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Abstract. In this paper, we address the problem of finding image decompositions that allow
good compression performance, and that are also efficient for face authentication. We propose to
decompose the face image using Matching Pursuit and to perform the face authentication in the
compressed domain using a MLP (Multi-Layer Perceptron) classifier. We provide experimental
results and comparisons with PCA and LDA systems on the multi-modal benchmark database
BANCA using its associated protocol.
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1 Introduction

Security is a major issue in our modern society. Specifically, identity authentication is one of the
most important aspects of security management. Biometrics identification technology represents an
extraordinary automatic mean to positively identify a person, and thus to complement the current
authentication and access control protocols. In contrary to other biometric solutions, due to their
absence of contact and their non-invasiveness, face recognition, as well as speech recognition, are
viewed as excellent solutions for biometrics authentication for widely spread applications such as
authentication for banking, security system access, advanced video surveillance, video annotation. In
addition, for these two modalities the acquisition systems are very simple, cheap, and virtually free
for future multimedia applications.

To enable the design of efficient identification/authentication applications, it is important to avoid
unnecessary transcoding operations, or moving between different data representations. In the same
time, the size of biometrics information databases imposes drastic compression requirements on storage
and transmission of identification data. Classically, the compression of these data involves one kind
of representation (e.g. DCT, wavelets,.) whilst identification/authentication generally involves a
different one (e.g. eigenfaces, fisherfaces). It is then of major importance to find decompositions
that allow good compression performance and that are also efficient for identification/authentication
processes. The recognition can therefore be performed directly in the compressed domain, thus heavily
reducing the computation overhead.

The paper is structured as follows. In section 2 we introduce the reader to the problem of identity
authentication and we present the current state-of-the-art approaches. In section 3 we provide a
description of image compression using the Matching Pursuit (MP) algorithm. Then, in section 4, we
present the proposed approach, a feature extraction technique based on Matching Pursuit, together
with a MLP (Multi-Layer Perceptron) classifier. In section 5, we provide experimental results and
comparisons with PCA and LDA systems on the multi-modal benchmark database BANCA using its
associated protocol. Finally, we analyze the results and conclude.

2 Face Authentication

The goal of an automatic identity authentication system is to either accept or reject the identity claim
made by a given person. Biometric identity authentication systems are based on the characteristics of
a person, such as its face, fingerprint or signature. Identity authentication using face information is a
challenging research area that was very active recently, mainly because of its natural and non-intrusive
interaction with the authentication system.

2.1 Problem Description

An identity authentication system has to deal with two kinds of events: either the person claiming
a given identity is the one who he claims to be (in which case, he is called a client), or he is not (in
which case, he is called an impostor). Moreover, the system may generally take two decisions: either
accept the client or reject him and decide he is an impostor.

In this paper, we assume (as it is often done in comparable studies, but nonetheless incorrectly)
that the face detection has been performed perfectly and we thus concentrate on the last step, namely
the face authentication step.

Many approaches have been used for face recognition using holistic approaches such as Eigen-
faces [20], Fisherfaces [2], Multi-Layer Perceptrons [13], Support Vector Machines (SVMs) [10] or local
approaches such as Elastic Graph Matching [21], Hidden Markov Models [15] and Gaussian Mixture
Models [4].
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2.2 State-of-the-art approach

This section, briefly introduces one of the best method [14]. In this method, faces are represented in
both Principal Component and Linear Discriminant subspaces.

Principal Component Analysis (PCA) identifies the subspace defined by the eigenvectors of the
covariance matrix of the training data. The projection of face images into the coordinate system
of eigenvectors (Eigenfaces) associated with nonzero eigenvalues achieves information compression,
decorrelation and dimensionality reduction to facilitate decision making. The linear discriminant
analysis (LDA) subspace holds more discriminant features for classification than the PCA subspace [2].

A linear discriminant is a simple linear projection of the input vector onto an output dimension.
Depending on the criterion chosen to select the optimal parameters, one could obtain a different
solution. The Fisher criterion [7] aims at maximizing the ratio of between-class scatter to within-class
scatter.

3 Matching Pursuit

One of the ultimate goals in image representation is to find an efficient and natural way to manipulate
data. A strong emphasis has been put on the search for sparse approximations, i.e. techniques
yielding good approximations of images with very few terms. Wavelets for example do not yield good
sparse approximations of images because they fail at efficiently capturing edges. These limitations
can be overcome by techniques using redundant basis of functions to represent the images. A function
belonging to this basis is called atom. The dictionary D is the overcomplete set of all atoms, and
can be written as D = {gs}5er with ||gy|]| = 1. In the case of redundant expansions for images, the
atoms are bi-dimensional functions. They are often chosen to match features contained in the scene
as edges for example. The design of a dictionary depends on the application and on the purpose to
fulfill. In this paper, we used the dictionary described in [16]. The atoms of the dictionary are built
from a generating function that is scaled, rotated, translated and bended. The generating function
(1) is made of a Gaussian in one direction and its second derivative in the other direction. It has a
good ability to capture edges in the images.

2
z,y) = —— (422 — 2) exp — (22 + ¢?). 1
9(z,y) \/37( )exp —(z° +y°) (1)
Greedy algorithms iteratively construct an approximate by selecting the element of a dictionary
of waveforms that best matches the signal at each iteration. The pure greedy algorithm is known as
Matching Pursuit [12]. Assuming that all atoms in the dictionary D have unit norm, we initialize the
algorithm by setting the initial residual Ry = s where s is the signal to approximate. Initially, the
signal is decomposed as
Ro = <g’Yo’R0>970 + Ry .

Clearly g, is orthogonal to R; and we thus have
[1Roll* = [{gno, Ro)* + I Rul” -

If we want to minimize the energy of the residual R; we must maximize the projection |(g,,, Ro)|. At
the next step, we simply apply the same procedure to R;, which yields

Rl = <g’Y1 ) Rl )g’h + R2 ’

where g,, maximizes [(g,,, R1)|. Iterating this procedure, we thus obtain an approximate after M

steps:
M—1

§= Z (9ym > B )G, + Ror (2)

m=0
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where the norm of the residual (approximation error) satisfies

M-1
IRu | = 1Isl® = Y~ [{goms Bon) [ -
m=0

One can easily show that Matching Pursuit (MP) converges [9] and even converges exponentially in
the strong topology in finite dimension (see [12] for a proof). Very recently, a new wealth of construc-
tive results added to the interest of greedy algorithms, or more generally to sparse approximations in
redundant libraries [19].

4 The Proposed Approach

In face authentication, we are interested in particular objects, namely faces. The representation used
to code input images in most state-of-the-art methods are often based on gray-scale face image [13, 1]
or its projection into PCA or LDA subspace [11, 1]. In most of these studies, MLP or SVM classifiers
have already been used.

In this section, we describe our approach a MLP classifier trained on a gray-scale face image
projected into MP subspace (Figure 1).

Normalisation

FEEEEN

Gpear

—

—> | MLP

Subwindow
extraction

CITTTE.

feature vector
(projection of the image into the MP subspace)

Figure 1: Face Authentication using Matching Pursuit and MLP

4.1 Feature Extraction

Face Modeling. In a real application, the face bounding box will be provided by an accurate
face detector [17], but here the bounding box is computed using manually located eyes coordinates,
assuming a perfect face detection. The face modeling is a critical stage which is, unfortunately, rarely
described in most of the papers. It is thus almost impossible to reproduce the experiments. In this
paper, the face bounding box is determined using face/head anthropometry measures [6] according to
a face model (Figure 2).

The face bounding box w/h crops the face approximately from the glabella (in order to minimize
the influence of the hair-cut) to the chin and do not includes the ears.

The height h of the face is given by y_upper+y_lower where y_lower = 16 pixels and y_upper
= 64 pixels. In this model, the ratio w/h is equal to the ratio 64/80 and we force the eyes distance to
be 33 pixels. The constant pupil_se (pupil-facial middle distance) can be found in [6].

Face Pre-Processing. First, the extracted face is downsized to a 64x80 image. Then, we
performed histogram normalization to modify the contrast of the image in order to enhance important
features. Finally, we smoothed the enhanced image by convolving a 3x3 Gaussian (o = 0.25) in order
to reduce the noise.
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Figure 2: Face modeling using eyes center coordinates and facial anthropometry measures.

Face Representation. After pre-processing, the face image becomes a feature vector of dimension
5120. In the proposed approach, the face image is projected into the MP subspace spawn by a set of
atoms.

Our objective is to find the minimum number of atoms that allows good compression of the face
and also that is appropriate for face authentication. Figure 3 illustrates the compression of a face
image using MP with different number of atoms.

Figure 3: Face compression using Matching Pursuit. From top-left to bottom-right: the original
image, the reconstruction of the image with 10, 25, 50, 100, 150, 250, 500 and 1000 atoms.

We decided to adopt a client-specific approach where a face image will be decomposed by Matching
Pursuit into a weighted sum of atoms from the dictionary (2) representing the identity claimed. Thus,
every client will have its own atoms-based representation.

Let assume that we have a training set of T' images for a specific identity noted as {s¢}ie[1 77-
A modified version of the Matching Pursuit algorithm is used to find the atomic decomposition that
best matches the training set. The atom at iteration i is such that

9y = max » (g, R;).
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where R! is the residual associated to s; at iteration i. The weight w; associated to the previously

found atom is
T

1
t=1
The residuals are updated.
R§+1 = Rf — WiGy; -

The initial residuals are Ry = s;,Vt € [1 T]. One can easily see that the previously described
method leads to the same results as shown in section 3 if the training set contains only one element
ie. T =1.

4.2 Classification

Our face authentication method is based on Multi-Layer Perceptrons (MLPs). MLPs are learning
machines used in many classification problems. A good introduction to machine learning algorithms
can be found in [3, 8].

4.2.1 Multi-Layer Perceptrons

We will assume that we have access to a training dataset of | pairs (x;,y;) where x; is a vector
containing the pattern, while y; is the class of the corresponding pattern often coded respectively as
1 and -1.

A MLP is a particular architecture of artificial neural networks composed of layers of non-linear
but differentiable parametric functions. For instance, the output ¢ of a 1-hidden-layer MLP can be
written mathematically as follows

g=b+w-tanh(a+x-V) (3)

where the estimated output § is a function of the input vector x, and the parameters {b,w,a, V}.
In this notation, the non-linear function tanh() returns a vector which size is equal to the number
of hidden units of the MLP, which controls its capacity and should thus be chosen carefully, by
cross-validation for instance.

An MLP can be trained by gradient descent using the back-propagation algorithm [18] to optimize
any derivable criterion, such as the mean squared error (MSE):

1
1 .
MSE = i E (yi — 9:)* . (4)
=1

or more efficiently using an optimal criterion [5] designed for classification.

4.2.2 MP and MLP for Face Authentication

For each client, an MLP is trained to classify an input to be either the given client or not. The
input x of the MLP is a feature vector corresponding to the projection of the face image X into the
client-specific MP subspace x = [(gyy, X), .--{gy;> X), ---{gyn, X)] where N is the number of atoms.

The output of the MLP is either 1 (if the input corresponds to a client) or -1 (if the input
corresponds to an impostor). The MLP is trained using both client images and impostor images,
often taken to be the images corresponding to other available clients. In the present study, we used
the images from the world model of the BANCA database (see next section).

Finally, the decision to accept or reject a client access depends on the score obtained by the
corresponding MLP which could be either above (accept) or under (reject) a given threshold, chosen
on a separate validation set to optimize a given criterion.
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5 Experimental Results

In this section, we provide experimental results obtained by our approach, namely Matching Pursuit
and Multi-Layer Perceptrons (MP/MLP), that we compare to two baseline systems, PCA and LDA
both using Multi-Layer Perceptrons, respectively PCA/MLP and LDA/MLP.

5.1 The Database

The BANCA database was designed in order to test multi-modal identity authentication with various
acquisition devices (2 cameras and 2 microphones) and under several scenarios (controlled, degraded
and adverse).

Figure 4: Examples of images from the BANCA database for each scenario. From left to right:
controlled, degraded and adverse.

Video and speech data were collected for 52 subjects (26 males and 26 females). Each gender
specific population was itself subdivided into 2 groups of 13 subjects (denoted g1 and g2).

Each subject participated to 12 recording sessions, each of these sessions containing 2 records: 1
true client access (T) and 1 informed ! impostor attack (I). For the image part of the database, there
is 5 shots per record. The 12 sessions were separated into 3 different scenarios (Fig. 4): controlled (for
sessions 1-4), degraded (for sessions 5-8), and adverse (for sessions 9-12).

Two cameras were used, a cheap one and an expensive one. The cheap camera was used in the
degraded scenario, while the expensive camera was used for controlled and adverse scenarios. Two
microphones, a cheap one and an expensive one, were used simultaneously in each of the three scenar-
ios. During the recordings, the camera was placed on the top of the screen and the two microphones
were placed in front of the monitor and below the subject chin.

5.2 The Protocol

In the BANCA protocol, we consider that the true client records for the first session of each condition
is reserved as training material, i.e. record T from sessions 1, 5 and 9. In all our experiments, the
client model training (or template learning) is done on at most these 3 records.

We consider the following protocol, namely Pooled test (P) protocol. One controlled session is
used for client training. There is, thus, only 5 images per client for training. All conditions sessions
(within the same group) are used for client and impostor testing.

5.3 Performance Measures
We measure the performance of the system using the Half Total Error Rate (HT ER) defined as:
HTER=(FR+ FA)/2 (5)

FR and FA (and thus HT ER) vary with the value of the decision threshold ©, and © is usually
optimized so as to minimize HT ER on the development set D. The a priori threshold thus obtained
is always less efficient than the a posteriori threshold that optimizes the HT ER on the evaluation set
FE itself.

IThe actual speaker knew the text that the claimed identity speaker was supposed to utter.
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5.4 Results and Discussions

We report in Table 1 and Table 2 the average (on groups gl and g2) FAR/FRR and HTER of the
above methods on the evaluation set.

Table 1 indicates the HTER in function of the number of atoms. Experiments were performed only
with 50, 100, 150, 250 and 500 atoms because of the expensive computational cost required to train
all the client models (client-specific MP and MLP). It shows clearly that the authentication error goes
down, to a certain point, with the number of atoms. We note that the best result is reached for 250
atoms and that the error increases for 500 atoms. Note that the number of atoms have a direct impact
on the number of parameters of the MLP. Note also that the number of hidden units is chosen on the
development set and not on the evaluation set. As a consequence, at a certain point the accuracy of
the MLP will decrease when the input dimension will increase because there are too many parameters
to estimate.

# atoms | FAR | FRR | HTER
50 20.19 | 21.36 | 20.77
100 15.38 | 16.66 | 16.02
150 13.78 | 16.88 | 15.33
250 12.98 | 15.60 | 14.29
500 14.42 | 16.23 | 15.32

Table 1: Results using MP/MLP with 50, 100, 150, 250 and 500 atoms.

Table 2 provides for comparison results obtained by PCA and LDA. The PCA matrix has been
computed on 17’800 faces (377 different identities) from the XM2VTS database and world models of
the BANCA database. We keep the eigenvectors corresponding to the biggest non-zero eigenvalues
that account for 95% of the total variance. This lead to 448 eigenvectors and thus to 448 input
dimensions for the MLP based on PCA.

The LDA matrix was not computed directly on face images, but as usual on the projection of the
face image into the PCA subspace (more precisely the above PCA matrix). The number of eigenvectors
is 104 corresponding to 90% of the total variance.

PCA/MLD TLDA/MLP
FAR | FRR | HTER | FAR | FRR | HTER
12.5 14.32 | 13.41 10.74 | 13.67 | 12.2

Table 2: Comparative results with baseline PC A3/ MLP and LD Ay94/ MLP.

From the results, we observe that the best results are obtained first by LDA and then second by
PCA. However, the difference between LDA and PCA is 1.21% and the difference between MP and
PCA is less 0.88%. It shows that Matching Pursuit performs nearly as well as PCA. Furthermore,
we computed that the reconstruction error, in terms of MSE, is lower for MP (0.0013) than for PCA
0.0024 with 448 atoms/components?.

6 Conclusion

In this paper, we addressed the problem of face authentication. We proposed to decompose the face
image using the Matching Pursuit (MP) algorithm and to perform the face authentication in the

2The MSE have been computed on 178 faces randomly chosen from the large dataset of 17/800.
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compressed domain using a Multi-Layer Perceptron (MLP) classifier. For each client, a client-specific
image decomposition is found using MP and a MLP is trained.

We provide experimental results and comparisons with PCA and LDA systems on the multi-modal
benchmark database BANCA using its associated protocol. Results show that Matching Pursuit
performs well compared to PCA or LDA. LDA is still performing slightly better. However, we think
that our approach based on Matching Pursuit is promising and that it can be improved.
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