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Abstract. Particle filtering is now established as one of the most popular methods for
visual tracking. Within this framework, there are two important considerations. The first
one refers to the generic assumption that the observations are temporally independent
given the sequence of object states. The second consideration, often made in the liter-
ature, uses the transition prior as proposal distribution. Thus, the current observations
are not taken into account, requesting the noise process of this prior to be large enough
to handle abrupt trajectory changes. As a result, many particles are either wasted in low
likelihood regions of the state space, resulting in low sampling efficiency, or more im-
portantly, propagated to distractor regions of the image, resulting in tracking failures. In
this paper, we propose to handle both considerations using motion. We first argue that in
general observations are conditionally correlated, and propose a new model to account
for this correlation allowing for the natural introduction of implicit and/or explicit mo-
tion measurements in the likelihood term. Secondly, explicit motion measurements are
used to drive the sampling process towards the most likely regions of the state space.
Overall, the proposed model allows to handle abrupt motion changes and to filter out
visual distractors when tracking objects with generic models based on shape or color
distribution. Experimental results obtained on head tracking, using several sequences
with moving camera involving large dynamics, and compared against the CONDEN-
SATION algorithm, have demonstrated superior tracking performance of our approach.
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1 Introduction

Visual tracking is an important problem in computer vision, with applications in telecon-
ferencing, visual surveillance, gesture recognition, and vision based interfaces [BI98]. Al-
though tracking has been intensively studied in the literature, it still represents a challenging
task in adverse situations, due to the presence of ambiguities (e.g. when tracking an object
in a cluttered scene or when tracking multiple instances of the same object class), the noise
in image measurements (e.g. lighting chnages), and the variability of the object class (e.g.
pose variations).

In the pursuit of robust tracking, Sequential Monte Carlo methods [AMGC01, DdFG01,
BI98] have shown to be a successful approach. In this temporal Bayesian framework, the
probability of an object configuration given the observations is represented by a set of
weighted random samples, called particles. This representation allows in principle to simul-
taneously maintain multiple hypotheses in the presence of ambiguities, unlike algorithms that
keep only one configuration state [CRM00], which are therefore sensitive to single failures
in the presence of ambiguities or fast or erratic motion.

In this paper, we address two important issues related to tracking with a particle filter.
The first issue refers to the specific form of the observation likelihood, that relies on the
conditional independence of observations given the state sequence. The second one refers to
the choice of an appropriate proposal distribution, which, tunlike the prior dynamical model,
should take into account the new observations. To handle these issues, we propose a new
particle filter tracking method based on visual motion. Our method relies on a new graphical
model allowing for the natural introduction of implicit or explicit motion information in the
likelihood term, and on the exploitation of explicit motion measurements in the proposal
distribution. A longer description of the above issues, our approach, and their benefits, is
given in the following paragraphs.

The definition of the observation likelihood distribution is perhaps the most important
element in visual tracking with a particle filter. This distribution allows for the evalua-
tion of the likelihood of the current observation given the current object state, and relies
on the specific object representation. The object representation corresponds to all the in-
formation that characterizes the object like the target position, geometry, appearance, color,
etc. Parametrized shapes like splines [BI98] or ellipses [WH01], and color distributions
[RMG98, CRM00, PHVG02, WH01], are often used as target representation. One draw-
back of these generic representations is that they can be quite unspecific, which augments
the chances of ambiguities. One way to improve the robustness of a tracker consists of
combining low-level measurements such as shape and color [WH01].

The generic conditional form of the likelihood term relies on a standard hypothesis in
probabilistic visual tracking, namely the independence of observations given the state se-
quence [AMF04, BJ98a, BI98, IB89, RC01, TB01, WH01]. In this paper, we argue that this
assumption can be inaccurate in the case of visual tracking. As a remedy, we propose a new
model that assumes that the current observation depends on the current and previous object
configurations as well as on the past observation. We show that under this more general
assumption, the obtained particle filtering algorithm has similar equations than the algorithm



IDIAP–RR 04-61 2

based on the standard hypothesis. To our knowledge, this has not been shown before, and
so it represents the first contribution of this article. The new assumption can thus be used
to naturally introduce implicit or explicit motion information in the observation likelihood
term. The introduction of such data correlation between successive images will turn generic
trackers like shape or color histogram trackers into more specific ones.

Another important distribution to define when designing a particle filter is the proposal
distribution, that is, the function that predicts the new state hypotheses where the observa-
tion likelihood will be evaluated. In general, an optimal choice [AMGC01, DGA00] consists
of drawing samples from the more likely regions taking into account both the dynamical
model, which characterizes the prior on the state sequence, and the new observations. How-
ever, simulating from the optimal law is often difficult when using standard likelihood terms.
Thus, a common assumption in particle filtering consists in using the dynamics as proposal
distribution. With this assumption, the variance of the noise process in the dynamical model
implicitly defines a search range for the new hypotheses. This assumption raises difficulties
in modeling dynamics since this term should fulfill two contradictory objectives. On one
hand, as prior distribution, dynamics should be tight to avoid the tracker being confused by
distractors in the vicinity of the true object configuration, a situation that is likely to happen
for unspecific object representations such as generic shapes or color distributions. On the
other hand, as proposal distribution, dynamics should be broad enough to cope with abrupt
motion changes. Furthermore, this proposal distribution does not take into account the most
recent observations. Many particles drawn from it will probably have a low likelihood, which
results in low sampling efficiency. Overall, such a particle filter is likely to be distracted by
background clutter. To address these issues, we propose to use explicit motion measures in
the proposal function. One benefit of this approach will be to increase the sampling efficiency
by handling unexpected motion, allowing for a reduced noise variance in the prediction pro-
cess. Combined with the new observation likelihood term, using our proposal distribution
will reduce the sensitivity of the particle filter algorithm to the different noise variances set-
ting in the proposal and prior since, when using larger values, potential distractors should
be filtered out by the introduced correlation and visual motion measurements. Finally, our
proposal allows to implement the intuitive idea according to which the likely configurations
with respect to an object model are evolving in conformity with the visual motion.

The rest of the paper is organized as follows. In the next Section, we discuss the state-
of-the-art and relate it to our work. For sake of completeness, in Section 3, we describe the
standard particle filter algorithm. Our approach is motivated in Section 4, while Section 5
describes the specific parts of our model in details. Experiments and results are reported in
Section 6. Section 7 concludes the article with some discussion and future work.

2 Related work

In this article, the first contribution refers to the introduction of a new graphical model for
particle filtering. This model allows for the modeling of temporal dependencies between
observations. In practice, it lead us to naturally introduce motion observation within the data
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likelihood.
The use of motion for tracking is not a new idea. Motion-based trackers, essentially de-

terministic, integrate two-frame motion estimates over time. However, without any object
model, it is almost impossible to avoid some drift after a few seconds of tracking. For long
term tracking, the use of appearence-based models such as templates [AMF04, SJ01, TSK01]
lead to more robust results. However, a template representation do not allow for large
changes of appearence over time.
To handle appearance changes, an often difficult template adaptation step is needed [JFEM03,
NWvdB01], or more complex global appearence models are used (e.g. eigen-spaces [BJ98b]
or examplars [RMD01, TB01]), which poses the problem of learning these models, either
off-line [BJ98a, TB01] or on-line [RMD01]. For instance, in [JFEM03], a generative model
relying on the past frame template, a long term template, and a non-Gaussian noise com-
ponent is proposed. Adaptation is performed through the estimation of the optimal state
parameters -comprising the spatial 2D localization and the long-term template-, via an EM
algorithm that identifies the stable regions of the template as a byproduct. A similar ap-
proach is taken in [NWvdB01], where the gray level of each template pixel is updated using
a Kalman filter, and the adaptation is blocked whenever the innovation is too large. In these
two cases, although partial and total occlusion can be handled, nothing prevents the tracker
from long term drifts. This drift happens when the 2D visual motion does not match perfectly
the real state evolution. This corresponds to the problematic case, reported in [JFEM03], of
a turning head remaining at the same place in the image; in [NWvdB01], tracked objects
(mainly high resolution faces and people) undergo very little pose changes. Another in-
teresting approach towards adaptation using motion is proposed in [VPGB02] where, in a
particle filter framework, a color model is adapted on-line. Assuming a static camera, a mo-
tion detection module is employed to select the instants more suitable for adaptation, which
leads to good results.

In the present article, however, the method we propose is not template-based, i.e. no ref-
erence appearence template is employed or adapted (see discussion at the end of subsection
5.3.2). The implementation of our model aims at evaluating, either explicitly or implicitly,
the similarity between the visual motion estimated from low-level information and the mo-
tion field induced by the state change. Our approach is thus different from the above ones,
and more similar to the methods proposed in [SB01, SBF00]. In particular, the work in
[SB01] addresses the difficult problem of people tracking using articulated models, and their
use of the motion measures implicitly corresponds to the graphical model we propose here.

In the introduction, we raised the problems linked to the choice of the dynamical model
as proposal. In the literature, several approaches have been proposed to address these issues.
For instance, when available, auxiliary information generated from color [IB89, VPGB02,
PVB04], motion detection [PVB04], or audio in the case of speaker tracking [GPLMO03,
PVB04], can be used to draw samples from. The proposal distribution is then expressed as a
mixture of the prior and components of the likelihood distribution. An important advantage
of this approach is to allow for automatic (re)initialization. However, one drawback of this
approach is that, since these additional samples are not related to the previous samples, the
evaluation of the transition prior term for one new sample involves all past samples, which
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can become very costly [IB89, GPLMO03]. [PVB04] avoids this problem by defining the
prior as a mixture of distributions that includes a uniform law component, and by relying on
distinctive and discriminative likelihoods, allowing for reinitialization using the standard par-
ticle filter equations. Another auxiliary particle filter proposed in [PS99] avoids this problem.
The idea is to use the likelihood of a first set of predicted samples at time k + 1 to resample
the seed samples at time k, and to then apply the standard prediction and evaluation steps
on these seed samples. The feedback from the new data acts by increasing or decreasing the
number of descendents of a sample according to its “predicted” likelihood. Such a scheme,
however, works well only if the variance of the transition prior is small, which is usually not
the case in visual tracking.
As an alternative, the work in [RC01] proposed to use the unscented particle filter to generate
importance densities. Although attractive, it is still likely to fail in the presence of abrupt mo-
tion changes, and the method needs to convert likelihood evaluations (e.g. of shape) into state
space measurements (e.g. translation, scale). This would be difficult with color distribution
likelihoods and for some state parameters. In [RC01], only a translation state is considered.
In [AMF04, AM04], all the equations of the filter are conditioned with respect to the images.
This allows for the use of the inter-frame motion estimates as dynamical model instead of an
auto-regressive model to improve the state prediction. Moreover, in their application (point
tracking), thanks to the use of a linear observation model, the optimal proposal function can
be employed. However, as in [RC01], measures in state space are needed, and only transla-
tions are thus considered. Although their utilization of explicit motion measures is similar
to what we propose here, it was introduced in a different way (through the dynamics rather
than the likelihood), and was in practice restricted to translation.

3 Particle filtering

There exist at least two ways of introducing particle filters. The first one is through Sequen-
tial Importance Sampling (SIS) [AMGC01, DdFG01], and the second one is based on fac-
tored sampling [GCK91] applied to the filtering distribution [BI98]. While both approaches
lead to the same algorithm with the standard assumptions, it is interesting to notice that the
two methods do not lend themselves to the same extensions. In this paper, we follow the SIS
approach, as it allows for the proposed extension.

Particle filtering is a technique for implementing a recursive Bayesian filter by Monte
Carlo simulations. The key idea is to represent the required posterior probability density
function (pdf) p(c0:k|z1:k) of the state sequence c0:k = {cl, l = 0, . . . , k} up to time k condi-
tionally to the observation sequence z1:k = {zl, l = 1, . . . , k}, by a set of weighted samples
{ci

0:k, w
i
k}

Ns

i=1. Each sample (or particle) ci
0:k represents a potential trajectory of the state se-

quence, and wi
k denotes its likelihood estimated from the sequence of observations up to time

k. The weights are normalized (
∑

i w
i
k = 1) in order to obtain a discrete approximation of

the true posterior :

p(c0:k|z1:k) ≈
Ns∑

i=1

wi
kδ(c0:k − ci

0:k) . (1)
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Such a representation then allows to compute the expectation of any function f with respect
to this distribution using a weighted sum :

∫
f(c0:k)p(c0:k|z1:k)dc0:k ≈

Ns∑

i=1

wi
kf(ci

0:k) (2)

In particular, the mean of the hidden state sequence can be computed from the first order
moment (i.e. by using f(x) = x). Since sampling directly form the posterior is usually
impossible, the weights are chosen using the principle of Importance Sampling (IS). This
consists in simulating the samples from an importance (a.k.a proposal) function, and then
introducing a correction factor (the weight) to account for the discrepancy between the pro-
posal and the true posterior. More precisely, denoting by q(c0:k|z1:k) the importance density,
the proper weights in (1) are given by :

wi
k ∝

p(ci
0:k|z1:k)

q(ci
0:k|z1:k)

. (3)

The goal of the particle filtering algorithm is the recursive propagation of the samples and
estimation of the associated weights as each measurement is received sequentially. Applying
Bayes’ rule, we obtain the following recursive equation for the posterior :

p(c0:k|z1:k) =
p(zk|c0:k, z1:k−1)p(ck|c0:k−1, z1:k−1)

p(zk|z1:k−1)
× p(c0:k−1|z1:k−1) (4)

Assuming a factorized form for the proposal (i.e. q(c0:k|z1:k) = q(ck|c0:k−1, z1:k)q(c0:k−1|z1:k−1))
we obtain the following recursive update equation [AMGC01, DdFG01]:

wi
k ∝ wi

k−1

p(zk|ci
0:k, z1:k−1)p(ci

k|c
i
0:k−1, z1:k−1)

q(ci
k|c

i
0:k−1, z1:k)

. (5)

In order to simplify this general expression, conditional dependencies between variables are
usually modeled according to the graphical model of Figure 1a, which corresponds to the
following assumptions :

H1 : The observations {zk}, given the sequence of states, are independent. This leads
to p(z1:k|c0:k) =

∏k
i=1 p(zk|ck), which requires the definition of the data-likelihood

p(zk|ck). In Eq. 5, this assumption translates in p(zk|c0:k, z1:k−1) = p(zk|ck).

H2 : The state sequence c0:k follows a first-order Markov chain model. In Eq. 5, this means
that p(ck|c0:k−1, z1:k−1) = p(ck|ck−1).

We then obtain the simplified weight update equation :

wi
k ∝ wi

k−1

p(zk|ci
k)p(ci

k|c
i
k−1)

q(ci
k|c

i
0:k−1, z1:k)

( and
∑

i

wi
k = 1 ) . (6)
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(a)

kk-1 k+1

observations

states

(b)

k+1kk-1

states

observations

Figure 1: Graphical models for tracking. (a) standard model (b) proposed model.

1. Initialization
- for i = 1, . . . , Ns, sample ci

0 ∼
p(c0) and set k = 1.

2. Diffusion/propagation :
- for i = 1, . . . , Ns, sample c̃i

k ∼
q(ci

k|c
i
0:k−1, z1:k).

3. Weight updating
- for i = 1, . . . , Ns, evaluate the
weight wi

k with Equation (5)

4. Selection resample with replacement
Ns particles
- {cj

k,
1

Ns
} ← resample({c̃i

k, w
i
k})

- set k = k + 1 and goto step 2.

Figure 2: The generic particle filter algorithm.

The set {ci
0:k, w

i
k}

Ns

i=1 is then approximately distributed according to p(c0:k|z0:k).
It is known that importance sampling is inefficient in high-dimensional spaces [DGA00],

which is the case of the state space c0:k as k increases. In practice, this leads to the continuous
increase of the weight variance, concentrating the mass of the weights onto a few particles
only. To solve this problem, it is necessary to apply an additional resampling step, whose ef-
fect is to eliminate the particles with low importance weights and to multiply particles having
high weights. Several resampling schemes exist [DGA00]. In our implementation, we used
the one described in [AMGC01], and perform a systematic resampling. We finally obtain the
particle filter displayed in Fig. 2.

The efficiency of a particle filter algorithm relies on the definition of a good proposal
distribution. A temporally local strategy consists of choosing the importance function that
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minimizes the weight variance of the new samples at time k conditionally to trajectories
ci
1:k−1 and observations z1:k. It can be shown [DGA00] that this optimal function is given by

q(ci
k|c

i
0:k−1, z1:k) = q(ck|c

i
k−1, zk) = p(ck|c

i
k−1, zk) ∝ p(zk|ck)p(ck|c

i
k−1) , (7)

which leads to the following weight update equation :

wi
k ∝ wi

k−1 p(zk|c
i
k−1) . (8)

In practice, sampling from p(ck|ci
k−1, zk) and evaluating p(zk|ci

k−1) are only achievable
in particular cases, involving for instance Gaussian noise and linear observation models
[AMGC01, DGA00, AM04]. As an alternative, a choice often made consists of selecting
the prior as importance function. In that case, we have :

wi
k ∝ wi

k−1 p(zk|c
i
k) . (9)

Although this model is intuitive and simple to implement, this choice, which does not
take into account the current observations, has several drawbacks, especially with high-
dimensional vector spaces or narrow likelihood models.
Finally, notice that while the weighted set {ci

0:k, w
i
k}

Ns

i=1 allows for the representation of the
posterior pdf p(c0:k|z0:k), the set {ci

k, w
i
k}

Ns

i=1, that can be obtained from it, is also a represen-
tative sample of the filtering distribution p(ck|z0:k), thanks to simple marginalization.

4 Our approach

In this Section, we propose a new method that embeds motion in the particle filter. This is
first obtained by incorporating motion information into the measurement process. This can
be achieved by modifying the traditional graphical model represented in Fig. 1a, by making
the current observation dependent not only on the current object configuration but also on
the object configuration and observation at the previous instant (see Fig. 1b). Secondly, we
propose to use explicit motion measurements in order to obtain a better proposal distribution.
In the following Subsections, we motivate our approach by pointing out the limitations of
the basic particle filter.

4.1 Revisiting the hypotheses in particle filtering

The filter described in Fig. 2 is based on the standard probabilistic model for tracking dis-
played in Fig. 1a and corresponding to hypotheses H1 and H2 of the previous section.

In visual tracking, hypothesis H1 of conditional independence of temporal measurements
given the states may not be very accurate. Keeping only two time instants for simplicity, the
assumption implies that for all state sequences ck−1:k and data sequences zk−1:k,

p(zk, zk−1|ck, ck−1) = p(zk|ck, ck−1)p(zk−1|ck, ck−1) .
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This is a very strong assumption: in practice, there exist some state sequences ck−1:k of in-
terest (e.g. the "true" or "target" state sequences, or state sequences close to the mean state
sequence) for which the data are correlated, and hence, for which the standard assumption
does not hold. This can be illustrated as follows.
In most tracking algorithms, the state space includes the parameters of a geometric transfor-
mation T . Then, the measurements consist of implicitly or explicitly extracting some part of
the image by :

z̃ck
(r) = zk(Tck

r) ∀r ∈ R , (10)

where z̃ck
= zk|ck, r denotes a pixel position, R denotes a fixed reference region, and Tck

r
represents the application of the transform T parameterized by ck to the pixel r. The data
likelihood is then usually computed from this local patch : p(zk|ck) = p(z̃ck

). However, if
ck−1 and ck correspond to two consecutive states of a given object, it is reasonable to assume
that :

z̃ck
(r) = z̃ck−1

(r) + η(r) ∀r ∈ R . (11)

where η(r) are prediction noise random variables, assumed to be symmetric with zero mean.
This point is illustrated in Figure 3. Equation (11) is at the core of all motion estimation
and compensation algorithms like MPEG and is indeed a valid hypothesis [Tek95]. More
formally, if we consider the patch z̃• as a vector of i.i.d components, we can compute the
normalized cross-correlation (NCC) between two data vectors z̃ck−1

and z̃ck
, for state couples

ck−1:k of interest, to study their dependencies. The NCC of two patches z̃1 and z̃2 is given
by :

NCC(z̃1, z̃2) =

∑
r∈R (z̃1(r)− ¯̃z1) · (z̃2(r)− ¯̃z2)√

Var(z̃1)
√

Var(z̃2)
, (12)

where ¯̃z1 represents the mean of z̃1.
To perform experiments, we defined, as ground truth (GT) object sequences, ellipses manu-
ally fitted to the head of persons in two sequences of 300 images each. Next, we considered
the state couple (ck−1, ck) = (cgt

k−1, c
gt
k + ~δ), where cgt denotes a GT object image position,

and ~δ corresponds to an offset around the GT state. Furthermore, the dimensions of the el-
lipse at time k − 1 are used to define the ellipse at time k.
The dependency between measurements is illustrated in Fig. 4a and 4b, where the average
NCC is ploted against the amplitude of ~δ, measured either in number of pixels, or in per-
centage of object size, where object size is defined as the average between the two ellipse’s
axis lengths. In the training data, object size ranges between 30 and 80 pixels, and there are
between 600 and 12000 measurements per δ value. As can be seen, when the offset displace-
ment reaches 50% of object size, correlation becomes close to 0. When the displacement is
greater than 100%, the NCC should be 0 in average, as there is no more overlap between the
two measurement vectors. Fig. 4c and 4d illustrates this further by displaying the histogram
of the NCC for different values of δ. Again, while the histograms are peaked around 1 for
small values for δ, it gradually moves towards a symmetric histogram centered at 0 with the
increase of δ.

This issue bears similarities with the work on Bayesian correlation [SBIM99]. In such
work, the dependence/independence of measurements (in this case, the output of a set of



IDIAP–RR 04-61 9

Figure 3: Images at time t and t + 3. The two local patches corresponding to the head and
extracted from the two images are strongly correlated.

filters) at different spatial positions, given the object state, was studied. It was shown that in-
dependence was achieved as long as the supports of the filters were distant enough. For fore-
ground object modeling, however, the obtained measurement distributions were not specific
enough. The work in [SBR00] further showed that the independence still holds conditioned
on the availability of some form of object template to predict the filter output. In tracking
terms, the patch extracted in the previous frame from the state at time k − 1 plays the role
of the conditioning template, as shown by Eq. (11), and the independence result of [SBR00]
states that the noise variables η(r) and η(r′) are independent when |r− r′| is large enough.

The above analysis illustrates that the independence of the data given the sequence of
states is not a true assumption in general. More precisely :

p(zk|z1:k−1, c1:k) 6= p(zk|ck) , (13)

which means that we can not reduce the left hand side to the right one as usually done with
the standard derivation of the particle filter equations. A more accurate model for visual
tracking is thus represented by the graphical model of Fig. 1b.

The new model can be easily incorporated in the particle filter framework. First, note that
all computation leading to Eq. 5 in Section 3 are general and do not depend on assumptions
H1 and H2. Starting from there, replacing H1 by the new model gives :

p(zk|z1:k−1, c1:k) = p(zk|zk−1, ck, c
i
k−1) . (14)

If we keep H2, it is easy to see that the new weight update equation is given by :

wi
k ∝ wi

k−1

p(zk|zk−1, c
i
k, c

i
k−1)p(ci

k|c
i
k−1)

q(ci
k|c

i
0:k−1, z1:k)

(15)

in replacement of equation (6).

4.2 Proposal distribution and dynamical model

According to our new graphical model, and following the same arguments as in [AMGC01,
DGA00], we can show that the optimal proposal distribution and the corresponding update
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Figure 4: (a) and (b) Average of the NCC coefficient for state couples at varying distance
from the ground truth state values. In (a), the distance is measured in pixels, while in (b)
it is measured in proportion of object size. (c) and (d) Empirical distribution of the NCC
coefficients for different displacement distance, measured either in pixel (c), or in proportion
of object size (d).

rule are given by :

q(ck|c
i
k−1, z1:k) = p(ck|zk, zk−1, c

i
k−1) ∝ p(zk|ck, zk−1, c

i
k−1)p(ck|c

i
k−1) and

wi
k ∝ wi

k−1p(zk|c
i
k−1, zk−1) .

As their homologous Equations (7) and (8), these equations are difficult to be used in prac-
tice.

A possibility then consists of using the dynamical model (i.e. the prior) as the proposal.
This suffers from the generic drawbacks mentioned in the introduction, and in visual track-
ing, from the unspecificity of some state changes, which often plays in favor of the use of
simple dynamical models (e.g. constant speed models). Also, the low temporal sampling rate
and the presence of fast and unexpected motions, due either to camera or object movements,
render the noise parameter estimation problem difficult.

An alternative, that we adopt in this paper, consists of using as proposal a mixture model
built from the prior and observation likelihood distributions [PVB04]. In our case, the like-
lihood term p(zk|ck, zk−1, c

i
k−1) comprises an object-related term and one motion term (see

paragraph 5.3). In this article, we will construct a proposal distribution from the latter. More-
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over, as motivated by the rest of this section, this term happens to be more adapted to model
state changes than dynamics relying only on state values.

The relevance of using a visual motion-based proposal rather than the dynamics is il-
lustrated by the following experiments. Consider as state c the horizontal position of the
head of the foreground person in the sequence displayed in Fig. 6, which has been hand held
recorded and features a person moving around in an office, and denote by cgt the GT value
obtained from a manual annotation of the head position in 200 images. Furthermore, let us
denote by ξk the state prediction error, whose expression is given by

ξk = cgt
k − ĉk , (16)

where ĉk denotes the state prediction, computed by two methods. The first one uses a simple
AR model :

ĉk = cgt
k−1 + ċk−1 with ċk−1 = cgt

k−1 − cgt
k−2 , (17)

where ċ denotes the state derivative and models the evolution of the state. In the second
method, ĉk is computed by exploiting the inter-frame motion to predict the new state value :

ĉk = cgt
k−1 + ċmotion

k−1 (18)

where ċmotion
k−1 is computed using the coefficients of an affine motion model robustly estimated

on the region defined by cgt
k−1 (see Section 5.2).

Fig. 5a reports the prediction error obtained with the AR model. As can be seen, this
prediction is noisy. The standard deviation of the prediction error, σξ, is equal to 2.7. Fur-
thermore, there are large peak errors (up to 30% of the head width)1. To cope with these
peaks, the noise variance in the dynamics has to be overestimated to avoid particles near
the ground truth to be too disfavored. Otherwise, only particles lying near the -erroneous-
predicted states may survive the resampling step. However, a large noise variance has the ef-
fect of wasting many particles in low likelihood areas or spreading them on local distractors,
which can ultimately lead to tracking failures. On the other hand, exploiting the inter-frame
motion leads to a reduction of both the noise variance (σξ=0.83) and the error peaks (Fig. 5b).
There is another advantage of using image-based motion estimates. Let us first note that the
previous state values (here ck−1, ck−2) used to predict the new state value ĉk are affected
by noise, due to measurement errors and uncertainty. Thus, in the standard AR approach,
both the state ck−1 and state derivative ċk−1 in Eq. 17 are affected by this noise, resulting in
large errors (Fig. 5c). When using the inter-frame motion estimates, the estimation ċmotion

k−1

is almost not affected by noise (whose effect is to slightly modify the support region used to
estimate the motion), as illustrated in Fig. 6, resulting again in a lower noise variance process
(Fig. 5d).

Thus, despite needing more computation resources, inter-frame motion estimates are usu-
ally more precise than auto-regressive models to predict new state values; as a consequence,
they are a better choice when designing a proposal function. This observation is supported

1Higher order models were also tested. Although they usually led to a variance reduction of the prediction
error, they also increased the amplitude and duration of the error peaks.
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Figure 5: (a) Prediction error of the x position, when using an AR2 model . (b) Prediction
error, but exploiting the inter-frame motion estimation. (c) resp. (d), same as (a) resp. (b)
but now adding a random Gaussian noise (std=2 pixels) on the GT measurements used for
prediction. With the AR model (Fig. c) both the previous state and state derivative estimates
are affected by noise (σξ=5.6), while with visual-motion (Fig. d) the noise mainly affects the
previous measurement (σξ=2.3).

by experiments on other state parameters -vertical position, scale-, and on other sequences.
Finally, this observation can also be applied to a set of particles. If these are localized on
modes of a distribution related to visual measurements, their prediction according to the vi-
sual motion will generally place them around the new modes associated with the current
image.

5 The implemented model

The graphical model of Fig. 1b is generic. In this paper, our specific implementation will be
based on the graphical model of Fig. 7, whose elements are described more precisely in the
rest of this section.

5.1 Object representation and state space

We follow an image-based standard approach, where the object is represented by a region
R subject to some valid geometric transformation, and is characterized either by a shape or
by a color distribution. For geometric transformations, we have chosen a subspace of the
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Figure 6: Example of motion estimates between two images from noisy states. The 3 ellipses
correspond to different state values. Although the estimation support regions only cover part
of the head and enclose textured background, the head motion estimate is still good.
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Figure 7: Specific graphical model for our implementation.

affine transformations comprising a translation T, a scaling factor s, and an aspect ratio e :

Tαr =

(
Tx + xsx

Ty + ysy

)
, (19)

where r = (x, y) denotes a point position in the reference frame, α = (T, s, e), and :

s =
sx + sy

2
, e =

sx

sy
, sx =

2es

1 + e
and sy =

2s

1 + e
(20)

A state is then defined as ck = (αk, αk−1).

5.2 Motion estimation

As mentioned in the previous Section, we use inter-frame motion estimates both as observa-
tions and to sample the new state values. More precisely, an affine displacement model ~dΘ

parameterized by Θ = (ai), i = 1..6 is computed using a gradient-based robust estimation
method described in [OB95]2. ~dΘ is defined by:

~dΘr =

(
a1 + a2x + a3y
a4 + a5x + a6y

)
. (21)

2We use the code available at http://www.irisa.fr/vista
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This method takes advantage of a multiresolution framework and an incremental scheme
based on the Gauss-Newton method. It minimizes an M-estimator criterion to ensure the
goal of robustness, as follows :

Θ̂(ck−1) = argmin
Θ

∑

r∈R(ck−1)

ρ (DFDΘ(r))

with DFDΘ(r) = zk(r + ~dΘr)− zk−1(r) , (22)

where zk−1 and zk are the images, and ρ(·) is a robust estimator (bounded for high values
of its argument). Owing to the robustness of the estimator, an imprecise region definition
R(ck−1) due to a noisy state value does not sensibly affect the estimation (see Fig. 6). From
these estimates, we can construct an estimate ̂̇αk−1 of the variation of the coefficients between
the two instants. Assuming that the coordinates in Eq. 21 are expressed with respect to the
object center (located at T in the image), we propose the following derivative estimates :

{
Ṫx = a1

Ṫy = a4
,

{
ṡx = a2sx

ṡy = a6sy
and

{
ṡ = s

1+e
(a2e + a6)

ė = e(a2 − a6)
(23)

The estimated predicted value is then given by α̂k = αk−1 + ̂̇αk−1. Although not used
in the reported experiments, the covariance matrix of the estimated parameters can also be
computed. With model-based approaches involving more state parameters, this would be
useful to account for uncertainty and underconstrained optimization.

5.3 Data likelihood modeling

To implement the new particle filter, we assume that the measurements zk are of two types:
object measurements zo

k (i.e. edges or color), and patch gray level measurements zg
k. Then,

we consider the following data likelihood :

p(zk|zk−1, ck, ck−1) = p(zo
k, z

g
k|z

o
k−1, z

g
k−1, ck, ck−1) (24)

= p(zo
k|z

g
k, z

o
k−1, z

g
k−1, ck, ck−1)p(zg

k|z
o
k−1, z

g
k−1, ck, ck−1) (25)

= p(zo
k|ck)p(zg

k|z
g
k−1, ck, ck−1) (26)

where the last derivations exploit the properties of the graphical model of Fig. 7. Two as-
sumptions were made to derive this model. The first one assumed that object observations are
independent of patch observations given the state sequence measurements. This choice de-
couples the model of the dependency existing between two images, whose implicit goal is to
ensure that the object trajectory follows the optical flow field implied by the sequence of im-
ages, from the shape or appearence object model. When the object is modeled by a shape, our
assumption is valid since shape observations will mainly involve measurements on the bor-
der of the object, while the correlation term will apply to the regions inside the object. When
a color representation is employed, the assumption is valid as well, as color measurements
can usually be considered as being independent of gray-scale measurements. The second
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assumption we made is that object measurements are uncorrelated over time. When con-
sidering shape measurements, the assumption is quite valid as the temporal auto-correlation
function of contours is peaked. However, with the color representation [CRM00, PHVG02],
the temporal independence assumption might not hold. Better models need to be searched
for to handle this case.
We describe the specific observations models as follows.

5.3.1 Visual object measurement

For the experiments, we considered both contour models or color models.
Shape model :
The observation model assumes that objects are embedded in clutter. Edge-based measure-
ments are computed along L normal lines to a hypothesized contour, resulting for each line
l in a vector of candidate positions {ν l

m} relative to a point lying on the contour ν l
0. With

some usual assumptions [BI98], the shape likelihood can be expressed as

p(zo
k|ck) ∝

L∏

l=1

max

(
K, exp(−

‖ν̂l
m − νl

0‖
2

2σ2
s

)

)
, (27)

where ν̂ l
m is the nearest edge on l, and K is a constant used when no edges are detected. In

all experiments, we used L = 16 search lines, the search range along each line was 10 pixels
inside and outside the contour, σs was set to half the search range (i.e. 5), and K = exp−2

(value we obtain for the farthest edge detection).

Color model :
As color models we used color distributions represented by normalized histograms in the
HSV space and gathered inside the candidate region R(ck) associated with the state ck. To
be robust to illumination effects, we only considered the HS values. Then, a normalized mul-
tidimensional histogram was computed, resulting in a vector b(ck) = (bj(ck))j=1..N , where
N = Nh×Ns with Nh and Ns representing the number of bins along the hue and saturation
dimensions respectively (Nh = Ns = 8), and where the index j corresponds to a couple
(h, s) with h and s denoting hue and saturation bin numbers. At time k, the candidate color
model b(ck) is compared to a reference color model bref . We use the histogram computed in
the first frame as reference model. As a distance measure, we employed the Bhattacharyya
distance measure [CRM00, PHVG02]:

Dbhat(b(ck), bref) =

(
1−

N∑

j=1

√
bj(ck)b

j
ref

)1/2

(28)

and assumed that the probability distribution of the square of this distance for a given object
follows an exponential law,

p(zo
k|ck) ∝ exp{−λbhat D2

bhat(bk(ck), bref)} . (29)

We used a value of λbhat = 20 in all experiments.
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5.3.2 Image correlation measurement

To model this term, we used two possibilities :

• The first one consists of extracting measures in the parameter space. Usually, this
is achieved by thresholding and/or extracting local maxima of some interest function
[AM04, PVB04]. In our case, this corresponds to the extraction of peaks of a correla-
tion map, as done in [AM04] for translations. One advantage of such a method is to
provide a well-behaved likelihood (i.e. involving only a few well identified modes).
One drawback is that the extraction process can be time consumming.

• In the second approach, gray-level patches are directly compared after having warped
them according to the state values (see Eq.(10)). The advantages of this method are to
supply more “detailed” likelihoods that can be computed directly from the data.

In this paper, we employ both options, by assuming that observations are made of the mea-
sured parameters α̂k obtained using the estimated motion, and of the local patches z̃g

ck
. We

model the correlation term in the following way :

p(zg
k|z

g
k−1, ck, ck−1) ∝ pc1(α̂k, αk)pc2(z̃

g
ck

, z̃g
ck−1

) (30)

with :

pc1(α̂k, αk) = N (α̂k; αk, Λξp) (31)

pc2(z̃
g
ck

, z̃g
ck−1

) = Z−1 exp−λcDc
2(z̃g

ck
,z̃g

ck−1
) (32)

Z =

∫

z′,z′′
exp−λcDc

2(z′,z′′) dz′dz′′ (33)

where N (.; µ, Λ) represents a Gaussian distribution with mean µ and covariance matrix Λ,
Dc denotes a distance between two image patches, Λξp = diag(σξ

2
p,j) is the covariance of

the measurements, Z is a normalization constant whose value can be computed from (33),
where the integral runs over pairs of consecutive patches corresponding to the same tracked
object extracted in training sequences [TB01]. In practice, however, we did not compute
this value and assumed it to be constant for all object patches. The first probability term in
Eq. 30 compares the measured parameters with the sampled values, and assumes a Gaussian
noise process in parameter space. The second term introduces a non-Gaussian model, by
comparing directly the patches defined by ck and ck−1 using the similarity distance Dc. It
has been derived by assuming that all patches are equally probable. Although the use of those
two terms is somewhat redundant, it proved to be a good choice in practice and its purpose
can be illustrated using Fig. 6. While all the three predicted configurations will be weighted
equally according to pc1, the second term pc2 will downweight the two predictions (green
and white ellipses) whose corresponding support region is covering part of the background,
which is undergoing a different motion than the head.

The definition of pc2 requires the specification of a patch distance. Many such distances
have been defined and used in the literature [SJ01, TB01, SB01]. The choice of the distance
should take into account the followings considerations :
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1. the distance should still model the underlying motion content, i.e. the distance should
increase as the error in the predicted configuration grows;

2. the random nature of the prediction process in the SMC filtering will rarely produce
configurations corresponding to exact matches. This is particularly true when using a
small number of samples;

3. particles covering both background and object, each undergoing different motions,
should have a low likelihood.

For these purposes, we found out in practice that it was preferable not to use robust norms
such as L1 saturated distance or a Haussdorf distance [TB01]. Additionally, we needed to
avoid distances which might a priori favor patches with specific content. This is the case
of the L2 distance, which corresponds to an additive Gaussian noise model in Eq.(11) and
generally provides lower scores for tracked patches with large uniform areas3. Instead, we
used a distance based on the normalized-cross correlation coefficient (Eq. (12)) defined as :

Dc(z̃1, z̃2) = 1− NCC(z̃1, z̃2) (34)

Regarding the above equation, it is important to emphasize again that the method is not
performing template matching, as in [SJ01]. No object template is learned off-line or de-
fined at the begining of the sequence, and the tracker does not maintain a single template
object representation at each instant of the sequence. Thus, the correlation term is not object
specific (except through the definition of the reference region R). A particle placed on the
background would thus receive a high weight if the predicted motion is in adequation with
the background motion. Nevertheless, the methodology can be extended to be more object
dependent, by using more object specific regions R and by allowing the region R to vary
over time, as is done in articulated object tracking [SB01].

5.4 Dynamics definition

To model the prior, we use a standard second order AR model (Eq. 17) for each of the
components of α. However, to account for outliers (i.e. unexpected and abrupt changes)
and reduce the sensitivity of the prior in the tail, we model the noise process with a Cauchy
distribution, ρc(x, σ2) = σ

π(x2+σ2)
. This leads to

p(ck|ck−1) =

4∏

j=1

ρc

(
αk,j − (2αk−1,j − αk−2,j), σξ

2
d,j)
)

. (35)

where σξ
2
d,j denotes the dynamics noise variance of the j th component. Moreover, as the

correlation likelihood term is indeed more reliable than the prior to constraint trajectories,
we set σξd,j to three times the σξp,j value.

3This issue is related to our assumption of equally probable patches. Given our likelihood model for joint
tracked patches, Eq. (32), this assumption is only approximate.
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5.5 Proposal distribution

As motivated in Section 4.2, the proposal distribution function relies on the estimated motion.
More precisely, we define it as :

q(ck|c0:k−1, z1:k) ∝ N (αk; α̂k, Λξp) (36)

which means that we sample new positions around the predicted state value.

6 Results

To illustrate the method, we considered three sequences involving head tracking. Results
should be appreciated by looking directly at typical video results that can be found on our
website 4. To differentiate the different elements of the model, we considered three kinds of
trackers :

• condensation tracker M1 : this tracker corresponds to the standard CONDENSATION
algorithm [BI98], with the object likelihood po (Eq. 27 or 29) combined with the same
AR model with Gaussian noise for the proposal and the prior.

• implicit correlation tracker M2 : it corresponds to CONDENSATION, with the addi-
tion of the implicit motion likelihood term in the likelihood evaluation (i.e now equal
to po.pc2). This method does not use explicit motion measurements.

• motion proposal tracker M3 : it is the full model. The samples are drawn from the
motion proposal, Eq. 36, and the weight update is performed using Eq. 5. After sim-
plification, the update equation becomes :

wi
k = wi

k−1 po(z
o
k|c

i
k)pc2(z̃

g

ci
k

, z̃g

ci
k−1

)p(ci
k|c

i
k−1) (37)

For this model, the motion estimation is not performed for all particles since it is
robust to variations of the support region. At each time, the particles are clustered into
K clusters. The motion is estimated using the mean of each cluster and exploited for
all the particles of the cluster. We use K = max(20, Ns/10) clusters.

For 200 particles, the shape-based M1 tracker runs in real time (on a 2.5GHz P IV machine),
M2 at around 20 image/s, and M3 around 8 image/s. In experiments, all the common pa-
rameters are kept identical. Only the number of samples Ns, and the noise variance in the
proposal distribution (and consequently in the dynamics) will be changed. The noise stan-
dard deviations will be denoted σT for the translation components (i.e. σξp,1 = σξp,2 = σT)
and σs for the scale (i.e. σξp,3 = σs). The aspect ratio component noise is kept fixed, with
σξp,4 = 0.01.

The first sequence (Fig. 8 and 9), containing 64 images of size 240×320, illustrates
qualitatively the benefit of the method in the presence of strong ambiguities. The sequence

4www.idiap.ch/∼odobez/IPpaper/EmbeddingMotion.html
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(a) t9 (b) t10 (c) t11 (d) t13

(e) t10 (f) t18 (g) t25 (h) t40

(i) t1 (j) t10 (k) t35 (l) t63

Figure 8: Head tracking 1 : first row : shape-based tracker M1. Second row : shape-based
tracker M2. Third row : shape-based tracker M3. In red, mean state; in green, mode state; in
yellow, likely particles.

features a highly textured background producing very noisy shape measurements, camera
and head motion, change of appearence of the head, and partial occlusion. Whatever the
number of particles or the noise variance in the dynamical model, the shape-based tracker M1
alone is unable to perform a correct tracking after time t12. In contrast, tracker M2 is able to
do the tracking correctly on a large majority of runs when using small dynamics ((σT, σs) =
(1, 0.005)). However, with an increase of the noise variance, it fails (see second row of
Fig. 8) : the observations are clearly multimodal, and the head motion is only occasionaly
different from the background, which makes it especially hard for the correlation term to
keep configurations enclosing only the head. Using tracker M3, however, leads to correct
tracking, even with large noise values. There might be two reasons for this. The first one
consists of the use of the correlation likelihood measure in parameter space. The second one
is due to its ability to better maintain multimodality5. Consider a mode that is momentarily
represented by only a few particles. With a “blind” proposal, these particles are spread
with few chances to hit the object likelihood mode, decreasing their probability of survival
in the next selection step. On the other hand, with the motion proposal, these chances are
increased. Finally, for small dynamics, the color-based tracker M1 usually succeeds, but it
fails with standard dynamics (e.g. dynamics used in [PVB04]), as shown in the first row
of Fig. 9). This is due to the presence of the brick color and more importantly, the face of
the boy. Exploiting correlation leads to successful tracking, but with a lower precision when
using M2 (see images 9(e) to 9(h)), than with M3 (images 9(i) to 9(l)).

5In [VDP03], it has been shown on simulated experiments that even when the true density is a two Gaussian
mixture model with the same mixture weight for each Gaussian, and with the appropriate likelihood model, the
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(a) t5 (b) t10 (c) t14 (d) t20

(e) t12 (f) t24 (g) t36 (h) t48

(i) t12 (j) t24 (k) t36 (l) t48

Figure 9: Head tracking sequence 1 : color-based model. First row : M1, second row :
M2, last row : M3. All experiments (including those of Fig. 8) with Ns=250 and (σT, σs) =
(5, 0.01). In red, mean state; in green, mode state; in yellow, likely particles.

The second sequence is a 330 frame sequence (Fig. 10) extracted from a hand-held home
video. Figure 11 reports the tracking performance of the three trackers for different dynamics
and number of particle. At each frame, the resulting tracked region Rt (obtained from the
mean state value) is considered as successful if the recall and precision are both higher than
25%, where these rates are defined by :

R∩,t = Rgt,t ∩ Rt , rprec =
|R∩,t|

|Rt|
, rrec =

|R∩,t|

|Rgt,t|
(38)

where Rgt,t is the ground truth region, and | · | denotes the set cardinality operator.
A tracking failure is considered As can be seen, while the shape-based tracker M1 per-

forms quite well for tuned dynamics (parameter set D1), it breaks down rapidly, even for
slight increases of dynamics variances (parameters D2 to D4). Fig. 10 illustrates a typical
failure due to the small size of the head at the begining of the sequence, the low contrast at
the left of the head, and the clutter. On the other hand, the shape-based tracker M2 performs
well under almost all circumstances, showing its robustness against clutter, partial measure-
ments (around time t250) and partial occlusion (end of the sequence). Only when the number
of samples is low (see Fig. 11(g)) does the tracker fail. These failures are occuring at differ-
ent parts of the sequence. Finally, in all experiments, the shape-based tracker M3 produces
a correct tracking rate. When looking at the color-based tracker M1, we can see that it per-
forms much better than its shape equivalent (compare Fig. 11(d) and 11(a)). However, due
to the presence of a person in the background, it fails around 25% of the time with standard
noise values. Incorporating the motion leads to perfect tracking, though with a very small

standard particle filter loses rapidly one of the modes.
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(a) t1 (b) t8 (c) t15

(d) t20 (e) t60 (f) t165

(g) t250 (h) t295 (i) t305

(j) t180 (k) t185 (l) t190

Figure 10: Head tracking sequence 2 (Ns=500) : top row : shape-based tracker M1. Second
and third rows : shape-based tracker M2. Last row : color-based tracker M1. In red, mean
state. In green, mode state. In yellow, highly likely particles.

number of samples (Ns=50, see 11(f)), the M2 tracker sometimes fails while the full model
is always successful.

The last sequence (Fig. 12) better illustrates the benefit of using the motion proposal
approach. This 72s sequence acquired at 12 frame/s is specially difficult because of the
occurence of several head turns6(which prevents us from using the color trackers), and abrupt
motion changes (translations, zooms in and out), and importantly, due to the absence of head
contours as the head moves near (frames 160 to 200) or in front of the bookshelves (frames
620 to the end). Because of these factors, the shape-based tracker M1 fails due to a local
ambiguity with the whiteboard frame (around frame 65), or because of camera jitter (frame
246) (cf Fig.13(a)). The M2 tracker works better, handling correctly the jitter situation when

6Head turns are difficult cases for the new method, as in the extreme case, the motion inside the head region
indicates a right (or left) movement while the head outline remains static.
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(a) M1 - Shape
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(b) M2 - Shape
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(c) M3 - Shape
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(d) M1 - Color
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Figure 11: Head tracking sequence 2 : successful tracking rate (in %, computed over 50 trials
with different random seeds). Experiments (a) to (e) : parameter sets D1 to D4 correspond
to Ns=500, with dynamics (σT, σs) : D1 (2,0.01), D2 (3,0.01), D3 (5,0.01) D4 (8,0.02).
Experiments (f) to (h), different number of particles are tested (500/250/100/50) using the
D3 (5,0.01) noise values.

the dynamic noise is large enough, but fails when the head moves in front of the bookshelves,
due to the temporally lack of head contours, combined with background clutter. In contrast,
all these issues are resolved by the M3 tracker, which better capture the state variations, and
allows a successful track of the head until the end of the sequence under almost all conditions
(Fig. 13(c) and 13(d)).

7 Conclusion

We presented a methodology to embed data-driven motion measurements into particle filters.
This was first achieved by proposing a new graphical model that accounts for the temporal
correlation existing between successive images of the same object. We show that this new
model can be easily handled by the particle filter framework. The new introduced obser-
vation likelihood term can be exploited to model the visual motion using either implicit or
explicit measurements. Secondly, explicit motion estimates were exploited to predict more
precisely the new state values. This data-driven approach allows for designing better propos-
als that take into account the new image. Altogether, the algorithm allows to better handle
unexpected and fast motion changes, to remove tracking ambiguities that arise when using
generic shape-based or color-based object models, and to reduce the sensitivity to the differ-
ent parameters of the prior model.

The conducted experiments have demonstrated the benefit of exploiting the proposed
scheme. However, this should not obliterate the fact that the tracking performance de-
pends on the choice of a good and robust object model. This was also illustrated in the
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(a) t1 (b) t65 (c) t170

(d) t446 (e) t640 (f) t660

(g) t710 (h) t745 (i) t800

Figure 12: Head tracking sequence 3. Tracker with motion proposal (Ns=500). In red, mean
shape; in green, mode shape; in yellow, likely particles.

reported experiments. The color tracker, when its use is appropriate, performs better than
its shape equivalent. Thus, when dealing on a specific object tracker, like head tracker for
instance, building more precise or adaptive object likelihood may further improve the pro-
posed method. This can be achieved by developing better probability density functions to
model the likelihood of observations of different nature, or measured at different spatial or
temporal positions.

Finally, we have showed that the exploitation of explicit motion measurements in the
proposal improved the tracking efficiency. The described approach is general. For instance,
it can be used to track deformable objects, by exploiting the integration of motion measure-
ments along the shape curve, as described in [KHP96]. However, in this case, the usefulness
and the robustness of the low-level motion measurements to model the temporal variation
of fine scale parameters need to be demonstrated. The use of an hybrid scheme, in which
one part of the state parameters (e.g. translation, scale, rotation,...) are sampled from a data
driven motion proposal, while the other part is drawn from a standard AR model, might be
more appropriate.



IDIAP–RR 04-61 24

0 200 400 600 800 1000
0

20

40

60

80

100

Frame number

T
ra

ck
in

g 
ra

te

Condensation tracker M1 − shape

D1
D2
D3
D4

(a) M1 - Shape

0 200 400 600 800 1000
0

20

40

60

80

100

Implicit tracker M2 − shape

Frame number

T
ra

ck
in

g 
ra

te

D1
D2
D3
D4

(b) M2 - Shape

0 200 400 600 800 1000
0

20

40

60

80

100

Frame number

T
ra

ck
in

g 
ra

te

Proposal tracker M3 − shape

D1
D2
D3
D4

(c) M3 - Shape

0 200 400 600 800 1000
0

20

40

60

80

100

Frame number

T
ra

ck
in

g 
ra

te

Proposal tracker M3 − shape

50
100
250
500
1000

(d) M3 - Shape

Figure 13: Head tracking sequence 3 : successful tracking rate (in %, computed over 50
trials with different random seeds). Experiments 13(a) to 13(c) : parameter sets D1 to D4
correspond to Ns=1000, with dynamics (σT, σs) : D1 (2,0.01), D2 (3,0.01), D3 (5,0.01) D4
(8,0.02). In experiments 13(d), different number of particles are tested using the D3 (5,0.01)
noise values.
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