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Abstract. In this paper, we investigate the use of brain activity for person authen-
tication. It has been shown in previous studies that the brain-wave pafttevery
individual is unigue and that the electroencephalogram (EEG) cargoefaisbiometric
identification. EEG-based biometry is an emerging research topic and weebtat

it may open new research directions and applications in the future. Howeve little

work has been done in this area and was focusing mainly on person idditiidut

not on person authentication. Person authentication aims to accept orctoarpgrson
claiming an identity, i.e comparing a biometric data to one template, while the goal of
person identification is to match the biometric data against all the records intadata

We propose the use of a statistical framework based on Gaussian Mixadel$/and
Maximum A Posteriori model adaptation, successfully applied to speakiiaan au-
thentication, which can deal with only one training session. We performsivieiex-
perimental simulations using several strict train/test protocols to show thetjabtef
our method. We also show that there are some mental tasks that are mapregper
for person authentication than others.



IDIAP-RR 05-81 1

1 Introduction

An authenticatior(or verificatior) system involves confirming or denying the identity claimed
by a person (one-to-one matching). In contrastidemtificationsystem attempts to estab-
lish the identity of a given person out of a closed pool\ofpeople (one-taV matching).
Authentication and identification share the same prepsicgsnd feature extraction steps
and a large part of the classifier design. However, both mtatgst distinct applications.
In authentication mode, people are supposed to cooperdtethng system (the claimant
wants to be accepted). The main applications are acces®okeystems (airport checking,
monitoring, computer or mobile devices log-in), buildingtg control, digital multimedia
access, transaction authentication (in telephone bardtingmote credit card purchases for
instance), voice mail, or secure teleworking. On the otlaedhin identification mode, peo-
ple are generally not concerned by the system and often evetdwvant to be identified.
Potential applications includes video surveillance (puplaces, restricted areas) and infor-
mation retrieval (police databases, video or photo albunogation/identification). Such
authentication systems are based on the characteristecp@fson, such as face, voice, fin-
gerprint, iris, gait, hand geometry or signature. A goodadtiction to person authentication
can be found in [15].

In this paper, we investigate the use of brain activity as\va medality for person au-
thentication. This modality has several advantaggst (s confidential (as it corresponds to
a mental task),?) it is very difficult to mimic (as similar mental tasks are pen dependent)
and @) it is almost impossible to steal (as the brain activity iass@éve to the stress and
the mood of the person, an aggressor cannot force the peyseproduce his/her mental
pass-phrase).

Monitoring the brain activity in order to design future marachine interfaces is the aim
of Brain Computer Interfaces (BCI) [6, 17]. A BCI may monitor bragtiaty via a variety
of methods, which can be coarsely classified as invasive andnvasive. Given the risks
generated by permanent surgically implanted devices ibthi@, and the associated ethical
concerns, we concentrate only on non-invasive approachparticular electrical brain sig-
nals as measured by electroencephalogram (EEG); i.e.labigieal brain activity recorded
from electrodes placed on the scalp. The main source of tiiiEEe synchronous activity
of thousands of cortical neurons. Measuring the EEG is alsimgn-invasive way to monitor
electrical brain activity, but it does not provide detailatbrmation on the activity of single
neurons (or small brain areas). Moreover, it is charaadrizy small signal amplitudes (a
few \Volts) and noisy measurements (especially if recordintgide shield rooms). Besides
electrical activity, neural activity also produces othgyds of signals, such as magnetic and
metabolic, that could be used in a BCl. Magnetic fields can berded with magnetoen-
cephalography (MEG), while brain metabolic activity — refé in changes in blood flow —
can be observed with positron emission tomography (PETRgtional magnetic resonance
imaging (fMRI), and optical imaging. Unfortunately, suckeahative techniques require so-
phisticated devices that can be operated only in speciditiies Moreover, techniques for
measuring blood flow have long latencies and thus are lessjapgie for interaction.

It has been shown in previous studies that the brain-waverpadf every individual is
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unique and that the electroencephalogram (EEG) can be osdioimetric identification.
We believe that EEG-based biometry is an emerging reseapahdnd that it may open new
research directions and applications in the future. Unfately, EEG signal is known to be
very noisy and difficult to process.

Very little work has been done in this area [12, 8, 9] and wasi$ting mainly on person
identification but not on person authentication. Poulosanfll2] have proposed to model
the EEG signal using autoregressive (AR) models and thendahes parameters of the
AR model for the identification. The classification is perm@d using Kohonen’s Vector
Quantizer (VQ). Poulos and al. tried to differentiate fouijects individually from a pool of
different individuals. Paranjape and al. [8] proposed &bsepresent the EEG signal (from
the single P4 electrode) using AR models, then discrimiaaatysis is employed to perform
the classification. More recently, Palaniappan and al [@stigated features based on the
spectral power of the signal together with a fuzzy NeuraWek for the classification.

The paper is structured as follow. In the next section, we ifitsoduce the reader to
the problem of person authentication and we present theopeapapproach based on Gaus-
sian Mixture Models and Maximum A Posteriori model adaptatiThen, we describe the
database we used and the different experiment protocoallfinve present the results ob-
tained using our approach and conclude.

2 TheProposed Approach

2.1 Problem Description

An identity authentication system has to deal with two kind®vents: either the person
claiming a given identity is the one who he claims to be (inahsase, he is calleddient),
or he is not (in which case, he is called iamposto). Moreover, the system may generally
take two decisions: eitheccepttheclientor rejecthim and decide he is ampostot

We propose to adopt a statistical framework widely usedhedbiometric authentication
approaches such as speaker authentication [13] or fad&ca@adn [2]. In this framework,
one first needs a probabilistic model (see section 2.2nybodys biometric data, often
called aworld modeland trained on a large collection of recordings of severapfge From
this generic model, a more specific, client-dependent magitien derived using adaptation
techniques (see section 2.4), built on data from a particlilent. One can then estimate the
ratio of the likelihood of the data corresponding to someeasawith respect to the model
of the claimed client identity, with the likelihood of thersa data with respect to thveorld
model The access is accepted or rejected (see section 2.3) ikéhiddod ratio is higher or
lower than a given threshold, selected in order to optimitteeea low rejection rate, a low
acceptance rate, or a combination of both.

2.2 Gaussian Mixture Models

Let us note the biometric data (extracted from the EEG s)grsed sequence&(’ = {x;...x7})
of frames, where, € R” andD is the number of features per frame.
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In the Gaussian Mixture Model (GMM) approach, all featuretees are assumed to be
independent. Given the GMM parameter aethe likelihood of a set of" feature vectors
X = {x,},_, is found with

P(X|\) :ﬁpxtu (2)

where -
P(x|A) = Zwk (] e, Eie) (2)
A= {wknu’kazk}évzl 3)

Here, (x|, X) is a D-dimensional Gaussian density function [4] with mgaand di-
agonal covariance matrX. N is the number of Gaussians amglis the weight for Gaussian
k (with constraintsy ", w; = 1 and¥ & : wj, > 0).

2.3 Application to Person Authentication

Let us denote the parameter set for cli€ras )\, and the parameter set describing a generic
non-client as—\o. Given a claim for clientC’s identity and a set of feature vectors
supporting the claim, we find an opinid X') on the claim using:

A(X) =log P(X[Ac) — log P(X|=Ac) (4)

whereP(X|\¢) is the likelihood of the claim coming from the true claimantd (X |-\¢)
is the likelihood of the claim coming from an impostor.

The above probabilities are represented by diagonal Gauddixture Models. The
generic EEG model is trained using data from many peoplealllyinthe authentication
decision is reached as follows: given a threshqlthe claim is accepted wheX(X) > 7
and rejected when (X) < .

2.4 Training

We can use different ways to train each client model. Tran#i Maximum Likelihood (ML)
training, such as Expectation-Maximization, can be used][3Vlaximum A Posteriori (MAP)
training [5] can also be used to adapt a generic model usiagtaata. Indeed, it has been
previously shown that the traditionally used ML trainingopapach has problems estimating
robust model parameters when there are only a few trainitey azilable. More precise
models can be obtained through the use of MAP.

Given a set of training vectors(, the probability density function (pdfy( X |\) and the
prior pdf of A\, P(\), the MAP estimate of model parametekg,y, is defined as:

Auwp = argmAaxP(MX) )
= argmfuxP(XM)P(/\) (6)
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AssumingA to be uniform is equivalent to having a non-informati¢e\), reducing the
solution of \ypp to the standard ML solution. Thus, the difference betweenavid MAP
training is in the definition of the prior distribution forélmodel parameters to be estimated.
It has been observed that MAP based training obtains befsirpeance when only the means
are adapted (rather than adapting the covariance matmcewe@ights). We thus choose to
adapt only the means.

An implementation of MAP training for client model adaptaticonsists of using a global
parameter to tune the relative importance of the prior. Tdugagon for adaptation of the

means is: .
> i Pk[xe) x4

T
> im Pk[xt)
hereji,, is the new mean of the-th Gaussiany, is the corresponding parameters in the

generic modelP(k|x;) is the posterior probability of-th Gaussian (from the client model
from the previous iteration) and € [0, 1] is the adaptation factor chosen empirically.

fir, = oy + (1 — @) (7)

3 Experimental Protocol

3.1 Database

EEG signals were recorded with a Biosemi system using a cép3R&itntegrated electrodes
located at standard positions of the International 10-Z0esy. The sampling rate was 512
Hz. Signals were acquired at full DC. No artifact rejectiorcorrection was employed.

This dataset contains data from 9 normal subjects duringobX@edback sessions over
3 days (4 sessions per day). The subject sat in a normal cblaixed arms resting on their
legs. There are 3 tasks:

1. Imagination of repetitive self-paced left hand moveragfieft),
2. Imagination of repetitive self-paced right hand movetsgfmight),
3. Generation of words beginning with the same random |€tkerd).

For all sessions of a given subject acquired on the same deah (asting 4 minutes
with 5-10 minutes breaks in between them), the subject pedd a given task for about
15 seconds and then switched randomly to another task aptrator’'s request. EEG data
can then be splitted into segments corresponding to a givemtahtask. Each segment is
considered as a record. There are 3 records per sessions.

3.2 Preprocessing and Feature extraction

Raw EEG potentials are too noisy and variable to be analyzedtti. Thus the first step
is to preprocess them to increase their signal-to-noise aad extract relevant features that
better describe the mental states to be recognized. The EfBvdbtentials were first spa-
tially filtered by means of a surface Laplacian (SL). Thisragien yields new potentials that
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represent better the cortical activity due only to localrses below the electrodes. The su-
periority of SL-transformed over raw potentials for theaguoition of mental tasks has been
demonstrated in different studies [1, 7]. Specifically, wstfinterpolated using spherical
splines of order 2 and then took the second spatial derevativich is sensitive to local-
ized sources of electrical activity [10, 11]. The secondwdéive is evaluated only at the 8
locations of the electrodes.

O e 0%

B @ TOT O g

@@,
@

Figure 1: lllustration of the location of electrodes on tkalp. Electrodes we are using are
indicated in gray.

Then, every 62.5 ms —i.e., 16 times per second— the powetrapdensity (PSD) in
the band 8-30 Hz was estimated for the 8 centro-parietalrearC3, Cz, C4, CP1, CP2,
P3, Pz, and P4 (Fig. 1). The PSD features we extract from tHetBasformed electrode
signals are based on a temporal Fourier transform. To eitha power spectrum of each
channel over the last second we used the Welch periodoggamitaim [16]. Specifically, we
averaged the FFT of 3 segments of 0.5 second with 50% overlaiph yields a frequency
resolution of 2 Hz. The values in the frequency band 8-30 Hzwermalized according to
the total energy in this same band. As a result, an EEG sampl®6-dimensional vector
(8 channels times 12 frequency components). It is worthngathat, for our experimental
protocol, PSD features lead to better or similar perforreartban more elaborated features
such as parameters of autoregressive models and wavelgts [1

The choice of the electrodes and frequency band is basedecexfertise available in
the BCI community that shows that they contain most of the eglewnformation for the
recognition of the mental tasks used for this study (for aesg\see [6, 17]). Similarly, the
reason for the fast computation of the PSD-based EEG sarfifidanes per second using
windows of 1 second) is to fit the real-time constraints of a BCI.
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3.3 Experimental Methodology

Regarding the fact that our database is small, we havéo(design carefully several ex-
perimental protocols based on distinct training/valiolatevaluation sets and)(to perform
several simulations. Therefore, we propds#fferent protocols:

e to evaluate the potential of our method for person authattic on a small dataset
(protocol J),

e to confirm the previous findings on a larger dataset and to mnedke performance
degradation over daygiotocol 2,

e to demonstrate that training with data spawn over severg daproves the perfor-
mance fprotocol 3,

¢ to show the benefit of incremental learnimdtocol 4.

3.4 Performance Evaluation

Authentication systems make two types of errors: a Falseeptance (FA), which occurs
when the system accepts an impostor, or a False Rejection W##h occurs when the
system refuses a true claimant. The performance is geyenglasured in terms of False
Acceptance Rate (FAR) and False Rejection Rate (FRR) expressedcenpages. To aid
the interpretation of performance, the two error measuesfen combined using the Half
Total Error Rate (HTER), defined as:

HTER = (FAR + FRR) /2
The verification decision is then reached as follows:
e the claim is accepted whet( X)) > 7,

e the claim is rejected whef(X) < 7.

impostor

“‘,EER

FR, E N FA
\Tlm{. >
TEER g

Figure 2: lllustration of typical errors of a biometric sgst. An impostor above the threshold
is a false acceptance. A client below the threshold is a fejeetion.

Since in real life the decision threshotdhas to be chosea priori, this threshold is
chosen to optimize a given criterion, such as the Equal Rate £ ER), i.e whenF AR =
FRR (Fig. 2), on the validation set. This threshold is then usedh® evaluation set to
obtain a HTER figure.
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3.5 Experimental Protocols
3.5.1 Protocol P1

The purpose of this first experimental protocol is to evauhae potential of the proposed
method on a small dataset. It is based on a cross-validatioense with distinct train-
ing/validation and evaluation sets. Among the 9 initialjsats, 3 subjects are kept. Only
the sessions of the first day are used in this protocol.

Table 1 describes the usage of different sessions in eadlyomtion. The notation C/I
means that a session can be used to access a model as a olvefitassan impostor. As an
example, let us consider Kfold1. Data from the session 1 tfgrel and 2 are used to train
the world model and the client specific models (1 and 2). Data the session 2 of person
1 and 2 are used to compute client and impostor scores (tialdset) when testing against
client models (1 and 2). Additionally to supplement thedation set, data from the session
1 and 2 of impostor 3 are used to compute impostor scoressgdient models (1 and 2).
Finally, the evaluation set is obtained in a similar way Ibig time using sessions 3 and 4.

Table 1: Usage of sessions for the 3-Kfold protocol P1.

. Kfold 1 Kfold 2 Kfold 3
person| session TV E TV E TTV E

1 C C I

1 2 C/ Ci I
3 Cli C/ I
4 Cii Cl/ I
1 C | C

2 2 Cl/ I C/i
3 Cli I C/
4 Cli I C/
1 I C C

3 2 I Ci Cli
3 I C/ C/
4 I C/ C/

Then, for each Kfold, we have the following number of accesse

¢ validation set: 8 accesses made of 2 client accesses ana6tionpccesses (including
2 sessions of an impostor unseen during the training to atche< client models),

e evaluation set: 12 accesses made of 4 client accesses apd&anaccesses.

It is worth noting that despite the small number of availahlbjects, we have designed
a hard experiment protocol where one of the subject, out @ethwas always removed
from the training data and used as an impostor during evatuatVe decided to design an
experiment protocol based on a 3 K-folds scheme. In each&-&very person is, in turn,
considered as a client or an impostor.
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Table 2: Usage of sessions for protocols P2, P3 and P4.

. P2 P3 P4
person SeSSION =T ETTTV [ E T V | E
1 | C C C
2 | C C C
3 Cll Cll Cll
Z Cll Cll C/l
5 chic cH!
| 6 Cii|c C/l
clients (2, 3,4,5,7,8 = Cli C/ Cl/l
) Cll Cll C/l
9 Cll CIl || CT72
10 Cll Cll C/l
11 Cll Cl C/l
impostor 1 = | | |
2 I | '
impostors 6, 9 5 | [ |

3.5.2 Protocol P2

The goal of this protocol is to confirm the findings of proto&dl on a larger dataset and
to measure the performance degradation over days. Among shbjects (Table 2), 3 are

considered as real impostors (persons 1, 6 and 9) and the &nieg are considered as

clients. Real impostors are used to compute impostor accesspostor 1 is used on the

validation set and impostors 6 and 9 are used on the evatus¢ib Sessions 1-2 are used
for client training, session 3 for client/impostor validet and session 4 for client/impostor
evaluation. Sessions 5 to 8 will be used for client/imposty 2 evaluation. Sessions 9 to
12 will be used for client/impostor day 3 evaluation.

3.5.3 Protocol P3

We expect protocol P3 to demonstrate that training with dpeawn over several days in-
creases the performance. Therefore, we will use half of dagskions (1-2) and half of
day 2 sessions (5-6) for client training. The second halfayfsdl and 2 will be used for
client/impostor validation (sessions 3-4 and 7-8). Allssess from day 3 (9 to 12) will be
used for client/impostor evaluation.

3.5.4 Protocol P4

Finally, the protocol P4 will try to show the benefit of incrental learning. This protocol
is very similar to protocol P2. The only difference is thassens 5 and 9 are kept for
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incremental client training and then are not available fient/impostor evaluation.

4 Results

4.1 Resultson Protocol P1

We provide in Table 3, HTER results obtained on the descridmebase according to the
above experiment protocol P1 on the evaluation set. Thesatidation was performed for
each mental task. We present also the results for each Kdkdld K2 and K3) and the
average over the 3 K-fold using 5 different values for the hanof Gaussians in the mixture.
Each value is the average of 100 simulations with differaiti@l conditions.

Table 3: HTER performance (in %) for each mental task ancbpmtP 1

Mental | Number of K-folds

tasks | Gaussians| K1 | K2 | K3 | Avg
4 15.6| 95| 8.6]|11.2
8 13.8| 55| 4.0| 7.8

left 16 154 21| 24| 66
32 20.1| 05| 55| 8.7
64 146 1.21129| 9.5
4 22.8| 6.2|28.7|19.2
8 12.4| 3.0| 20.5| 12.0

right 16 23.7| 6.6| 7.4|12.6

32 29.1|10.1] 9.7|16.3
64 27.7113.6| 20.3| 20.5

4 12.6| 50.0| 15.8| 26.1
8 19.0] 59114 121
word 16 276 2.1]19.6|16.4
32 25.7| 0.0] 16| 13.9

64 22.3| 0.0} 23.4|15.2

These results suggest that EEG signal is an effective mpdali person authentication
and that the GMM/MAP framework can be a good choice for thi&.tarhese results also
show that not all mental tasks are equally appropriate fs@eauthentication. Results can
even improve if, for each person, a different mental taskewesed — as if each person had
his/her individual “mental password”. The best result whtamed with the “left” mental
task. Interestingly, the three persons in the database mgdrehanded. It is also worth
noting that the optimal number of Gaussians is rather smailt (6): a small number fails to
capture the complexity of the data distribution while a &argumber seems to model noise.
However, no conclusions can be drawn on such a small numiediefduals.

1This is also true for all experiments in this paper.
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4.2 Resultson Protocol P2

We provide in Table 4, FAR/FRR and HTER results obtained adogrth the experiment
protocol P2 on the evaluation set. The authentication waspmerformed for mental tasks
“left” and “right” as the previous experiment (Section 4sliggested that those tasks were
more appropriate than the mental task “word”. We presewtthis results for each day (d1,
d2 and d3) using 4 different values for the number of Gaussrathe mixture.

First of all, these results confirm that EEG signal is an éffecmodality for person
authentication and that the GMM/MAP framework is a good chdor this task. We have
also the confirmation that the mental task “left” is bettatesithan the mental task “right”
on this database. Also, we observe the degradation of pesfore over days 2 and 3.

Obviously, the mismatch between testing and training eees from days to days. There-
fore, data collected only over one day is not enough for imginobust models.

Interestingly, we see also on days 2 and 3 that the FAR is navaérlthan the FRR, while
the decision threshold was optimized at the EER on the v#didaet of day 1 only. Thisis a
clear indication of the robustness of the system becauggtedise high false rejection rate
of clients, it keeps a small false acceptance rate of impeside system, however, needs a
better fine tuning to model intra-class variability overéim

4.3 Resultson Protocol P3

We provide in Table 4, FAR/FRR and HTER results obtained adegrob the experiment
protocol P3 on the evaluation set. Again, the authentinatias only performed for mental
tasks “left” and “right”. The reader should keep in mind tivathis protocol the evaluation
set corresponds to the day 3 as parts of days 1 and 2 were uskediicng and validation

(Section 3.5.3).

From the results, we can conclude that the performance cangreved by using train-
ing/validation data over 2 days. Both GMM parameters andsitatithreshold can be esti-
mated more accurately. We reached nearlyimprovement between protocol P25(5 %
average HTER over P2-d2 and P2-d3) and protocollR3 @ HTER). This suggests that
even much better results can be achieved by using trainitagader all days and that there
might be a potential for incremental learning.

4.4 Resultson Protocol P4

We provide in Table 5, FAR/FRR and HTER results obtained adogrth the experiment
protocol P4 on the evaluation set. The authentication ig paiformed on mental task “left”
and using 2 values for the number of Gaussians (the one jmgvide best results in the
previous experiment). The purpose of this protocol is tovowe the reader that there is a
potential for incremental learning. Here of course, we aaing a strong assumption, i.e.
that the first session of days 2 and 3 can be trusted (the igenthe claimant is known) and
used for training (Section 3.5.4). This training is calladremental because client models



Mental

Number of Protocol

tasks | Gaussians P2-d1 P2-d2 P2-d3 P3
FAR | FRR| HTER | FAR | FRR| HTER | FAR | FRR | HTER || FAR | FRR | HTER
4 15.1| 17.2| 16.1| 19.6| 50.3| 349 | 248| 476| 36.2| 18.6| 32.3| 254
left 8 12.4| 17.6| 15.0| 179| 64| 40.9| 25.6| 56.6| 41.1| 23.8| 25.15| 245
16 9.0 159| 124 11.1| 79.9| 455| 13.8| 71.6| 42.7| 19.3| 19.65| 195
32 57| 8.5 7.1 72| 822 44.7| 83| 93.7| 51.0| 13.7| 24.9| 193
4 14.3| 8.5 11.4| 21.3| 49.3| 353 24.3| 60.9| 426 | 18.4| 405| 294
right 8 10.2| 13.9| 12.0| 14.6| 73.8| 44.2| 18.8| 74.0| 46.4| 20.6| 29.5| 25.0
16 72| 9.7 84| 10.7| 75.9| 43.3| 12.4| 86.3| 49.3|| 15.0| 23.6| 193
32 48| 159| 10.3| 4.8| 82.6| 43.7|| 7.6| 955| 51.5| 13.0|30.15, 21.6
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are re-trained completely from all training data (incretadiy stored) and are not re-adapted
using new data samples. Furthermore, the decision thishobt re-estimated.

We first report the error rate on the evaluation set of days dn®3 (depicted as P4-
d1, P4-d2, P4-d3). Second, we report the error rate on theadie@n set of days 2 and 3
(depicted as P4'-d2, P4*!-d3) after re-training of the client models using session? 1
and 5 (session 5 being the first of day 2). Finally, we repatdiror rate on the evaluation
set of day 3 (depicted as P#-d3) after re-training of the client models using sessior 1
5 and 9. We should notice first that results for P4-d1, P4-dRR#rd3 are very similar to
P2. Itis logical, since results should not be much affectedeinoving one testing session
from days 2 and 3.

Table 5: FAR/FRR/HTER performance (in %) for mental task “leftid protocol P4

Number of Protocol
Gaussians P4-d1 P4-d2 P4-d3
FAR | FRR| HTER | FAR | FRR| HTER | FAR | FRR | HTER
4 15.1| 17.2| 16.1| 20.0| 50.5| 353 | 24.7| 46.8| 35.7
32 57| 8.5 71| 7.3| 82.7| 45.0| 83| 96.0]| 52.1
Protocol
P4+1-d2 P4+1.d3 P4+2.d3
FAR | FRR| HTER | FAR | FRR| HTER | FAR | FRR | HTER
4 249| 2.7 13.8| 29.4| 10.6| 20.0| 29.3| 1.2| 15.25
32 16.0| 0.2 81| 17.8| 28.3| 230]| 24.5| 0.02| 123

Secondly, we observe the effectiveness of incrementahilegr Indeed, a day-to-day
comparison of results under protocols’®4d2 and P4-d2 or under protocols®®2-d3 and
P4-d3 shows an improvement of the HTER of a facorA closer look shows that this
improvement is mainly due to the reduction of the FRR. Thessfortra-class variability
is better modeled. Furthermore, we can notice that the teesbkained under P4!'-d3
are nearly as good as for protocol P3 (Table 4). Again, th@vshthe effectiveness of
incremental learning because in protocol P3, sessionsrg-gsed for training (in addition
to sessions 1-2) and sessions 7-8 are used also for vafigatiole in P4+!1-d3 the session
5 only is used for model training and the decision thresh®ldat re-estimated. Therefore,
we can confirm that there is a large potential for incremdetahing. Its benefit should be
even larger in the case of doing also decision thresholdtiezation.

5 Concluson and Future Work

In this paper, we investigated the use of brain activity fergon authentication. We pro-
posed the use of a statistical framework based on GaussignidiModels and Maximum

A Posteriori model adaptation. We performed intensive grpental simulations using strict
train/test protocols to show the potential of our method. aé® show () that there are

some mental tasks that are more appropriate for personrdigdigon than others 2} that
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the performance degrades over dag3lfat using training data over two days increases the
performance andij that there is a potential for incremental learning.

However, the database we used is still small and no definitelagsive lessons can be
learned for the task of person authentication from the teseported here. We plan to collect
a more appropriate database with more clients and impostodswhere various real-world
scenarios and mental tasks will be investigated. We willlide & test several state-of-the-
art biometric authentication algorithms and to proposeigion the light of experimental
findings.

It should be noted also that all the choices made for the pogsising and feature selec-
tion algorithm used here were based on studies seekingexatiffgoal, namely recognition
of mental tasks from EEG. Thus, a subject that deservesdiuniestigation is the explo-
ration of alternative choices better suited for personentibation.

Acknowledgment

The authors would like to thank the Swiss National ScienaenBation for supporting this
work through the National Center of Competence in Research (NC&Rhteractive Mul-
timodal Information Management (IM2)".

References

[1] F. Babiloni, F. Cincotti, L. Lazzarini, J.d.R. Millan, J. Mano, M. Varsta, J. Heikkonen,
L. Bianchi and M.G. Marciani, “Linear classification of lowegolution EEG patterns
produced by imagined hand movement€EE Trans. on Rehabilitation Engineering
vol. 8, pp. 186-188, 2000.

[2] F. Cardinaux, C. Sanderson and S. Marcel, “Comparison of leihé® GMM Classifiers
for Face Verification on XM2VTS,Proceedings of the 4th International Conference on
Audio- and Video-Based Biometric Person Authenticatmm 911-920, 2003.

[3] A.P. Dempster, N.M. Laird and D.B. Rubin. “Maximum-likebod from incomplete data
via the EM algorithm”Journal of Royal Statistical Societ$eries B (Methodological),
vol. 39, no. 1, pp. 1-38, 1977.

[4] R.O. Duda, P.E. Hart and G.S Davidattern ClassificationyViley, 2001.

[5] J.L. Gauvain and C.-H. Lee, “Maximum a posteriori estiiafor multivariate Gaussian
mixture observation of Markov chaindEEE Transactions on Speech Audio Processing
vol. 2, pp. 291-298, 1994.

[6] J.d.R. Millan, “Brain-computer interfacesiiandbook of Brain Theory and Neural Net-
works ed. M.A. Arbib: MIT Press, Cambridge Massachusetts, 2002.



IDIAP-RR 05-81 14

[7] J. Mourino, “EEG-based analysis for the design of adegbirain interfaces’Ph.D. the-
sis, Centre de Recerca en Enginyeria Biomegdidaiversitat Politecnhica de Catalunya,
Barcelona, Spain, 2003.

[8] R.B. Paranjape, J. Mahovsky, L. Benedicenti and Z. Koleb€eElectroencephalogram
as a Biometric,Proceedings of the Canadian Conference On Electrical And Ctenpu
Engineeringvol. 2, pp. 1363-1366, 2001.

[9] R. Palaniappan and K.V.R. Ravi, “A new method to identifyiumduals using signals
from the brain,”"Proceedings of the 4th International Conference on Inforala€om-
munications and Signal Processirfgingapore, pp. 15-18, 2003

[10] F. Perrin, J. Pernier, O. Bertrand and J. Echallier, ‘Spal spline for potential and
current density mappingElectroencephalography and Clinical Neurophysiolpggl.
72, pp. 184-187, 1989.

[11] F. Perrin, J. Pernier, O. Bertrand and J. Echallier, “©@emdum EEG 02274 Elec-
troencephalography and Clinical Neurophysiologwl. 76, pp. 565, 1990.

[12] M. Poulos, M. Rangoussi, V. Chrissicopoulos and A. Evémgée'Person identification
based on parametric processing on the EEBdceedings of the Sixth International
Conference on Electronics, Circuits and Systevos 1, pp. 283-286.

[13] D.A. Reynolds, T.F. Quatieri and R.B. Dunn, “Speaker Veafion Using Adapted
Gaussian Mixture ModelsPigital Signal Processingvol. 10, no. 1-3, 2000.

[14] M. Varsta, J. Heikkonen, J.d.R. Millan and J. Mourinoydtiating the performance of
three feature sets for brain-computer interfaces with aly stéopping MLP”, Proceed-
ings 15th Int. Conf. on Pattern Recognitjgp. 911-915, 2000.

[15] P. Verlinde, G. Chollet and M. Acheroy, “Multi-modal id#ty verification using expert
fusion,” Information Fusionvol. 1, pp. 17-33, 2000.

[16] P.D. Welch, “The Use of Fast Fourier Transform for théifeation of Power Spectra:
A Method Based on Time Averaging Over Short, Modified Perigdots,”IEEE Trans.
Audio Electroacoustigs/ol. AU-15, pp. 70-73, 1967.

[17] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtstdrebnd T.M. Vaughan,
“Brain-computer interfaces for communication and contrd@linical Neurophysiology
vol. 113, pp. 767-791, 2002.



