting a pairwise Markov Random Field (MRF) whose graph nodes are defined at each time-step by the
people, and the links by the setC of pairs of proximate people. By defining an appropriate potential function
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φ(Xi,t,Xj,t) ∝ exp(−g(Xi,t,Xj,t)), the interaction modelp01
(Xt) =

∏

ij∈C
φ(Xi,t,Xj,t) enforces constraints in the dynamic model of people based onthe locations of the person’s

neighbors. The interaction potential between two people isdefined by a penalty function,g, which is based on
the overlap of the people (it is zero when they do not overlap,and increases as the area of overlap increases).

Unlike previous work [9, 14, 24], we propose to exploit a prior model on individual configurations, defined
asp02

(Xt) =
∏

k∈It
p(Lh

k,t|X
b
k,t). This term ensures that the head and body spatial states are physically

plausible, constraining the head location w.r.t. the current body configuration.
With these terms defined, the Monte Carlo approximation of the filtering distribution (Eq. 2) is re-expressed

as

p(Xt|Z1:t) ≈ C−1p(Zt|Xt)
∏

ij∈C

φ(Xi,t,Xj,t) ×

∏

k∈It

p(Lh
k,t|X

b
k,t)

∑

n

pV (Xt|X
(n)
t−1). (7)

3.3 Observation Model

The observation model combines five features to estimate thelikelihood of a proposed configuration. The first
two are global body features. They consist ofbinary andcolor measurements, and are defined pixel-wise over
the entire image. The binary measurements (Z

bin
t ) make use of a background-subtracted image, while color

measurements (Z
col
t ) exploit histograms in Hue-Saturation (HS) color space. The remaining three features are

head features, and consist of textureZ
tex
t , skinZ

sk
t , and silhouetteZsil

t observations gathered independently
for each person and contribute to the localization and estimation of the head pose. For the remainder of this
section, the time index (t) has been omitted to simplify notation. Assuming conditional independence of ob-
servations, the overall likelihood is then given by

p(Z|X) = p(Zcol|Zbin,X)p(Zbin|X)

[

∏

i∈I

p(Zh
i |Xi)

]
1

m

,

with the individual head likelihood given by
p(Zh

i |Xi) = p(Ztex
i |Xi)p(Zsk

i |Xi)p(Zsil
i |Xi) (8)

The normalization factor1
m

is used to make the head likelihood values comparable for different number of
people. All likelihood models are detailed in the next subsections.

3.3.1 Body Model

Binary. Following [14] and using the adaptive background subtraction technique described in [17], each im-
age is segmented into foreground (Z

bin,F ) and background (Zbin,B) pixels-wise observations (see Figure 1).
Qualitatively, for a given multi-person configuration and foreground segmented image, the binary feature com-
putes the distance between the observed overlap (between the area of the multi-object configurationSX and
the segmented image) and a learned value. The overlap is measured for foreground and background in terms
of precisionν and recallρ : νF = SX

∩F
SX , ρF = SX

∩F
F

, νB = SX
∩B

SX , andρB = SX
∩B

B
whereF andB

are the sets of foreground and background segmented pixels,respectively [14]. Incorrect locations or numbers
of people will not match the learned values well, and will result in lower likelihood values. The likelihood is
defined for the foreground and background as

p(Zbin|X) = p(Zbin,F |X)p(Zbin,B |X). (9)

The binary foreground likelihood term,p(Zbin,F |X), is defined similarly for all non-zero person countsm 6= 0
as a single Gaussian distribution set in precision-recall space (νF ,ρF ). The binary background likelihood term,
on the other hand, is defined as a set of Gaussian Mixture Models (GMMs) learned for each possible person
count (m ∈ M). If the state hypothesizes that two objects are present in the scene, for example, the binary
background likelihood term is the GMM density of the the observedνB andρB values from the GMM learned
for m = 2.
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Body Color. To maintain personal identities, we employ a HS color feature defined using color observations
computed over foreground (Z

col,F ) and background (Zcol,B) pixels. Assuming conditional independence be-
tween foreground and background, the color likelihood is written

p(Zcol|Zbin,X) = p(Zcol,F |Zbin,F ,X) ×

p(Zcol,B |Zbin,B ,X). (10)

The first term determines how well the color of each measured person matches online learned models, and
the second term determines how well the background matches abackground model learned off-line. The
foreground color likelihood makes use of a 4D histogram defined over a person index, spatial segment, and
HS color space, built from an adaptive foreground color model composed of 2D HS color histograms for
each person, spatially segmented for the head, torso, and legs. A similar 4D histogram is computed from
the color foreground observations. The likelihood is defined using the Bhattacharya distancedF between the
learned and observed histogramsp(Zcol,F |Zbin,F ,X) ∝ eλF d2

F , whereλF is a hyper-parameter [2]. Finally,
the background color likelihood helps reject configurations with untracked people and is computed using the
background pixels not appearing inSX.

3.3.2 Head Model

The head feature relies on head-pose dependent observationmodels defined over texture and skin measure-
ments, as previously proposed in [16, 22]. In addition, we propose a novel term: a silhouette head feature
defined using the background subtraction, which proved to beof great assistance for head localization in prac-
tice.
The head pose can be represented by the panαh, tilt βh, and rollγh angles of the Euler decomposition of
the head rotation w.r.t. the camera frame. However, asγh models in-plane rotation, out-of-plane head appear-
ance changes only depend on the pan and tilt angles. To model these appearance changes we have constructed
head pose models for each of the 93 discrete head posesθh ∈ Θ = {θh

j = (αh
j , βh

j ), j = 1, ..., 93} of the
Prima-Pointing Database [5].
Head Pose Texture Model. Head pose texture is represented by the output of three filters: a Gaussian filter
at coarse scale and two isotropic Gabor filters at two different scales. Training head patch images, resized to
the same reference size (64 × 64), were preprocessed by histogram equalization to reduce light variation ef-
fects. The filter outputs at the locations of a subsampled grid are then concatenated into a single feature vector.
Then, for each head poseθ (θ = θh here, for simplicity), the meaneθ = (eθ

j ) and diagonal covariance matrix
σθ = (σθ

j ) of the corresponding training feature vectors are computedand used to define the person texture
likelihood model in Eq.8 as

p(Ztex
i |Xi) =

∏

j

1

σθi

j

max(exp−
1

2

(

Z
tex
i,j − eθi

j

σθi

j

)2

, Ttex), (11)

whereTtex is a threshold used to reduce the impact of outlier measurements.
Head Pose Skin Model. To make our head models more robust to background clutter we define a skin binary
mask denoted byMθ for each pose,θ. The masksMθ are learned from skin masks extracted from the training
images corresponding to poseθ by classifying pixels as skin or non-skin, using a Gaussian skin-color distribu-
tion modeled in the normalized RG space. The skin color likelihood of a measurementZsk

i belonging to the
head of personi is defined as

p(Zsk
i |Xi) ∝ exp−λsk||Z

sk
i − Mθi ||1, (12)

where||.||1 denotes theL1 norm andλsk is a hyper parameter learned on training data. The measurement
Z

sk
i is extracted from the location of personi by detecting skin pixels using a temporally adapted skin color

distribution model.
Silhouette. In addition to the pose dependent head model, we propose to add a head silhouette likelihood
model to take advantage of background subtraction information. The silhouette model,Hsil (see Figure 2),
is constructed by averaging head silhouette patches extracted from binary foreground images resulting from
background subtraction in the training set. The likelihoodof a measured silhouette patch is then defined as:
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Figure 2:Head Modeling. Left: The head silhouette model. Right: the head pointing vectorzh.

p(Zsil
i |Xi) ∝ exp−λsil||Z

sil
i − Hsil||1, (13)

whereλsil is an hyper-parameter learned on training sequences.

3.4 Inference with Trans-Dimensional MCMC

The state vector for a single person in our model is ten-dimensional. Inference on a state-space this large is
taxing for traditional particle filters. When allowing for anarbitrary number of people, it becomes clear that
an alternative solution is necessary. To solve the inference issue in such high dimensional state-space, we have
adopted the Reversible-Jump MCMC (RJMCMC) sampling schemeproposed by several authors [14, 24] to
efficiently sample over the posterior distribution. RJMCMCsampling has shown superior performance to a
standard Sequential Importance Resampling PF for high dimensional spaces. However, unlike previous work
[14, 24], where update moves were applied to the entire stateof a single person, we propose to generalize the
MCMC approach to update individual components of the state of a single person.

Inferring a solution to the tracking problem in RJMCMC is accomplished by constructing an Markov
Chain, the stationary distribution of which is equal to thatof the filtering distribution defined in Eq. 7. The
Markov Chain is defined over a variable dimensional space to accommodate the varying number of people,
and is sampled according to the Metropolis-Hastings (MH) algorithm. Starting from an arbitrary configuration,
Metropolis-Hastings repetitively samples a new configuration X

∗ from a proposal distributionq(X∗|X), and
adds the proposed sample to the Markov Chain with probability

α = min

(

1,
p(X∗)q(X|X∗)

p(X)q(X∗|X)

)

. (14)

Otherwise, a sample constructed from the current configuration is added to the Markov Chain with probability
1 − α. In practice, the new configuration is chosen by first selecting amove type, υ∗ from a set of movesΥ
with prior probabilitypυ∗ . The acceptance ratioα can be re-expressed throughdimension-matching[4] as

α = min

(

1,
p(X∗)pυqυ(X)

p(X)pυ∗qυ∗(X∗)

)

, (15)

whereqυ∗ is a move-specific distribution andqυ is its reverse-move counterpart.
We define six different move types in our model:birth, death, swap, body update, head update, andpose

update. A move can either change the dimensionality of the state (asin birth or death moves) or keep it fixed (as
in the case of swap and update moves). Once the move type has been determined, a proposal configurationX

∗

is sampled from a move-specific proposal distributionqυ∗(X∗), the likelihood of the proposed configuration is
evaluated, the acceptance ratio is computed, and the proposed sample is either added to the Markov Chain (if
it passes the acceptance test) or discarded (in which case, the previous configurationX is added to the Markov
Chain).

For the first three move types
(1) Birth of a new person, implying a dimension change frommt to mt + 1,
(2) Death of an existing person, implying a dimension decrease, frommt to mt − 1, and
(3) Swap of the identifiers of two existing people, implying no changein dimension,
the details for computing the acceptance ratios and move-specific proposal distributions are described in [14].
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However, in [14], a single update move was defined in whichall the parameters of a randomly selected per-
son were updated simultaneously. Instead, we propose to split the person state space and define several update
moves (body update, head update, and pose update). This is done for two reasons. First, the state for a single
person in our model is much more complex, and splitting the update moves allows us to separate the problem of
finding a good configuration for an entire person into three smaller problems: finding a good configuration for
the body, finding a good configuration for the head location, and finding a good configuration for the head pose
(the body and head likelihoods are defined in such a way that they are conditionally independent). Secondly,
splitting the update moves helps us to avoid thelikelihood balancingproblem, which can arise when one of the
components of the likelihood dominates the others. This canresult in well-tracked bodies, but poorly estimated
head pose, for example. Following the dynamic decomposition for a person into body, head, and pose (Eq. 6),
we propose to employ the following update moves (see [14] forthe appropriate methodology to define the move
proposal),
(4) Body update involves defining the proposal asqυ∗(X∗) =

∑

i
1

mt

qu,b(X
∗|i) with qu,b(X

∗|i) =
1

N

∑

n

p(Xb,∗
i,t |X

(n)
t−1)p(Xb,∗

i,t |X
(n)
t−1)δ(X

b,∗
i,t − X

b
i,t),

whereXb
i,t denotes all state parameters exceptX

b
i,t. In practice, this implies first selecting an person randomly,

i∗, and sampling a new body configuration for this person fromp(Xb,∗
i∗,t|X

b,n∗

t−1 ), using an appropriately ran-
domly chosen particlen∗ from the previous time and keeping all the other parameters unchanged. With this
proposal, the acceptance probabilityαbody can then be shown to reduce to:

min

(

1,
p(Zb

t |X
b,∗
i∗,t)p(Lh,∗

i∗,t|X
b,∗
i∗,t)

∏

j∈Ci∗
φ(X∗

i∗,t,X
∗
j,t)

p(Zb
t |X

b
i∗,t)p(Lh

i∗,t|X
b
i∗,t)

∏

j∈Ci∗
φ(Xi∗,t,Xj,t)

)

.

(5) Head update in a similar fashion, implies sampling the new head spatial configuration of personi∗ accord-
ing top(L∗

i∗,t|L
n∗

t−1) . The acceptance ratioαhead simplifies to

min

(

1,
p(Zh

i∗,t|X
h,∗
i∗,t)p(Lh,∗

i∗,t|X
b,∗
i∗,t)

p(Zh
i∗,t|X

h
i,t)p(Lh

i,t|X
b
i,t)

)

. (16)

(6) Pose update simply consists of sampling the new head pose from the proposal functionp(θ∗i∗,t|θ
n∗

t−1) and
accepting with probabilityαpose:

min

(

1,
p(Zh

i∗,t|X
h,∗
i∗,t)

p(Zh
i∗,t|X

h
i,t)

)

. (17)

4 WVFOA Modeling

For our application, the WVFOA of a visible person is defined asbeing in one of two states:focused(she/he
is looking at the advertisement) orunfocused(she/he is not). As seen in Figure 3, passing people focus their
attention on the advertisement from different locations with a variety of different head poses. To infer the
WVFOA at each time step for each person in the scene, we rely on the head location and pose estimates
provided by the MCMC filter, which track and maintain identity of people over time, even through occlusion.
Simply applying a face detector to solve the WVFOA problem formultiple people will fail for several reasons:
(1) the range of head poses is beyond that of a typical face detectors, (2) existing state-of-the-art face detectors
such as that described in [8] have no mechanism to maintain identity between time steps.

The WVFOA is determined by extracting the pointing vectorzh from the pose estimate (see Fig. 2), which
is characterized by the pan and tilt angles, as well as the horizontal head positionxh (see Figure 3). As the
ranges ofzh corresponding to thefocusedstate are directly dependent on the location of the head in the image,
we modeled the likelihood of afocusedstate as

p(zh) =
K

∑

k=1

p(xh ∈ Ik, zh) =
K

∑

k=1

p(xh ∈ Ik)p(zh|xh ∈ Ik). (18)
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Figure 3:WVFOA Modeling.WVFOA is determined by head pose and horizontal position in the image. The
horizontal axis is divided into 5 regions. Yellow, green, cyan, black, and blue data points representfocused
training head locations in each region. At the center of eachregion red arrows represent 4 focused pointing
vectors samples.

Figure 4: Experimental Setup.Left: The advertisement poster. Center: Inside the building, a camera is aimed at the window. Right:
Outside, the advertisement in the window is noticeable

The first termp(xh ∈ Ik) models the likelihood of a person’s head location, and the second termp(zh|xh ∈ Ik)
models the likelihood of a person’s head pose when they arefocused, given the location of their head. The
inclusion of the head location in modeling the WVFOA allowed us to solve an issue not previously addressed:
resolving the WVFOA of a person whose focused state depends ontheir location.

The two terms of the WVFOA model in Equation 18 are defined as followed. The image horizontal axis
(x axis) is divided intoK intervals,Ik, whose centers and width are denoted byxIk

andσIk
, respectively.

The probability of a locationxh to belong to intervalIk is modeled by a Gaussian distributionp(xh ∈ Ik) =
N (xh, xIk

, σIk
). Then, in each intervalIk, the focused pointing vector distributionp(zh|Ik) is modeled with

a Gaussian distribution.

The parameters of the WVFOA model (Gaussian mean and covariance matrix) are learned from the training
data. Though our WVFOA model does not make use of the vertical head location, it is straightforward to
generalize the models we propose by defining the setIk to be head location areas in the image plane instead of
x-axis intervals.

Finally, a person is determined to be to befocusedwhen his/her likelihoodp(zh) is greater than a threshold,
T . WVFOA model parameters, includingT , were set on the training data to achieve the highest WVFOA event
recognition performance (see next Section).
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5 Evaluation

As described in the introduction, we applied our model to a hypothetical Nielsen-like outdoor advertisement
application. The task is to determine the number of people who actually look at an advertisement as a per-
centage of the total number of people exposed to it. Additionally, we estimate the time-of-attention (TOA), the
number of times people looked, and provide a performance evaluation of tracking quality.

5.1 Data and Experimental Protocol

An experiment was set up as seen in Fig. 4. A fake advertisement was placed in an exposed window with
a camera set behind. The camera view can be seen in Figures 5 and 6, with the bottom edge of the poster
appearing at the top of the image above the heads of the subjects. A series of recordings were made of actors
passing outdoors in front of the window over a period of 10 minutes (actors were used due to privacy concerns).
The subjects were allowed to look at the advertisement on their own accord. The data consists of up to three
simultaneous people in the scene, and includes several difficult tracking events such as people crossing paths
and occluding each other. Though simulated, we believe the data to be a fair representation of a real-life
scenario.

The data was organized into a training and test set of equal size. The test set consists of nine sequences,
a throughi, of approximately 10-second length each. Sequencesa-c contain three people each (appearing
one at a time) passing in front of the window. Sequencesd-h contains two people appearing simultaneously.
Sequencei contains three people appearing simultaneously.

The training set was manually annotated for body location, head location, and focused/unfocused state.
Using this data, we learned the parameters for the background subtraction model, and the likelihood parameters
for binary features, head silhouette features, and skin color distribution. The training set was also used to learn
prior sizes for the body and head, and the WVFOA distribution.

An objective evaluation was performed on our model over 180 experiments (20 runs per sequence). The
number of samples used was chosen such that there was a sufficient number for good quality tracking according
to the number of people in the scene (300 for one person, 600 for two people, and 800 for three). A discussion
on the effect of varying the number of samples is presented insection 5.4. The evaluation is separated into two
parts: tracking performance and advertisement application performance, discussed in the next two sections.

5.2 Tracking Performance

In this work, we used a set of multi-person tracking measuresrecently proposed by Smith et al. in [13],
and adopted its notation. These measures evaluate a trackers ability to estimate the number and placement
of people in the scene (configuration), and to persistently track a particular person over time (identification)
by comparing it with a hand-labeled ground truth (refer to [13] for details). TheF-measure, which combines
the overlap measures recallρ and precisionν, (F = 2νρ

ν+ρ
), is used to evaluate the quality of tracking of both

the body and the head, asF is only high when bothρ andν are high (F = 1 indicates perfect tracking).
An example of the evolution of the tracking errors andF over time can be seen in the lower two panes of
Figure 5. MeasuresFP andFN give a rate ofFalse PositiveandFalse Negativeerrors per person over the
course of its lifetime.CD (Configuration Distance) measures how close the estimated number of people is to
the actual number per person per frame.FIT andFIO count the number ofFalsely-Identified Trackersand
Falsely-Identified Objectsper person per frame.Tracker PurityTP andObject PurityOP estimate the degree
of consistency with which the estimates and ground truths were properly identified.

Tracking results are presented in Table 1. From this Table, it is clear from theF measure for both the body
and the head that our model performed with a high quality of tracking which was stable across the entire data
set. On average, for a given person, our model generated a FP error on 1.8% of its lifetime. This is mostly due
to short delays removing a tracker when a person leaves the scene. Similarly, FN errors occur on average on
1.0% of an person’s lifetime due to delayed initializationsand early deaths.

On average, an person was falsely identified (FIO) 1.6% of itslifetime and a tracker was falsely identified
(FIT) 5.7% of its lifetime. These rates indicate that our model was able to maintain person identity through
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Figure 5:Tracking Results. Upper Left: A frame of test data with tracking results and ground truth overlayed. Tracking
results appear as green and blue boxes around the head and body with apointing vector projection, and the ground truth
appears as shaded boxes. Both the ground truth and tracking results appear yellow when person is looking at the ad, and
gray when unfocused. Upper Right: WVFOA results for both people over the duration of the test sequence. The ground
truth appears as yellow bars (raised indicates afocusedstate, lowered whenunfocused, and non-existent when the object
does not appear in the scene), the tracking results appear as blue and green lines. Lower Left: The top plot contains a
history of individual tracking errors, the middle plot contains a summationover all the errors, the bottom plot shows CD.
Lower Right:F measures quality of tracking for each person. Video results are available at http://www.idiap.ch/∼smith/.

occlusion, as illustrated in Fig. 6. The FIT’s are mostly dueto a person leaving the scene followed a person
entering from the same place in a short period of time, which caused the model to believe it was the same
person (in sequencesa andb). FIT and FIO errors in sequenceh are due to short misidentification caused by
occlusion.TP andOP were both high in most cases. On average, a given person was correctly identified for
97% of his/her lifetime, a given tracker correctly identified its person for 89% of its lifetime. The problems
with TP in sequencesa andb were caused by the situation described previously.

5.3 Advertisement Application Performance

To evaluate the performance of the advertisement application, we compared the results from our model with a
true gaze-based ground truth which was hand-labeled at eachframe for the state of the WVFOA (eitherfocused
or unfocused). To evaluate our model’s performance, we evaluated the following quantities (the results of
which appear in Table 2): (1) the number of people present in the scene, (2) the number of people who looked
(focused) at the advertisement, (3) the number of times someone looked (focused) at the advertisement (look-
events defined by at least 3 consecutive focused frames), and(4) the frame-based and event-based recognition
rates offocuson the advertisement.

Over the entire set, 22 people passed the advertisement, of which 20 focusedon the advertisement. Our
system, on average over all runs, estimated that 22 people passed (std= .17), of which 21 looked (std= .09).

A look-event is defined asfocusedstate for a continuous period of at least 3 frames. The total number
of look-events in the data set was 22, 21 of which our system recognized on average (std =.89). This result
was determined through a symbol matching technique. However, our model estimated 37 total look-events on
average (std= 1.1). This disparity can be attributed to problems in head pose estimation for heads partially (or
fully) outside the image as people enter or leave the scene (in the upper right-hand pane of Fig. 5 this situation
occurred for the green estimate near frame 100). Look-eventestimation would improve if we did not consider
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Table 1: Tracking Results.F body andF head indicate the tightness of the bounding boxes (1 is a perfect fit to
the ground truth, 0 is no overlap with the ground truth).FP andFN are the rates of false positives and false
negatives per person, per frame.CD measures the difference between the estimated number of people and the
actual number of people, per person, per frame. For other measures, please refer to the text and [13].

seq F F Configuration Identification
# Body Head FP FN CD FIT FIO TP OP

a .88 .88 .021 .001 .022 .262 0 .67 1.0
b .87 .86 .028 .006 .034 .139 0 .79 .99
c .87 .85 .012 .005 .016 .026 0 .86 .99
d .86 .84 .049 0 .049 0 0 .92 1.0
e .88 .87 .037 .001 .038 0 0 .97 1.0
f .86 .87 0 .048 .048 0 0 .96 1.0
g .86 .89 .009 .017 .025 0 0 .99 .98
h .82 .86 0 .016 .016 .09 .15 .86 .78
i .88 .87 .008 .003 .011 0 0 .96 .99

avg .86 .86 .0018 .011 .028 .057 .016 .88 .97

Table 2: Ad application results.# peopleindicates the number of people present in the scene.# peop. looked
indicates the number of people who looked (focused) at the advertisement.# look-eventsrefers to the total
number of times someone looked at the advertisement.WVFOAF is the recognition rate of focused/unfocused
events. GT refers to the ground truth and EST refers to the system estimation. REC refers to the # of recognized
events.

seq length # # peop. # look WVFOA
(s) people looked events (F )

GT EST GT EST GT EST RECevent frame

a 15 3 2.5 2 2.9 2 4.7 2.0 .56 .77
b 13 3 3.0 3 3.0 3 4.0 2.9 .83 .88
c 10 3 2.9 3 3.0 3 4.4 3.0 .86 .79
d 5 2 2.0 2 2.0 2 3.3 2.0 .79 .79
e 6 2 2.0 2 2.0 3 3.1 2.1 .78 .71
f 4 2 2.0 2 2.0 2 2.4 2.0 .93 .93
g 4 2 2.0 1 1.1 1 2.9 1.0 .75 .35
h 4 2 2.8 2 2.0 2 4.9 2.0 .65 .69
i 11 3 3.0 3 3.0 4 7.6 4 .72 .87

WVFOA when a person appears at the edge of the scene.
To evaluate the overall quality of WVFOA estimation, we compute a recognition rate as anF measure (

defined in Section 5.2) for event-based and frame-based WVFOA. To compute the event-basedF , the ground
truth and estimated WVFOA are segmented over the entire sequence into focused and unfocused events, symbol
matching is performed, andF is computed on matched segments. The overall event-basedF is 0.76 (std =.13).
The frame-basedF is computed by matching the estimated WVFOA for each frame to the ground truth. The
overall frame-based F-measure is 0.76 (std= .06). Poor frame-basedF results in sequenceg occurred because
the subject only looked for a very short period of time (0.3s)as he entered the image during which time his
head was partially outside of the image. However, our model still managed to detect this event withF = .75.

Finally, we also computed the time-of-attention (TOA) as the total amount of time that people spent looking
at the advertisement. The total TOA over the entire data set is 37.2s. Our system estimated the TOA to be 44.5s
on average (std= .55s). Over-estimation can be attributed to false alarms as people enter and leave the scene.

5.4 Varying the Number of Samples

To study the model’s dependency on the number of samples, we conducted experiments on sequencei (which
contained three people in the scene) varying the number of samplesN = {50, 100, 200, 600, 800, 1000}.
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Figure 6:Tracking two people through occlusion.

Table 3: Varying the number of particles for sequencei.
# # EST WVFOA (F ) (F ) FP FN CD

particles looks event frame body head

50 12.8 .53 .80 .84 .85 .013 .006 .019
100 10.6 .59 .81 .85 .86 .010 .008 .018
200 9.9 .62 .80 .86 .86 .008 .009 .017
600 7.3 .73 .86 .87 .87 0 .004 .012
800 7.55 .72 .87 .88 .87 .008 .003 .011
1000 7.2 .72 .86 .88 .87 .008 .003 .011

Resulting measures are given in Table 3. For allN , the model correctly estimated the number of people and
the number of people who looked. With less samples, the quality of tracking (as measured byF , FP , FN ,
andCD) suffered. The head tracking and head pose estimation was noticeably shakier with lower numbers of
samples, and the WVFOA estimation suffered as well. This is shown by the increasing error in the number of
estimated looks, and by the lower frame-based and event-basedF . The model stabilized around approximately
N = 600. The computational complexity was roughly linear to the number of samples, with a cost ranging
from < 1 second (N = 50) to≈ 5 seconds (N = 600), non-optimized in Matlab.

6 Conclusion and Future Work

We have presented a principled, probabilistic approach fortracking WVFOA. We evaluated the performance
of our model rigorously in the context of a real-world advertising application. The results of our evaluation
demonstrates that the model we proposed is able to track a varying number of moving people with good quality
and determine their WVFOA. We believe that our model can be used for other applications with similar tasks.
For future work, we plan to investigate ways of reducing the occurrence of false look-events when heads
appear partially as people enter/exit the scene. We also plan on investigating the usefulness of using a face
detector as one of the features in our model. Other future work will include modeling multiple human-to-
human interaction using WVFOA or explicitly modeling occlusion, two aspects for which our model could be
extended in a principled way.
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