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Abstract. Estimating thevandering visual focus of attentidqVVVFOA) for multiple people is an important
problem with many applications in human behavior understanding. Oreagpptication, addressed in this
paper, monitors the attention of passers-by to outdoor advertisementoIvE the WVFOA problem, we
propose a multi-person tracking approach based on a hybrid Dynaagisian Network that simultaneously
infers the number of people in the scene, their body and head locatiodsheir head pose, in a joint
state-space formulation that is amenable for person interaction moddilrgymodel exploits both global
measurements and individual observations for the VFOA. For inéerém the resulting high-dimensional
state-space, we propose a trans-dimensional Markov Chain Mornite (@&MC) sampling scheme, which
not only handles a varying number of people, but also efficiently bearthe state-space by allowing person-
part state updates. Our model was rigorously evaluated for trackohgsaability to recognize when people
look at an outdoor advertisement using a realistic data set.



2 IDIAP-RR 05-80

1 Introduction

An advertising firm has been asked to produce an outdooragigul campaign for use in shopping malls and
bus stations. Internally, the firm has developed severalpetimg designs, one of which must be chosen to
present to the client. Is there some way to judge the besemlant and content of outdoor advertisements?
Currently, the outdoor advertising industry relies on Heziarveys or traffic studies to measure the effectiveness
of advertisements [19, 20]. However, these approachesftme o impractical or expensive to be commer-
cially viable, and a tool that automatically measures tliecgif/eness of outdoor printed advertisements, such
as television’s Nielsen ratings system (which estimatiesitgon programs viewing based on a selected set of
people’s self reports) does not exist. A Nielsen-like syster outdoor display advertisements mdstermine

the number of people who have actually viewed the ad as amage of the total number of people exposed
to it. In this application, the tasks are antomatically detect and track a varying number of peopleosrd

to the advertisement, and estimate their visual focus ehtitin(VFOA) to determine whether they looked at
the ad. We have coined the teMvandering VFOAo describe this type of problem. It is also relevant for othe
areas including human-computer interaction, robot-humianaction, and surveillance.

The advertising literature contains a significant amountvofk on determining VFOA from eye gaze
[3, 12]. However, people in such studies are typically sctije constrained conditions (e.g. they must place
their chin on a chin-rest and remain stationary as advengsgs are placed in front of them), which renders
these approaches useless for measuring public reactioread-ife outdoor setting. On the other hand, while
non-intrusive computer vision algorithms could determ@iye gaze using high resolution head images (e.g.
[15]), a wide field-of-view is required to detect FOA in an dobr advertisement scenario where people are
free to enter, leave, and move about an outdoor space freely.

In this paper, we present a probabilistic framework formeating WVFOA for multiple people. Our paper
contains three key contributions. First, we propose a jpied solution to the problem via a mixed-state
Dynamic Bayesian Network that jointly represents the nundfgeople in the scene, their body and head
locations, their interactions, and their WVFOA, in a true tiperson state-space formulation. Secondly, we
present a method to do inference in the proposed model bg-tliamensional Markov Chain Monte Carlo
(MCMC) sampling techniques. Finally, we apply our framekvto an outdoor advertisement application to
gather useful statistics such as the number of viewerstidaraf viewing, and the total number of people
exposed to the advertisement. This application, to our kexge, has not been addressed previously. We
rigorously evaluate our approach using realistic data ashetailed set of objective performance measures.

The remainder of the paper is organized as follows. Relatd ¥¢ discussed in Section 2. We present
our model in Section 3. We describe how to model WVFOA in SectioWe objectively evaluate our model
on a video data set depicting people passing an outdoor teshraent in Section 5 and provides concluding
remarks in Section 6.

2 Related Work

To our knowledge, our work is the first attempt to tackle thabpem of wandering visual focus of attention for
multiple people. However, some related problems have beeliesl. The 2002 workshop on Performance and
Evaluation of Tracking Systems (PETS) defined a number ohasibn tasks on data depicting people passing
in front of a shop window, including 1) the number of peoplehe scene, 2) the number of people in front
of the window, and 3) the number of people looking at the wimdlbl]. Other research has studied detection
and tracking of shopping groups in a store, and estimatidraofkaction time [6]. However, in these works,
attempts were made to estimate VFOA from body motiaty. Body motion alone does not contain enough
information to accurately determine VFOA. Although thesdiitle related work on the specific problem we
address, a large body of research has been conducted sepiatdssues of multi-person tracking, head pose
tracking, and VFOA estimation.

Solving the multi-person tracking problem is a well studiedic, and many researchers have adopted a
rigorous Bayesian joint state-space formulation to thélem using particle filtering (PF) techniques [7, 9, 14].
However, sampling on a joint state-space quickly becomeffidgient as the space dimension increases when
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people are added. Recent work has concentrated on using M&MPIing to track multiple people more
efficiently [9, 14, 24]. The model in [9] tracked a fixed numleérinteracting people using MCMC. In [14]
this model was extended to handle varying numbers of pedalesversible-jump MCMC. In this paper, we
significantly extend the model of [14] by handling a more cterstate-space which requires the non-trivial
design of new jumps and proposal distributions (see Se8tibn

There are two general approaches to solving the head paséngigoroblem. The first one independently
solves the head tracking and pose estimation problems: drifdaist localized and then processed for pose
estimation [1, 22]. Speed is the main advantage of this agbroas head pose needs to be estimated from
a single location. However, as head pose estimation is vemgitive to head localization [1], the second
approach, which jointly tracks a head and estimates its, pageoverall improve performance [16].

Previous work on automatic eye gaze detection, which defii#€3A includes [15], where the VFOA of a
driver is determined from eye gaze as the driver’s pupilgraeked from a high-resolution monocular video.
Because the nature of WVFOA restrict us to lower resolutigresfollow previous works which have shown
that VFOA can be reasonably approximated by head pose [I8}eMer, most existing work has been limited
to situations with restricted head motion. In [18], the tasls to estimate VFOA of a single person sitting in
a meeting room from his head pose. In other situations wgh testricted motion, modeling VFOA is more
complex. Seminar room environments are such an exampleeeat work, head pose tracking was extended
to tracking the head pose of a single person (the lecturefpwmnesolution image using multi-view camera
setup [21]. As an alternative to the above techniques, fatectbrs, such as described in [8], that are able
to estimate face locations in images together with head poskl be used. However, such systems cannot
be applied to solve the multi-people WVFOA estimation prableecause they don’t keep track of people’s
identities. To our knowledge, only the work by Otsula al (2005) deals with multiple people for VFOA
estimation, where the number of people is known and fixed,thagroblem of tracking is ignored as head
pose tracking is obtained with a sensor.

Our approach presents a principled Bayesian solution fambale@m which has not yet been addressed
in literature, namely tracking the WVFOA for a varying numlaérinteracting people using visual tracking
techniques. The task involves the joint estimation of thenbber of people in a scene, the body and head
locations, and head pose for each of them. This is a diffiaulblem as the size of the state-space (which
consists of head and body location parameters and head posmgters) can be quite large and changes
dimensions as people enter and exit the scene.

3 Our Approach

In a Bayesian approach, tracking can be seen as the estinedtibe filtering distribution of a statX, given
a sequence of observatiols, p(X:|Z;.;). In our model, the state is a joint multi-person configuraimd
the observations consist of information extracted from aocolar image sequen@ .; = (Z4,...,Z;). The
filtering distribution is recursively computed by

P(Xt|Z1:t) = C’_lp(Zt\Xt)x 1)
/ p(Xt|Xt—1)p(Xt—1|let—1>dXt—1a
Xi—1

wherep(X;|X:_1) is a dynamic model governing the predictive temporal evofubf the statep(Z;|X;)
is the observation likelihood (measuring how the predidifit the observations), ard is a normalization
constant.

Under the assumption that the postemn(K;_1|Z..—1) can be approximated by a set of unweighted par-

ticles {X!™,
n=1,.,N} (whereXE") denotes thex-th sample) the Monte Carlo approximation of Eq. 1 becomes

P(Xe|Z1) = O p(Zo|X0) Y p(XKu X)), 2)

The filtering distribution of Eq. 2 can be inferred using MCM@&mpling as outlined in Section 3.4.
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S,

Figure 1:Left: The multi-person state for two people is defined by bangdboxes for the body and head, their related parameters, and
the head pose; Right: foreground pixels are segmented uagigound subtraction.

3.1 StateModel for Varying Numbers of People

The dimension of the state vector must be able to vary alotigtive number of people in the scene. The state
at timet can contain from zero to an arbitrary number of people, adéfimed byX; = {X; ;i € Z;}, where
7, is the set of person indexes,, = |Z;| denotes the number of people and indicates set cardinality. The
special zero-person case is denotedy= ().

The state of a single person contains a body and a head contpand is denoted b, , = (XZ o X)),
The body state vector K° = (2°,1°, s?, e?) wherez?, y® is the 2D location of the body in the |magé7, is
the height scale factor, and is the eccentricity defined by the ratio of the width over tlegght. The head
state vector is similarly defined &" = (L",6") whereL" = (a",y", s" e 4") denotes the 2D spatial
configuration of the head, including the in-plane rotatidn while 0" is a dlscrete variable representing the
head pose exemplar accounting for out-of-plane rotatiaul le@pearance changes (see Figure 1).

3.2 Multi-Per son Dynamics and I nteraction

Our dynamic model for a variable number of people is

P(XyX—1) o H p(Xi,t|Xi,t—1)p0(Xt) 3
i€T,
= v (X Xy—1)po(Xy), (4)

wherepy is the predictive distribution and
po(Xt) = po, (X¢)po, (X:) is a prior on the multi-person state configuration includimigractions between
different peoplefo,) and between a body and its head,§. Following [9, 14, 24], we defingy as

v(XeXe1) = [] p(Xi el Xi) ®)
i€l

whenX;_; # () and constant otherwise. Additionally, we defipX,; :|X;_1) as either the single-person
dynamics

p(X;+|X;—1) if personi existed in the previous frame, or as a distributigp;; (X, ;) over potential initial
person birth positions otherwise. The single person dyadsrgiven by

i,t—l): ( t|th 1) ( 1t|th 1) (1t|92t 1) (6)

where the dynamics of the body st&é, the head spatial state componésit, and the head-pose exemplars
" are modeled as 2nd order auto-regressive (AR) processéxc(atd version is exploited fo").

Asin[9], the interaction modely, (X;) prevents two trackers from fitting the same person. Thishgaed
by exploiting a pairwise Markov Random Field (MRF) whosepfraodes are defined at each time-step by the
people, and the links by the s@tof pairs of proximate people. By defining an appropriate pidé function

p(Xi,
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&(Xi, Xj¢) ox exp(—g(Xit, X)), the interaction modely, (X;) =
Hijec »(X,; ¢, X,,¢) enforces constraints in the dynamic model of people bas¢ieoocations of the person’s
neighbors. The interaction potential between two peoptiefged by a penalty function, which is based on
the overlap of the people (it is zero when they do not ovedap,increases as the area of overlap increases).
Unlike previous work [9, 14, 24], we propose to exploit a prizodel on individual configurations, defined
aspo, (X;) = erI,p(LZ,t‘Xz,t)' This term ensures that the head and body spatial stateshgsecally
plausible, constraining the head location w.r.t. the aurbedy configuration.
With these terms defined, the Monte Carlo approximationefittering distribution (Eq. 2) is re-expressed
as

P(Xi|Z1y) = O 'p(Z4|Xs) H D(Xit, Xjit) X

ijeC
T pL X5 0> prr (Xl X)), 7)
kel; n

3.3 Observation Model

The observation model combines five features to estimatikgdénood of a proposed configuration. The first
two are global body features. They consisbafary andcolor measurements, and are defined pixel-wise over
the entire image. The binary measureme@%7) make use of a background-subtracted image, while color
measurementZ(°') exploit histograms in Hue-Saturation (HS) color spacee fl@maining three features are
head features, and consist of text@”, skin Z;*, and silhouettéZ: observations gathered independently
for each person and contribute to the localization and esiim of the head pose. For the remainder of this
section, the time index( has been omitted to simplify notation. Assuming condiglondependence of ob-
servations, the overall likelihood is then given by

p(Z|X) _ p(ZCOZ\me,X)p(me|X) al(ZﬂXJ} ,
1€T

3=

with the individual head IikeIihO(})Ld given by . . »

p(Z7|X:) = p(Z;*"1X;)p(Z5" | Xo)p(Z7" 1 X;) 8
The normalization facto% is used to make the head likelihood values comparable féerdiit number of
people. All likelihood models are detailed in the next sutises.

3.3.1 Body Modél

Binary. Following [14] and using the adaptive background subtoactechnique described in [17], each im-
age is segmented into foregrourg’{™*") and backgroundZ’™-?) pixels-wise observations (see Figure 1).
Qualitatively, for a given multi-person configuration amdedground segmented image, the binary feature com-
putes the distance between the observed overlap (betweenrdh of the multi-object configuratigi® and

the segmented image) and a learned value. The overlap isumda®sr foreground and background in terms
of precisiony and recallp : vF = SE—QF pf = SXT”F VB = S};—QB, andp? = SXTQB whereF and B

are the sets of foreground and background segmented pigsfmctively [14]. Incorrect locations or numbers
of people will not match the learned values well, and willuledn lower likelihood values. The likelihood is
defined for the foreground and background as

p(Zbin IX) — p(zbi7L,F|X)p(Zbin,B

X). )

The binary foreground likelihood term(Z%™¥'|X), is defined similarly for all non-zero person counts# 0

as a single Gaussian distribution set in precision-regalts (*',p'"). The binary background likelihood term,
on the other hand, is defined as a set of Gaussian Mixture M¢@Ms) learned for each possible person
count (n € M). If the state hypothesizes that two objects are presetiterstene, for example, the binary
background likelihood term is the GMM density of the the alisd® andp? values from the GMM learned
form = 2.
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Body Color. To maintain personal identities, we employ a HS color featiefined using color observations
computed over foreground(°-*) and backgroundZc°"-?) pixels. Assuming conditional independence be-
tween foreground and background, the color likelihood igtem

p(Zcol|Zbin,X) — p(ZCOl’F Zbin,F’X) %
p(zcol,B|Zbin,15’7 X) (10)

The first term determines how well the color of each measuszdgm matches online learned models, and
the second term determines how well the background matchegkground model learned off-line. The
foreground color likelihood makes use of a 4D histogram @efiover a person index, spatial segment, and
HS color space, built from an adaptive foreground color naedenposed of 2D HS color histograms for
each person, spatially segmented for the head, torso, gsd I similar 4D histogram is computed from
the color foreground observations. The likelihood is defiosing the Bhattacharya distanége between the
learned and observed histograpi@<e-F |ZbnF X)) o« e 7, whereAr is a hyper-parameter [2]. Finally,
the background color likelihood helps reject configuragiavith untracked people and is computed using the
background pixels not appearing$.

3.3.2 Head Mod€

The head feature relies on head-pose dependent obsermatidels defined over texture and skin measure-
ments, as previously proposed in [16, 22]. In addition, wappse a novel term: a silhouette head feature
defined using the background subtraction, which proved tof lggeat assistance for head localization in prac-
tice.

The head pose can be represented by theqdarilt 3", and rolly" angles of the Euler decomposition of
the head rotation w.r.t. the camera frame. Howevet;"asodels in-plane rotation, out-of-plane head appear-
ance changes only depend on the pan and tilt angles. To ezl appearance changes we have constructed
head pose models for each of the 93 discrete head @dses© = {0/ = (o}, 5}'),j = 1,...,93} of the
Prima-Pointing Database [5].

Head Pose Texture Model. Head pose texture is represented by the output of threesfileeGaussian filter

at coarse scale and two isotropic Gabor filters at two diffeseales. Training head patch images, resized to
the same reference sizé4(x 64), were preprocessed by histogram equalization to redgbé Variation ef-
fects. The filter outputs at the locations of a subsampletiaye then concatenated into a single feature vector.
Then, for each head po$g# = 6" here, for simplicity), the meaef = (e?) and diagonal covariance matrix
op = (af ) of the corresponding training feature vectors are compatetused to define the person texture
likelihood model in Eq.8 as

tex 1 1 ngef B 657 ’
p(Z;°"1X;) 1;[ U?i max(exp 5 ( O’?i s Trex), (112)
whereT,. is a threshold used to reduce the impact of outlier measursme

Head Pose Skin Model. To make our head models more robust to background clutteiefieeda skin binary
mask denoted by/? for each pose). The masks\/? are learned from skin masks extracted from the training
images corresponding to po&dy classifying pixels as skin or non-skin, using a Gausskam-solor distribu-
tion modeled in the normalized RG space. The skin coloriliogld of a measuremef@:* belonging to the
head of personis defined as

p(Z:*|X;) o< exp —Agi||Z5F — M%)y, (12)

where||.||; denotes thd.; norm and)\, is a hyper parameter learned on training data. The measateme
Z:3* is extracted from the location of persomy detecting skin pixels using a temporally adapted skiorcol
distribution model.

Silhouette. In addition to the pose dependent head model, we proposedta agad silhouette likelihood
model to take advantage of background subtraction infaomatThe silhouette modeF 5 (see Figure 2),

is constructed by averaging head silhouette patches #atkdimm binary foreground images resulting from
background subtraction in the training set. The likelihobd measured silhouette patch is then defined as:
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Figure 2:Head Modeling Left: The head silhouette model. Right: the head pointingare:".

P(Z5MX5) o exp —Aga| |25 — H M|y, (13)

wherel,;; is an hyper-parameter learned on training sequences.

3.4 Inferencewith Trans-Dimensional MCMC

The state vector for a single person in our model is ten-dgiogral. Inference on a state-space this large is
taxing for traditional particle filters. When allowing for ambitrary number of people, it becomes clear that
an alternative solution is necessary. To solve the infexégguie in such high dimensional state-space, we have
adopted the Reversible-Jump MCMC (RIMCMC) sampling schproposed by several authors [14, 24] to
efficiently sample over the posterior distribution. RIMCM&mpling has shown superior performance to a
standard Sequential Importance Resampling PF for highrisroral spaces. However, unlike previous work
[14, 24], where update moves were applied to the entire sfadesingle person, we propose to generalize the
MCMC approach to update individual components of the sthgesingle person.

Inferring a solution to the tracking problem in RIMCMC is astplished by constructing an Markov
Chain, the stationary distribution of which is equal to tbathe filtering distribution defined in Eq. 7. The
Markov Chain is defined over a variable dimensional spacetoramodate the varying number of people,
and is sampled according to the Metropolis-Hastings (Migpathm. Starting from an arbitrary configuration,
Metropolis-Hastings repetitively samples a new configareX* from a proposal distributiop(X*|X), and
adds the proposed sample to the Markov Chain wi%prob bilit

Ko R DR
o= (1’ p<X>q<X*|X>)' a4

Otherwise, a sample constructed from the current configuréd added to the Markov Chain with probability
1 — «a. In practice, the new configuration is chosen by first selgcéimove typev* from a set of move&
with prior probabilityp.,-. The acceptance ratio can be re-expressed throudimension-matchinf#] as

= min (1. PEDPugu(X)
“ <1’ P(X)pov-qo (X*)> ’ (15)

whereg,,- is a move-specific distribution ang is its reverse-move counterpart.

We define six different move types in our modbirth, death swap body updatehead updateandpose
update A move can either change the dimensionality of the stat(aisth or death moves) or keep it fixed (as
in the case of swap and update moves). Once the move type érasietermined, a proposal configuratm
is sampled from a move-specific proposal distribution(X*), the likelihood of the proposed configuration is
evaluated, the acceptance ratio is computed, and the modasnple is either added to the Markov Chain (if
it passes the acceptance test) or discarded (in which ¢espravious configuratioX is added to the Markov
Chain).

For the first three move types
(1) Birth of a new person, implying a dimension change fremto m; + 1,

(2) Death of an existing person, implying a dimension decrease, frono m; — 1, and
(3) Swap of the identifiers of two existing people, implying no changelimension,
the details for computing the acceptance ratios and moeeifgpproposal distributions are described in [14].
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However, in [14], a single update move was defined in whitkhe parameters of a randomly selected per-
son were updated simultaneously. Instead, we proposeitdrspperson state space and define several update
moves (body update, head update, and pose update). Thisedalotwo reasons. First, the state for a single
person in our model is much more complex, and splitting trdatgmoves allows us to separate the problem of
finding a good configuration for an entire person into threalenproblems: finding a good configuration for
the body, finding a good configuration for the head location, finding a good configuration for the head pose
(the body and head likelihoods are defined in such a way tlegtdahe conditionally independent). Secondly,
splitting the update moves helps us to avoidltkelihood balancingoroblem, which can arise when one of the
components of the likelihood dominates the others. Thigeanlt in well-tracked bodies, but poorly estimated
head pose, for example. Following the dynamic decompasitioa person into body, head, and pose (Eq. 6),
we propose to employ the following update moves (see [14h®@appropriate methodology to define the move
proposal),

(4) Body update involves defining the proposal 8- (X)) =3 = qu b(X*]2) with g, (X*]2) =

NZ b XEp(X S X)) <xi’;:—xs,t>,

whereX" denotes all state parameters exc‘&@; In practice, this implies first selecting an person rangoml

, and sampllng a new body configuration for this person fmmf*’t i1 ), using an appropriately ran-
domly chosen particle* from the previous time and keeping all the other parametechanged. With this
proposal, the acceptance probabitity,q, can then be shown to reduce to:

b,* h,* b,* * *
i P(Z?‘Xi*,t)P(Li*,t Xi*,t) Hjeci* ¢(Xi*7taxj,t)
P(ZYX3. Dp(LE 1X0 ) e, (Kt Xjie)

(5) Head update in a similar fashion, implies sampling the new head spatafiguration of persou* accord-
ing tOp(L;‘*’t L;fl) . The acceptance ratio,.,q simplifies to

h,* h,* b,x
min [ 1 p(Z?*,t Xi*’,t)p(Li*,t Xi*,t) (16)
’ p(zzh*,t Xﬁt)p(L?ﬂXg,t)
(6) Pose update simply consists of sampling the new head pose from the pedgosctionp(6;. , 67" ,) and
accepting with probabilityy,,s.:
(L ek X
min | 1, —— =2 | a7
p(zi*,t|Xz',t)

4 WVFOA Modeling

For our application, the WVFOA of a visible person is definedeimg in one of two stateocusedshe/he
is looking at the advertisement) anfocusedshe/he is not). As seen in Figure 3, passing people focus the
attention on the advertisement from different locationthve variety of different head poses. To infer the
WVFOA at each time step for each person in the scene, we relhe@mead location and pose estimates
provided by the MCMC filter, which track and maintain ideytitf people over time, even through occlusion.
Simply applying a face detector to solve the WVFOA problenmmfoitiple people will fail for several reasons:
(1) the range of head poses is beyond that of a typical faseties, (2) existing state-of-the-art face detectors
such as that described in [8] have no mechanism to maintaititgt between time steps.

The WVFOA is determined by extracting the pointing vectbifrom the pose estimate (see Fig. 2), which
is characterized by the pan and tilt angles, as well as thiedrdal head position” (see Figure 3). As the
ranges ot” corresponding to thiocusedstate are directly dependent on the location of the heackiimiage,

we modeled the likelihood ofﬁncusedstate as
K

Zp e I, 2" = Z (z" € I)p(z"|z" € I},). (18)

k=1
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Figure 3: WVFOA Modeling WVFOA is determined by head pose and horizontal position énittiage. The
horizontal axis is divided into 5 regions. Yellow, greenaoy black, and blue data points represiecused
training head locations in each region. At the center of eagion red arrows represent 4 focused pointing
vectors samples.

BIG BROTHER

IS WATCHING

YOU

Figure 4: Experimental SetuplLeft: The advertisement poster. Center: Inside the buildingamera is aimed at the window. Right:
Outside, the advertisement in the window is noticeable

The first termp(z" € I,) models the likelihood of a person’s head location, and thersgtermp(z"|z" € I;,)
models the likelihood of a person’s head pose when theyamesed given the location of their head. The
inclusion of the head location in modeling the WVFOA allowexita solve an issue not previously addressed:
resolving the WVFOA of a person whose focused state depentiedariocation.

The two terms of the WVFOA model in Equation 18 are defined dsvi@d. The image horizontal axis
(z axis) is divided intoK intervals, I, whose centers and width are denotedspy and o, , respectively.
The probability of a location” to belong to interval, is modeled by a Gaussian distributip(w” € I,) =
N (2" x1,,01,). Then, in each intervaly, the focused pointing vector distributigriz"|1;) is modeled with
a Gaussian distribution.

The parameters of the WVFOA model (Gaussian mean and coearaatrix) are learned from the training
data. Though our WVFOA model does not make use of the vertieatl Hocation, it is straightforward to
generalize the models we propose by defining the€,sti be head location areas in the image plane instead of
z-axis intervals.

Finally, a person is determined to be tofbeusedvhen his/her likelihoog(z") is greater than a threshold,
T. WVFOA model parameters, includiig, were set on the training data to achieve the highest WVFOAteve
recognition performance (see next Section).
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5 Evaluation

As described in the introduction, we applied our model to jpdtlgetical Nielsen-like outdoor advertisement
application. The task is to determine the number of people adtually look at an advertisement as a per-
centage of the total number of people exposed to it. Addiignwe estimate the time-of-attention (TOA), the
number of times people looked, and provide a performandeavan of tracking quality.

5.1 Dataand Experimental Protocol

An experiment was set up as seen in Fig. 4. A fake advertisevnas placed in an exposed window with
a camera set behind. The camera view can be seen in Figure$ & avith the bottom edge of the poster
appearing at the top of the image above the heads of the ssibjfeseries of recordings were made of actors
passing outdoors in front of the window over a period of 10utes (actors were used due to privacy concerns).
The subjects were allowed to look at the advertisement dn ¢k accord. The data consists of up to three
simultaneous people in the scene, and includes severalutliffiacking events such as people crossing paths
and occluding each other. Though simulated, we believe &te t be a fair representation of a real-life
scenario.

The data was organized into a training and test set of eqeal Jihe test set consists of nine sequences,
a throughi, of approximately 10-second length each. Sequeneegontain three people each (appearing
one at a time) passing in front of the window. Sequen&éscontains two people appearing simultaneously.
Sequenceé contains three people appearing simultaneously.

The training set was manually annotated for body locati@adhlocation, and focused/unfocused state.
Using this data, we learned the parameters for the backdrswintraction model, and the likelihood parameters
for binary features, head silhouette features, and skior ci$tribution. The training set was also used to learn
prior sizes for the body and head, and the WVFOA distribution.

An objective evaluation was performed on our model over 2feements (20 runs per sequence). The
number of samples used was chosen such that there was aesutfiember for good quality tracking according
to the number of people in the scene (300 for one person, 6a&éopeople, and 800 for three). A discussion
on the effect of varying the number of samples is presenteddtion 5.4. The evaluation is separated into two
parts: tracking performance and advertisement applicgt@gformance, discussed in the next two sections.

5.2 Tracking Performance

In this work, we used a set of multi-person tracking measueesntly proposed by Smith et al. in [13],
and adopted its notation. These measures evaluate a aatbidity to estimate the number and placement
of people in the scena@nfiguratior), and to persistently track a particular person over tiider{ification

by comparing it with a hand-labeled ground truth (refer t8][fbr details). TheF-measurewhich combines
the overlap measures recallnd precision, (F = 319 ), is used to evaluate the quality of tracking of both
the body and the head, @8 is only high when botlp andv are high ¢ = 1 indicates perfect tracking).
An example of the evolution of the tracking errors aFidover time can be seen in the lower two panes of
Figure 5. Measureg' P and F'N give a rate ofFalse PositiveandFalse Negativesrrors per person over the
course of its lifetime C'D (Configuration Distancemeasures how close the estimated number of people is to
the actual number per person per frandelT and F1O count the number dfalsely-Identified Trackerand
Falsely-ldentified Objectser person per framdracker Purity7 P andObject PurityO P estimate the degree
of consistency with which the estimates and ground trutheweoperly identified.

Tracking results are presented in Table 1. From this Tabieclear from thef” measure for both the body
and the head that our model performed with a high qualityasfking which was stable across the entire data
set. On average, for a given person, our model generated arétfor 1.8% of its lifetime. This is mostly due
to short delays removing a tracker when a person leaves émes&imilarly, FN errors occur on average on
1.0% of an person’s lifetime due to delayed initializatiamsl early deaths.

On average, an person was falsely identified (FIO) 1.6% difé@sme and a tracker was falsely identified
(FIT) 5.7% of its lifetime. These rates indicate that our mloglas able to maintain person identity through
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Figure 5: Tracking ResultsUpper Left: A frame of test data with tracking results and ground trugérlayed. Tracking
results appear as green and blue boxes around the head and bodypwithig vector projection, and the ground truth
appears as shaded boxes. Both the ground truth and tracking reqées gellow when person is looking at the ad, and
gray when unfocused. Upper Right: WVFOA results for both people theeduration of the test sequence. The ground
truth appears as yellow bars (raised indicatéscasedstate, lowered whennfocusedand non-existent when the object
does not appear in the scene), the tracking results appear as blueecendiges. Lower Left: The top plot contains a
history of individual tracking errors, the middle plot contains a summatiaar all the errors, the bottom plot shows CD.
Lower Right: F' measures quality of tracking for each person. Video results are desdltibttp://www.idiap.chismith/.

occlusion, as illustrated in Fig. 6. The FIT’'s are mostly do@ person leaving the scene followed a person
entering from the same place in a short period of time, whatsed the model to believe it was the same
person (in sequencesandbd). FIT and FIO errors in sequenéeare due to short misidentification caused by
occlusion. TP andOP were both high in most cases. On average, a given person wasityidentified for
97% of his/her lifetime, a given tracker correctly identifigs person for 89% of its lifetime. The problems
with T'P in sequences andb were caused by the situation described previously.

5.3 Advertisement Application Performance

To evaluate the performance of the advertisement apgicatve compared the results from our model with a
true gaze-based ground truth which was hand-labeled affesank for the state of the WVFOA (eith&rcused
or unfocusell To evaluate our model's performance, we evaluated tHewolg quantities (the results of
which appear in Table 2): (1) the number of people presemtarstene, (2) the number of people who looked
(focused at the advertisement, (3) the number of times someone tb@keusedl at the advertisement (look-
events defined by at least 3 consecutive focused framesj4atiie frame-based and event-based recognition
rates offocuson the advertisement.

Over the entire set, 22 people passed the advertisementiofi\20focusedon the advertisement. Our
system, on average over all runs, estimated that 22 peogsegdstd= .17), of which 21 looked (std- .09).

A look-event is defined afocusedstate for a continuous period of at least 3 frames. The tataiber
of look-events in the data set was 22, 21 of which our systetogmized on average (std.89). This result
was determined through a symbol matching technique. Haweue model estimated 37 total look-events on
average (stek 1.1). This disparity can be attributed to problems in head pstienation for heads partially (or
fully) outside the image as people enter or leave the scant@diupper right-hand pane of Fig. 5 this situation
occurred for the green estimate near frame 100). Look-esaithation would improve if we did not consider
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Table 1: Tracking Resultg:’ body andF’ head indicate the tightness of the bounding boxes (1 is apdif to
the ground truth, 0 is no overlap with the ground trutR)? and F'N are the rates of false positives and false
negatives per person, per franteD measures the difference between the estimated number pliepaad the
actual number of people, per person, per frame. For othesumes, please refer to the text and [13].

seq F F | Configuration Identification

# |Body HeaJ FP |FN|CD|FIT|FIO|TP|OP
a | .88 | .88 |.021/.001{.022| .262| O |.67|1.0
b | .87 | .86 | .028|.006(.034 .139| 0 |.79|.99
c | .87 | .85|.012|.005/.016| .026| O |.86|.99
d| .86 | .84|.049] O |.049] O 0 [.92]1.0
e | .88 | .87 | .037/|.001{.038 O 0 [.97|1.0
f|.86| .87 | O |.048.048 O 0 [.96|1.0
g | .86 | .89 |.009|.017|.025 O 0 |.99].98
h|.82|.86| 0 |.016/.016] .09 | .15 |.86|.78
i | .88 | .87 |.008|.003/.011 O 0 |.96].99
avg| .86 | .86 |.0018.011|.028| .057| .016|.88| .97

Table 2: Ad application resultgt peopleindicates the number of people present in the scémeeop. looked
indicates the number of people who lookddc{usedl at the advertisement# look-eventsefers to the total
number of times someone looked at the advertisenWMEOAF ' is the recognition rate of focused/unfocused
events. GT refers to the ground truth and EST refers to thesysstimation. REC refers to the # of recognized
events.

seq length # # peop. # look WVFOA
(s) | people| looked events (F)
GT EST|GT EST|GT EST REQevent frame
al 15 |3 25/ 2 292 47 20| 56 .77
b| 13 |3 30/ 3 30/3 40 29 .83 .88
c| 10 |3 29,3 30/3 44 306 .86 .79
d 5 2 202 2002 33 20 .79 .79
e 6 2 202 203 31 21 .78 .71
f 4 2 202 20/2 24 20 93 .93
g 4 2 20/1 1111 29 10 .75 .35
h 4 2 282 202 49 20 65 .69
i 11 |3 3.0/ 3 304 76 4| .72 .87

WVFOA when a person appears at the edge of the scene.

To evaluate the overall quality of WVFOA estimation, we congpa recognition rate as an measure (
defined in Section 5.2) for event-based and frame-based WVH®Aompute the event-baséy the ground
truth and estimated WVFOA are segmented over the entire seguto focused and unfocused events, symbol
matching is performed, antl is computed on matched segments. The overall event-lfaged. 76 (std =13).

The frame-based’ is computed by matching the estimated WVFOA for each frambéeatound truth. The
overall frame-based F-measure is 0.76 ¢std)6). Poor frame-basef results in sequenagoccurred because
the subject only looked for a very short period of time (0.8s)he entered the image during which time his
head was partially outside of the image. However, our matleireanaged to detect this event with = .75.

Finally, we also computed the time-of-attention (TOA) asstibtal amount of time that people spent looking
at the advertisement. The total TOA over the entire datasst.2s. Our system estimated the TOA to be 44.5s
on average (ste: .55s). Over-estimation can be attributed to false alarms aplp@mter and leave the scene.

5.4 Varying the Number of Samples

To study the model's dependency on the number of samplespmducted experiments on sequengehich
contained three people in the scene) varying the numberroples N = {50, 100, 200, 600, 800, 1000}.
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Figure 6: Tracking two people through occlusion.

Table 3: Varying the number of particles for sequence

# |#EST|WVFOA (F)| (F) |FP|FN|CD
particleg looks |event frame| body| head

50 12.8| .53 | .80 | .84 | .85.013|.006|.019
100 | 10.6| .59 | .81 | .85 | .86 |.010/.008|.018
200 99 | .62 | .80 | .86 | .86 |.008|.009(.017
600 73 | .73 | .86 | .87 | .87 | 0 |.004|.012
800 | 7.55| .72 | .87 | .88 | .87.008(.003|.011
1000 | 7.2 | .72 | .86 | .88 | .87 |.008/.003|.011

Resulting measures are given in Table 3. ForM\allthe model correctly estimated the number of people and
the number of people who looked. With less samples, the tyuaflitracking (as measured by, FP, FN,
andCD) suffered. The head tracking and head pose estimation wieably shakier with lower numbers of
samples, and the WVFOA estimation suffered as well. Thisdasvsiby the increasing error in the number of
estimated looks, and by the lower frame-based and eveetdlfasThe model stabilized around approximately
N = 600. The computational complexity was roughly linear to the bemof samples, with a cost ranging
from < 1 second V = 50) to =~ 5 seconds ' = 600), non-optimized in Matlab.

6 Conclusion and Future Work

We have presented a principled, probabilistic approachrémking WVFOA. We evaluated the performance
of our model rigorously in the context of a real-world adiging application. The results of our evaluation
demonstrates that the model we proposed is able to trackymgarumber of moving people with good quality
and determine their WVFOA. We believe that our model can bd tmeother applications with similar tasks.
For future work, we plan to investigate ways of reducing tleeusrence of false look-events when heads
appear partially as people enter/exit the scene. We alsogulanvestigating the usefulness of using a face
detector as one of the features in our model. Other futurdwadlt include modeling multiple human-to-

human interaction using WVFOA or explicitly modeling ocdlus two aspects for which our model could be
extended in a principled way.
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