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Abstract
Particle filtering (PF) is now established as one of the most

popular methods for visual tracking. Within this framework, two
assumptions are generally made. The first is that the data are tem-
porally independent given the sequence of object states, and the
second one is the use of the transition prior as proposal distri-
bution. In this paper, we argue that the first assumption does not
strictly hold and that the second can be improved. We propose to
handle both modeling issues using motion. Explicit motion mea-
surements are used to drive the sampling process towards the new
interesting regions of the image, while implicit motion measure-
ments are introduced in the likelihood evaluation to model the data
correlation term. The proposed model allows to handle abrupt mo-
tion changes and to filter out visual distractors when tracking ob-
jects with generic models based on shape representations. Experi-
mental results compared against the CONDENSATION algorithm
have demonstrated superior tracking performance.

1.. Introduction

Visual tracking is an important problem in computer vision. Al-
though intensively studied in the literature, tracking is still a chal-
lenging task in adverse situations. In the pursuit of robust track-
ing, particle filtering [4, 2] has shown to be a successful approach.
In this temporal Bayesian framework, the posterior distribution
is represented by a set of weighted random samples allowing to
maintain multiple-hypotheses in the presence of ambiguities, un-
like algorithms that keep only one configuration state [3], which
can be therefore sensitive to single failure.
Visual tracking with a particle filter requires the definition of two
main elements : a data likelihood and a dynamical model. The
first term evaluates the likelihood of an observation given the ob-
ject state. Parameterized shapes [2, 16] and color distributions
[10, 3, 8, 16] are often used as target representation. One draw-
back of these generic representations is that they are quite un-
specific which augment the chances of ambiguities. Combining
low-level measurements such as shape and color [16], or using
appearence-based models such as templates [13, 14] can render the
target more discriminative. The latter representations, however, do
not allow for large changes of appearence, unless more complex
global models are used [1, 15].

The dynamical model characterizes the prior on the state se-
quence. A common assumption in particle filtering approaches is
to use the dynamics as proposal distribution (the function that pre-
dicts the new state hypotheses) raising difficulties in the model-
ing since this term should fulfill two contradictory objectives. On
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one hand, as prior, dynamics should be tight enough to avoid the
tracker being confused by distractors in the vicinity of the true ob-
ject configuration, a common situation with unspecific object rep-
resentations. On the other hand, as proposal distribution, it should
be broad enough to cope with abrupt motion changes.
Besides, the prior distribution does not take into account the most
recent observations. Thus, particles drawn from it will probably
have a low likelihood, which results in a low efficiency of the sam-
pling mechanism. Different approaches have been proposed to ad-
dress these issues. For instance, auxiliary information, if available,
can be used to draw samples from [5]. [9] proposed another aux-
iliary particle filter, whose idea is to increase or decrease (through
resampling) the number of descendents of a sample according to
a“predicted” likelihood estimated on the new data. This method
works well only if the variance of the transition prior is small,
which is usually not the case in visual tracking. [12] proposed to
use the unscented particle filter to generate importance densities.
Although attractive, the method needs to convert likelihood evalu-
ations (e.g. color) into state space measurements (e.g. translation,
scale). In [12], only a translation state is considered.

In this paper we propose a new PF tracking method based on
visual motion with two main novelties. First, we argue that a stan-
dard hypothesis, namely the independence of observations given
the state sequence [1, 2, 5, 12, 15, 16], is inaccurate in the case of
visual tracking. In this view, we propose a model that assumes that
the current observations depend on the current and previous ob-
ject configurations as well as on the past observations. This model
can be exploited to introduce an implicit object motion likelihood
in the data term. Second, we exploit explicit motion measurements
in the proposal distribution and in the likelihood term. The bene-
fits of this new model are two-fold. On one hand, it increases the
sampling efficiency by handling unexpected motion, allowing for
a reduced noise variance in the propagation process. On the other
hand, the introduction of data-correlation between successive im-
ages will turn generic trackers like shape trackers into more spe-
cific ones without resorting to complex appearence based mod-
els. As a consequence, it reduces the sensitivity of the algorithm
to the difference noise variances setting in the proposal and prior
since, when using larger values, potential distractors should be fil-
tered out by the introduced correlation and motion measurements.

In Section 2, we motivate our approach and describe the pro-
posed model. Section 3 presents the results and some concluding
discussions.

2.. Approach, motivation, and algorithm

Particle filtering (PF) implements a recursive Bayesian filter
by Monte-Carlo simulations. Let c0:k = {cl, l = 0, . . . , k} (resp.
z1:k = {zl, l = 1, . . . , k}) represents the sequence of states (resp.
of observations) up to time k. Furthermore, let {ci

0:k, wi
k}

Ns

i=1 de-
note a set of weighted samples that characterizes the posterior
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Figure 1. Graphical models for tracking. (a) stan-
dard model (b) proposed model.

probability density function (pdf) p(c0:k|z0:k), where {ci
0:k, i =

1, . . . , Ns} is a set of support points with associated weights wi
k.

The samples and weights can be chosen using the Sequential Im-
portance Sampling (SIS) principle, which leads to the following
recursive update equation [4]:

w
i
k ∝ w

i
k−1

p(zk|c
i
0:k, z1:k−1)p(ci

k|c0:k−1, z1:k−1)

q(ci
k|c

i
0:k−1, z1:k)

, (1)

= w
i
k−1 p(zk|c

i
k) (2)

where q is the proposal function from which the new samples ci
k

are drawn, and Eq. 2 derives from three common hypotheses :

H1 : observations {zk} are independent given the sequence of
states. Hence, p(zk|c0:k, z1:k−1) = p(zk|ck);

H2 : the state sequence c0:k follows a first-order Markov chain
model, characterized by p(ck|ck−1);

H3 : the prior distribution p(c0:k) is employed as proposal.
Hence, q(ck|c0:k−1, z1:k) = p(ck|ck−1).

To avoid sampling impoverishment, an additional resampling step
is necessary [4]. Altogether, we obtain the standard PF :

1. Initialisation : ∀ii∈1:Ns , sample ci
0 ∼ p(c0); set k = 1

2. IS step: ∀i sample c̃i
k ∼ q(ci

k|c
i
0:k−1, z1:k); evaluate w̃i

k us-
ing (1) or (2).

3. Selection: Resample Ns particles {ci
k, wi

k = 1
Ns

} from the

sample set {c̃i
k, w̃i

k}; set k = k + 1; go to step 2.

2.1.. Motivations

Conditional independence of data. In visual tracking, hypothe-
sis H1 may not be very accurate. Usually, the configuration state
includes the parameters of a geometric transformation T . Then,
the measurements consist of implicitly or explicitly extracting
some part z̃ck

of the image by :

z̃ck
(r) = zk(Tck

r) ∀r ∈ R , (3)

where r denotes a position, R denotes a fixed reference region,
and Tck

r represents the application of the transform T parame-
terized by ck to r. However, if ck−1 and ck correspond to two
consecutive states of a given object, it can easily be seen that
z̃ck

and z̃ck−1
are strongly correlated (Fig. 2). Thus, the inde-

pendence of the data given the sequence of states is not a strictly
valid assumption. A better model is given by p(zk|c0:k, z1:k−1) =
p(zk|zk−1, c

i
k, ci

k−1) (cf graphical model of Fig. 1b). which can
be incorporated in the particle framework. For instance, keeping
hypotheses H2 and H3, derivations lead to:

w
i
k ∝ w

i
k−1 p(zk|zk−1, c

i
k, c

i
k−1) (4)

in replacement of equation (2) (derivation details in [11]).

Proposal and dynamical model. Finding a good dynamical
model is very difficult because of presence of fast and unexpected

Figure 2. Images at time t and t + 2. The two lo-
cal patches extracted from the two images are
strongly correlated.
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Figure 3. a) Prediction error of the x position, us-
ing an AR2 model. b) Prediction error, but exploit-
ing the inter-frame motion estimation.

motions, due either to camera or object movments. To illustrate
this, let us consider the following simple dynamical model :

ck = ck−1 + ċk−1 + wk , (5)

where ċ denotes the state derivative and models the evolution of
the state. As state, consider the horizontal position of the head of
the sequence in Fig. 6. Fig. 3a reports the prediction error w calcu-
lated using ground-truth data and obtained by estimating ċ with an
auto-regressive model (ċk = ck − ck−1). As can be seen, this pre-
diction is noisy (σw=2.7) . Furthermore, there are large peak er-
rors (up to 30% of the head width). To cope with these peaks, the
noise variance in the dynamics, used as proposal distribution, has
to be set to a large enough value, with the downside that many par-
ticles are wasted in low likelihood areas, or spread on local dis-
tractors that can ultimately lead to tracking failure. On the other
hand, exploiting the inter-frame motion to estimate ċ and predict
the new state value (see Section 2.2) can lead to a reduction of both
the noise variance and of the error peaks (Fig. 3b, σw=0.83).
Despite needing more computation resources, inter-frame motion
estimates are usually more precise than auto-regressive models to
predict new state values of geometric transformation parameters;
as a consequence, they are a better choice when designing a pro-
posal function. This observation is supported by experiments on
other parameters -vertical position, scale- and on other sequences.

2.2.. The proposed model

Object representation and state space. An object is repre-
sented by a region R subject to some valid geometric transforma-
tion, and is characterized by a shape. The chosen transformation
comprises a translation T, a scaling factor s, and an aspect ra-
tio e. A state is defined as ck = (αk, αk−1) where α = (T, s, e).

Proposal distribution : We use inter-frame motion estimates
to predict the new state values. More precisely, an affine dis-
placement model dΘ is computed using a gradient-based robust
and multiresolution estimation method [7]. Owing to the robust-
ness of the estimator, an imprecise region definition R(ck) due
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Figure 4. Example of motion estimates between
two images from noisy states (the 3 ellipses).
Though the estimation support regions may only
cover part of the head and enclose textured back-
ground, the head motion estimate is still good.

to a noisy state value does not sensibly affect the estimation (see
Fig. 4). Moreover, the algorithm delivers the covariance matrix of
the affine parameters. From these estimates, we can easily con-
struct an estimate ̂̇αk of the variation of the coefficients between
the two instant, with their variance ̂̇Λk. Denoting the predicted
value α̂k+1 = αk + ̂̇αk, and assuming the noise on the estimate
̂̇αk independent of the noise process w in Eq. 5, we define the pro-
posal distribution as :

q(ck+1|c0:k, z1:k+1) ∝ N (αk+1; α̂k+1, Λ̂k+1) (6)

where N (.; µ, Λ) represents a Gaussian distribution with mean
µ and variance Λ, and Λ̂k+1 = ̂̇Λk + Λwp , Λwp being the vari-
ance of the process noise wp.

Dynamics definition. We use a standard second order AR model
for each of the components of α. However, to account for outliers
and reduce the sensitivity of the prior in the tail, we model the
noise process with a Cauchy distribution ρc(x, σ2) = σ

π(x2+σ2)
.

This leads to :

p(ck+1|ck) =

4∏

j=1

ρc

(
αk+1,j − (2αk,j − αk−1,j), σw

2
d,j)

)
. (7)

where σwd
denotes the dynamics noise variance.

Data likelihood modeling. We modeled the data likelihood as :

p(zk|zk−1, ck, ck−1) = psh(zs
k|ck)pc(z

g

k|z
g

k−1, ck, ck−1) , (8)

with zk = (zs
k, z

g

k) and zs
k (resp. z

g

k) denotes the shape (resp.
the gray-level) measurements, and where pc models the correla-
tion between the two observations and psh is a shape likelihood.
This choice decouples the model of the dependency between two
images, whose implicit goal is to ensure that the object trajectory
follows the optical flow field from the object shape model. We as-
sumed that these two terms are independent [11].

• Object shape observation model. The observation model as-
sumes that objects are embedded in clutter. Edge-based measure-
ments are computed along L normal lines to a hypothesized con-
tour, resulting for each line l in the nearest edge position {ν̂ l

m}
relative to a point lying on the contour νl

0. With some usual as-
sumptions [2], the shape likelihood psh(zk|ck) can be expressed
as

psh(zk|ck) ∝

L∏

l=1

max

(
K, exp(−

‖ν̂l
m − νl

0‖
2

2σ2
)

)
, (9)

where K is a constant used when no edges are detected.

• Image correlation measurement. We model this term as :
pc(z

g

k|z
g

k−1, ck, ck−1) ∝ pc1(α̂k, αk)pc2(z̃
g
ck

, z̃
g
ck−1

) (10)

with pc1(α̂k, αk) ∝ N (α̂k; αk, Λ̂k) (11)
pc2(z̃

g
ck

, z̃
g
ck−1

) ∝ exp
−λcdc(z̃

g
ck

,z̃
g
ck−1

)
(12)

where dc denotes a distance between two image patches. The first
pdf compares the parameter values predicted using the estimated
motion with the sampled values. This term assumes a Gaussian
noise process in parameter space. This assumption, however, is
only valid around the predicted value. To introduce a non-Gaussian
modeling, we use a second term that compares directly the patches
around ck and ck−1. Its purpose is illustrated using Fig. 4. While
all the three predicted configurations will be weighted equally
from pc1 (assuming their estimated variance are approximately
the same), the second term pc2 will downweight the two predic-
tions whose corresponding support region is covering part of the
background which is undergoing a different motion than the head.
The definition of pc2 requires the specification of a patch distance.
Many such distances have been defined in the literature [13, 15].
We use the normalized-cross correlation coefficient defined as :

dc(z̃1, z̃2) =

∑
r∈R

(
z̃1(r) − ¯̃z1

)
·
(
z̃2(r) − ¯̃z2

)
√

Var(z̃1)
√

Var(z̃2)
(13)

where ¯̃z1 represents the mean of z̃1 [11].

3.. Results

To illustrate the method, we consider two sequences involv-
ing head tracking. Three configurations of the tracker are consid-
ered. The first model (M1) is CONDENSATION [2], which corre-
sponds to the shape likelihood combined with the same AR model
with Gaussian noise for the proposal and the prior. The second
model (M2) corresponds to CONDENSATION, with the addition
of the implicit motion likelihood term in the likelihood evaluation
(i.e now equal to psh.pc2). This method does not use explicit mo-
tion measurements. The third model (M3) is the full model. For
this model, the motion estimation is not performed for all parti-
cles since it is robust to variations of the support region. At each
time, the particles are clustered into K clusters. The motion is esti-
mated using the mean of each cluster and exploited for all the par-
ticles of the cluster. Currently we use max(20,Ns/10) clusters. For
200 particles, the M1 tracker runs in real time (on a 2.5GHz ma-
chine), M2 at 20 image/s, and M3 at around 4 image/s.

The first example is a 12 s sequence of 330 frames (Fig. 5) ex-
tracted from a hand-held home video. Table 1 reports the tracking
performance of the three trackers for different dynamics and sam-
pling rates (all other parameters are left unchanged). A tracking
failure is considered when the tracker looses the head and locks
on another part of the image. As can be seen, while CONDEN-
SATION performs quite well for tuned dynamics (D1), it breaks
down rapidly, even for slight increases of dynamics variances (D2
to D4). Fig. 5 illustrates a typical failure due to the small size of the
head at the begining of the sequence, the low contrast And the clut-
ter. On the other hand, the implicit tracker M2 performs well un-
der almost all circumstances, showing its robustness against clut-
ter, partial measurements (around time t250 and partial occlusion
(end of the sequence). Only when the number of samples is low
(100 in S2) does the tracker fail. These failures are occuring at dif-
ferent parts of the sequence. Finally, in all experiments, the M3
tracker produces a correct tracking rate equal to 98%, even with a
small number of samples, up to the partial occlusion. At this part
of the sequence, as the occlusion reaches 50% of the tracked head,



Figure 5. top row : CONDENSATION at time t1, t8
and t15 (Ns=500). center and bottom : M2 tracker
(Ns=200) at time t20, t60, t165, t250, t295, t305. In red,
mean shape. In yellow, highly likely particles.

Figure 6. Tracker with motion proposal (Ns=1000)
at time t2, t40, t85, t100, t130, t145, t170, t195, and t210 .
In red, mean shape; in green, mode shape; in yel-
low, likely particles.

the motion estimation sometimes lock onto the woman’s head mo-
tion, leading to the reported tracker failures.

The second sequence (Fig. 6) illustrates more clearly the ben-
efit of using the motion proposal. This 24s sequence acquired at
12 frame/s is specially difficult because of the occurence of sev-
eral head turns and abrupt motion changes (translations, zooms)
the large variations of scale, and importantly, the absence of head
contours as the head moves in front of the bookshelves. Because of
these, CONDENSATION is again lost very quickly. On the other
hand, the M2 tracker successfuly tracks the head at the beginning,
but usually gets lost when the person moves in front of the book-
shelves (around frames t130-t145), due to the lack of contour mea-
surements coupled with a large zooming effect. This latter prob-
lem is resolved by the motion proposal, which better capture the
state variations, and allows a successful track of the head until the
end of the sequence (time t340). More results can be found in [11].

Tracker D1 D2 D3 D4 S1 S2

Ns 500 200 100
σT 2 3 5 8 5
σs 0.01 0.02 0.01

CONDENS. 88 36 2 0 0 0
M2 (Implicit) 100 98 100 94 90 50
M3 (see text) 70 82 92 90 96 80

Table 1. Successful tracking rate (in %, out of 50
trials with different seeds). σT (resp. σs) denotes
the dynamics and proposal noise standard devia-
tion of the T (resp. s ) state components.

4. Conclusion
We presented a methodology to embed data-driven motion into

particle filters. This was first achieved by introducing a likelihood
term that models the temporal correlation existing between succes-
sive images of the same object. Secondly, a data-driven approach
based on explicit motion estimates is used to design better propos-
als that take into account the new image. Altogether, the algorithm
allows to better handle unexpected and fast motion changes, to re-
move tracking ambiguities that arise when using generic shape-
based object models, and to reduce the sensitivity to the different
parameters of the prior model. The method is general and could
also be applied to the tracking of deformable objects [6].
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