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Abstract. Language models for speech recognition are generally trained on text corpora. Since
these corpora do not contain the disfluencies found in natural speech, there is a train/test mis-
match when these models are applied to conversational speech. In this work we investigate a
language model (LM) designed to model these disfluencies as a syntactic process. By modeling
self-corrections we obtain an improvement over our baseline syntactic model. We also obtain a
30% relative reduction in perplexity from the best performing standard N-gram model when we
interpolate it with our syntactically derived models.



2 IDIAP–RR 04-55

1 Introduction

Speech between humans is usually an interactive exercise due to feedback, both visual and verbal,
from the listener(s). This interactive property manifests itself in a variety of ways:

1. speech can be cut off mid-utterance, due to interjections, external events, etc.

2. speakers make more corrections to what they say, and

3. speech contains other disfluencies, such as hesitations.

We will focus on the second item.

Corrections in speech make the task of language modeling more difficult. Since language models
are generally trained on text, and text does not contain disfluencies, we are faced with a mismatch
between the training data and the testing data. If we are able to model the correction process, it may
be possible to adapt a model trained on text for the modeling of interactive speech.

We propose that corrections in speech are a syntactic process, which is well supported by the fact
that the way a sentence is parsed determines (at least in part) its meaning. This is demonstrated
by the two different parses for the sentence in Figure 1 that result from applying the grammatical
productions in Table 1. The fact that the listener is usually able to infer the correct meaning from a
corrected sentence implies that the correction process involves performing an operation on the parse
tree. For this reason, a number of researchers have argued that corrections are indeed a syntactic
process, and have proposed rules which govern this process [?, ?, ?, ?]. This is our motivation for
developing syntactic language models of conversational speech. Furthermore, according to Schegloff,
the correction process is reasonably consistent across languages [?]; this contrasts with the state of
the art N-gram approach, which is primarily suited to languages in which “word order is important
and the strongest contextual effects tend to come from near neighbours [such as English]” [?].

In this work we investigate two similar yet distinct types of syntactic language model. One contains
production rules which aim to model a specific type of self correction, while the other does not. We
find that modeling corrections syntactically leads to a reduction in perplexity compared to a syntactic
model that does not take corrections into account.

Table 1: A simple grammar.

Constituent Abbreviation Productions

Sentence S S → NP VP

Noun Phrase NP NP → N

NP → Det N

NP → Det N PP

Verb Phrase VP VP → V NP

VP → V NP PP

Preposition Phrase PP PP → P NP

Noun N N → Kevin
N → man
N → gun

Verb V V → shot
Determinative Det Det → the

Det → a
Preposition P P → with
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(a) S

NP

N

Kevin

VP

V

shot

NP

Det

the

N

man

PP

with a gun

(b) S

NP

N

Kevin

VP

V

shot

NP

the man

PP

with a gun

Figure 1: A sentence parsed in two different ways with two corresponding meanings: (a) “Kevin shot
the man who had a gun.” (b) “Kevin used a gun to shoot the man.”

2 A tale of two models

The role of a language model in an automatic speech recognition (ASR) system is to calculate the
quantity

P (wn
1 ) (1)

where wk
j refers to the sequence of words wj ..wk

and n is the number of words in a hypothesized utterance.

There are a number of ways to estimate this distribution; we will consider two of them – the
N-gram and the syntactic language model – and a hybrid of these.

2.1 N-grams

N-gram language models are based on the idea that each word in a sentence can be assigned a
probability of occurrence, based on the preceding words in a sentence, i.e. the following quantity can
be estimated:

P (wi|w
i−1
1 ) (2)

This allows us to estimate P (wn
1 ) as

P (wn
1 ) =

n∏

i=1

P (wi|w
i−1
1 ) (3)
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N-gram language models are based on a simple counting of the frequencies of strings of words
in a training corpus. Since the amount of training data required to estimate P (wi|w

i−1
1 ) increases

dramatically as i increases, N-gram models approximate this quantity as

P (wi|w
i−1
1 ) ' P̂ (wi|w

i−1
i−N+1) (4)

2.2 SCFGs

A stochastic context free grammar is context free grammar in which all productions are augmented
with a probability. Thus the model is defined by (V ,T ,R,S) where

V = The set of non-terminal symbols

T = The set of terminal symbols

R = The set of (probabalistic) productions

S = The start non-terminal

The model is parameterized by the set of probabilities P (r) ∀r ∈ R.

This model allows us to calculate the probability that a given string of terminals, x, is derived
from any non-terminal, X (see [?]):

P (X
∗
⇒ x) (5)

We can therefore calculate the probability of any word string P (wn
1 ) as

P (wn
1 ) = P (S

∗
⇒ wn

1 ) (6)

Syntactic language models have the advantage that they are able to model long distance depen-
dencies between words, without the enormous number of parameters that would be required by an
N-gram model. Because syntactic models allow for recursive productions such as [NP → NP PP],
they are able to model arbitrarily long sentences without any increase in the number of parameters.

2.3 Hybrid models

Stolcke developed [?] a probabilistic extension of Earley’s parser [?] which allows for the calculation

of prefix probabilities. The prefix probability P (S
∗
⇒L x) is the sum of the probabilities of all sentence

strings having x as a prefix, and is defined as

P (S
∗
⇒L x) =

∑

y∈V ∗

P (S
∗
⇒ xy) (7)

where

V ∗ = The set of all possible strings of non-terminals

We can use Equation 7 in a technique which generates N-gram probabilities directly from SCFGs [?].
This allows us to generate an N-gram language model which contains some knowledge about syntax.
There are three reasons why this is desirable:
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• It allows us to easily combine our syntactic model with other N-gram models.

• It allows us to integrate our syntactic language model in an existing ASR system for rapid
testing.

• Applying an N-gram model is fast – either as a table lookup or directly incorporated into Hidden
Markov Model (HMM) transition probabilities.

Of course there are also drawbacks:

• We lose some knowledge about syntactic structure.

• We lose the compactness of our representation.

2.4 Syntactic knowledge in N-grams

Although it may not be immediately obvious, it is possible for an N-gram model which is derived
from an SCFG to retain some syntactic knowledge. Consider a trivial training set consisting of two
sentences, shown parsed in Figure 2(a) and a test sentence shown parsed in Figure 2(b).

(a)(i) S

NP

Det

The

N

dog

VP

V

chased

NP

Det

the

N

cat

(a)(ii) S

NP

Det

The

Adj

small

N

mouse

VP

Adv

really

V

squeaked

(b) S

NP

Det

The

Adj

small

N

frog

VP

V

chased

NP

Det

the

N

cat

Figure 2: (a) A trivial training set. (b) A test sentence.
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A trigram model trained on these training examples would not be able to estimate the proba-
bility P (chasedi|smalli−2, frogi−1),

1 since the sequence {small, frog, chased} did not appear in
the training set. A class-based N-gram approach would at least allow us to estimate the bigram
P (chasedi|frogi−1) as P (chasedi|Vi)P (Vi|Ni−1)

2. This solution is still deficient, however: since
there are no training examples containing the class sequence {Adj, N, V}, we are unable to estimate
the trigram P (chasedi|smalli−2, frogi−1). However, because a syntactic model contains higher level
structure, it is able to model this sequence. The training examples use the rules [NP → Det Adj N]
and [VP → V NP] which can be glued together using the rule [S → NP VP]. Since we have proba-
bility estimates for each of these rules obtained from the training data, we can meaningfully estimate
the probability P (chasedi|smalli−2, frogi−1). This is an example of an N-gram that we can estimate
using syntactic structure that would not be available otherwise.

2.5 Our Syntactic Model

For this work we implemented a full parser based on Stolcke’s probabilistic extension to Earley’s
parser [?]. Since this parser can calculate prefix string probabilities, it is suitable for use as a language
model in a speech recognition system. The probability of a hypothesized word, wn given a word
history wn−1

1 can be modeled as

P (wn|w
n−1
1 ) =

P (S
∗
⇒L wn

1 )

P (S
∗
⇒L wn−1

1 )
(8)

We are able to train this model on unparsed text corpora using the EM algorithm. Since this is
an initial investigation into the usefulness of modeling corrections syntactically, we transformed our
model into a bigram model as described in Section 2.3. This allows easy testing of our model and
integration with the simple bigram model.

3 Correction Modeling

One of the simplest and most commonly employed syntactic corrections is of the form [X → X X ].
This represents the process whereby a speaker replaces one syntactic constituent with another equiv-
alent one, e.g. (a) “The man entered the room ⊥ left the room.”3 in which the verb phrase (VP)
“entered the room” is replaced by the VP “left the room”, and (b) “The woman with the coat ⊥ in
the coat smiled.” in which the preposition phrase (PP) “with the coat” is replaced by the PP “in
the coat” (See Figure 3). These syntactic corrections pose a problem for a grammar which has been
trained on text, as these corrections are not used in formal writing. We must therefore introduce
productions to handle these corrections, which we call “correction productions”. These productions
extend our written grammar to a spoken grammar.

We develop our model as a multi-stage process:

1. An SCFG is initialized on a pre-parsed corpus

2. This SCFG is refined by reestimating its parameters on a large number of (unparsed) training
sentences.

3. Correction productions are optionally introduced.

1Subscripts refer to the position of the word in the sentence
2This equation requires that the class of word i − 1 is known, which implies that each word can only belong to one

class.
3The point of disfluency is indicated by ‘⊥’
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(a) S

NP

Det

The

N

woman

PP

with the coat

??

in the coat smiled =⇒

(b) S

NP

Det

The

N

woman

PP

PP

with the coat

PP

in the coat

VP

V

smiled

Figure 3: (a) An “unparsable” sentence. (b) The syntactically corrected form of (a).

4. The model is reestimated in order to estimate probabilities for correction productions.

5. The SCFG is transformed into a bigram model.

4 Experimental setup

We train our models using sentences from three different sources, listed in Table 2.

Table 2: Training sets.

Training set Source

Traina Penn Treebank [103 228 sentences]

Trainb TDT-2 [7000 sentences]

Trainc Switchboard [1000 sentences]

We define three standard bigram models with which to compare our syntactic models. These are
listed in Table 3. We also define three class-based bigram models, which are listed in Table 4. We
set the number of classes to 13, to match the number of “part of speech” symbols in our syntactic
models.

Table 3: Bigram models.

Bigram model Trained on

B1 Traina and Trainb

B2 Trainc

B3 Traina, Trainb and Trainc

These bigram models use Good-Turing discounting [?, ?].

Our syntactic models are first initialized on Traina, by counting the number of occurrences of each
production. Only a subset of Traina, consisting of 24 337 sentences, contains fully parsed sentences;
the rest are only annotated with part-of-speech tags and can only be used to estimate “part-of-speech
production” probabilities e.g. P (N → dog). Our syntactic models are then retrained on Trainb.
At this stage we create a number of model variations by optionally augmenting our grammar with
“correction productions.” We differentiate between audible correction productions, in which there is
an explicit correction marker, such as “uh”, and inaudible correction productions in which there is no
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Table 4: Class-based bigram models.

Class-based bigram model Trained on

C1 Traina and Trainb

C2 Trainc

C3 Traina, Trainb and Trainc

explicit marker. These model variations are summarized in Table 5. The final step is to retrain on
Trainc which contain disfluencies.

Table 5: Syntactic models.

Model name Extra productions introduced

G0 –
Ginaudible X → X X ∀X ∈ V

Gaudible X → X D X ∀X ∈ V

D →“um”
D →“uh”
D →“well”
D →“yeah”

Gboth All productions added
to Gaudible and Ginaudible.

Each language model uses a vocabulary consisting of all the words occuring in Trainb and Trainc,
which gives us a vocabulary size of 16 549. We test our models on a set of 1000 sentences from the
Switchboard corpus of conversational telephone speech, and a set of 1000 sentences from the TDT-2
corpus of newswire stories, both of which are isolated from the training and development sets. There
is a separate development set for the Switchboard and TDT-2 tests, each of 1000 sentences. The
performance of each model is measured by its perplexity on the test sets.

4.1 Perplexity

The measure that we refer to as “perplexity” is actually the cross-perplexity and is a measure of how
well a language model can “explain” a set of test sentences. It is defined as

Perplexity = 2H(p,m)

where H(p, m) = lim
n→inf

1

n

∑

wn

1
∈W

p(wn
1 ) log m(wn

1 )

W = the set of all possible strings in

a language.

p = the actual probability distribution

for the language.

m = the language model being tested,

i.e. an approximation to p.

Due the the Shannon-McMillan-Breiman theorem, under the assumption of a stationary and er-
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godic language, we can simplify this [?] to

H(p, m) = lim
n→inf

−
1

n
log m(wn

1 ) (9)

5 Results

The test results are listed in Tables 6 and 7, where the ‘⊕’ symbol means linear interpolation. Linear
interpolation of two bigram models is performed by weighting the first model by λ and the second by
(1 − λ), where λ is chosen to minimise the perplexity on the developement set.

Table 6: Test Results on the Switchboard Test Set.

Model Perplexity

B1 693.9
B2 259.0

B3 269.9
C1 485.1
C2 173.1

C3 562.0
G0 476.6

Gaudible 464.7
Ginaudible 452.4

Gboth 457.4
B2 ⊕ G0 181.2

B2 ⊕ Gaudible 180.6
B2 ⊕ Ginaudible 180.2

B2 ⊕ Gboth 180.5

Table 7: Test Results on the TDT-2 Test Set.

Model Perplexity

B1 298.8
B2 4677
B3 297.6

C1 225.1

C2 260.0
C3 232.3
G0 2137

Gaudible 2066
Ginaudible 2039

Gboth 2059
B3 ⊕ G0 295.6

B3 ⊕ Gaudible 295.3
B3 ⊕ Ginaudible 295.2

B3 ⊕ Gboth 295.4
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6 Discussion

6.1 Switchboard test

We have found that the bigram models trained on the switchboard training data (B2, C2) performed
better than any other single model on the switchboard test data. The syntactically derived models
were competitive however, as they performed better than the bigrams trained on the out of domain
data (B1).

When combined with the best performing standard bigram model via linear interpolation, the
syntactically derived models add significantly to the performance. The choice of syntactic model did
not significantly affect the outcome, however. This may be due to the fact that the supply of extra
bigrams, as described in Section 2.4, is the overriding contribution of the syntactic model in this
case, rather than the modeling of corrections. This is supported by the fact that the class based N-
grams yielded similar performance. As the amount of data available for training the standard bigram
model increases, the importance of this contribution could be expected to decrease, as more of the
bigrams previously only available due to the syntactic model are seen in the bigram training data.
This contribution would still be important, however, for those bigrams that occur only rarely in the
training data. It should be noted that in this experiment we are not exploiting the syntactic models
for their ability to model long distance dependencies. This is the aspect of syntactic models in which
one would expect to find more complementary information, regardless of the amount of training data
available to the bigram model. Longer distance dependencies would be better exploited when higher
order syntactically derived N-gram models are used, and the extra N-gram contributions would also
be more significant in this case.

By considering only the syntactically derived models, we can observe the effect of modeling dis-
fluencies. As expected, the grammatical model which does not include any correction productions
(G0) performs the worst. This was expected as the grammar is not rich enough to properly model
the disfluencies in the switchboard corpus. The results of the grammars with the “audible” (Gaudible)
and “inaudible” (Ginaudible) correction productions are also as expected. The majority of corrections
in the switchboard corpus do not have audible correction markers [?]4, and this is reflected in the per-
formance of the Ginaudible model, which has the best performance of the syntactically derived models.
Gaudible is presumably able to model the rarer corrections that contain an audible correction marker,
and so is able to outperform G0. Gboth is not quite able to match the performance of Ginaudible ,
however its performance may improve with more training data and training iterations.

It could be argued that Ginaudible outperforms the other models because it introduces extra flexi-
bility (with respect to G0) but does not suffer from an excess of parameters that need to be trained,
as Gaudible arguably does. The fact that Gboth outperforms Gaudible, however, suggests that an excess
of parameters is not the only reason for the poor performance of Gaudible (with respect to Ginaudible).
Gboth has in fact more parameters than Gaudible but seems to benefit from the “inaudible” productions.
Since the difference in performance between the four syntactically derived models is not terribly large,
it is difficult to draw definite conclusions, however, the results do suggest that choosing the correct
disfluency productions can help on a corpus containing disfluencies.

6.2 TDT-2 test

In this test, the bigram model which was trained on the out of domain data (B2) performed surpris-
ingly poorly. Interestingly, it performed much worse than the syntactically derived models, which
were reestimated on out of domain data. This is likely due to the fact that the training set on which

4Shriberg’s filled pause category does not count as a correction according to our definition.
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B2 was trained, Trainc, was quite small. Thus, the syntactically derived models gain comparatively
more advantage due to their extra bigram generating ability.

Modeling disfluencies should only be useful in this test to the extent that they inadvertently help
model fluent speech. Indeed the difference between the relative improvements of the correction gram-
mars (Gaudible, Ginaudible and Gboth) with repsect to G0 is somewhat less marked in this test than for
the switchboard test. However, since there is some improvement, more work must be done to discover
exactly what effect the correction productions are having on the syntactic modeling of fluent speech.

When the syntactically derived models were interpolated with the best performing standard bi-
gram, there was not a significant improvement in performance. In this case, the standard bigram
model was simply much better than the syntactically derived model. It should be noted, however,
that the interpolation did not harm the result.

7 Conclusion

The ability of syntactically derived models to estimate probabilities for word sequences that did not
occur in the training data was found to be useful. This was more apparent when the training set
was smaller. This effect was not an improvement over class-based N-grams, however it is expected
that as the order of N-gram used is increased, the competitiveness of the syntactically derived model
would improve, as it would be possible to better exploit the higher-level syntactic structure. This is
an avenue of further research.

There appears to be some benefit to modeling corrections as a syntactic process. The syntactically
derived models that explicitly modeled the corrections commonly found in the Switchboard database
outperformed those that did not. This provides a motivation for further investigating the use of syn-
tactic correction models on interactive speech. However, the conclusions that can be drawn from this
are limited at this stage, since a moderate version of the same effect occurred on the TDT-2 database.
Further investigation is also required to determine the true contribution of such models when they
are used in their original form, rather than being transformed into bigrams.
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