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Abstract. This study investigates a new client-dependent normalisation to improve biometric
authentication systems. There exists many client-de-pendent score normalisation techniques ap-
plied to speaker authentication, such as Z-Norm, D-Norm and T-Norm. Such normalisation is
intended to adjust the variation across different client models. We propose “F-ratio” normalisa-
tion, or F-Norm, applied to face and speaker authentication systems. This normalisation requires
only that as few as two client-dependent accesses are available (the more the better). Different
from previous normalisation techniques, F-Norm considers the client and impostor distributions
simultaneously. We show that F-ratio is a natural choice because it is directly associated to Equal
Error Rate. It has the effect of centering the client and impostor distributions such that a global
threshold can be easily found. Another difference is that F-Norm actually “interpolates” between
client-independent and client-dependent information by introducing a mixture parameter. This
parameter can be optimised to maximise the class dispersion (the degree of separability between
client and impostor distributions) while the aforementioned normalisation techniques cannot. The
results of 13 unimodal experiments carried out on the XM2VTS multimodal database show that
such normalisation is advantageous over Z-Norm, client-dependent threshold normalisation or no
normalisation.
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1 Introduction

Biometric authentication (BA) is a process of verifying an identity claim using a person’s behavioral
and physiological characteristics. BA is becoming an important alternative to traditional authenti-
cation methods such as keys (“something one has”, i.e., by possession) or PIN numbers (“something
one knows”, i.e., by knowledge) because it is essentially “who one is”, i.e., by biometric information.
Therefore, it is not susceptible to misplacement or forgetfulness. However, today, biometric-based
security systems (devices, algorithms, architectures) still have room for improvement, particularly in
their accuracy, tolerance to various noisy environments and scalability as the number of individuals
increases.

In this paper, we study the effect of client-dependent variations and show how client-dependent
normalisation techniques can be used to improve the overall system accuracy. Examples of work in
this direction are client-dependent threshold [17], model-dependent score normalisation [7] or different
weighing of expert opinions using linear [9] or non-linear combination [10]. There also exists a vast
literature on score normalisation, such as Z-Norm, T-Norm [1] (for Test Normalisation), D-norm [2]
(for Distance Normalisation). They are commonly applied to speaker verification problems where
client-dependent Gaussian Mixture Models are used. The core idea about client-dependent fusion is
that there are possible variations among different client models. All these normalisation techniques
and weight change in one way or another indeed change the final decision function.

We propose to implement client-dependent normalisation using F-ratio. The advantage of F-ratio
normalisation, or F-Norm, is that it considers client and impostor score distributions simultaneously.
In the terms used in [1, 7], Z-Norm is impostor-centric (i.e, normalisation is carried out with respect
to the impostor distributions calculated “offline” by using additional data), T-Norm is also impostor-
centric (but with respect to a given utterance calculated “online” by using additional cohort impostor
models). D-Norm is neither client- nor impostor-centric. It is specific to the GMM architecture
and is based on Kullback-Leibler distance between two GMM models. In [17], a similar version
of Z-Norm but using only the client distribution was reported. However, this technique requires
more client accesses. The authors’ experiments were based on 5 accesses per client. To increase the
robustness of the estimated parameters, F-ratio normalisation (F-Norm) that we propose is client-
impostor centric. It requires only two client accesses to obtain the normalising parameters. This
aspect was somewhat studied by [7] but the normalisation used is actually subtracting the empirical
(and theoretical) client-dependent threshold from the expert opinion. Hence, this technique is additive
and has no multiplicative effect, i.e, it does not change the variance of the score.

There exists also another category of approaches that directly estimates the client-dependent
threshold and is surveyed in [17, Sec. 2]. These approaches are client-impostor centric as well but their
output is either accept or reject. This implies that the client-dependent threshold has to be tuned to
specific operating costs of false acceptance and false rejection. They are hence not considered here.

The F-Norm that we propose here is different from Z,T,D-Norms or client-dependent threshold
techniques in that few of these techniques exploit global (or client-independent) client and impostor
distributions. In our opinion, there are two similar works in the literature that exploit the global
distributions. In [11], a global threshold is refined with a client-dependent threshold. In [6], client-
dependent and client-independent information sources are fused using Support Vector Machines. The
authors called this technique user-adapted fusion. This approach is different from F-Norm in that the
issue of normalisation is considered as being part of the optimising parameter for fusion. In this work,
F-Norm can be treated as a pre-processing step just before a decision threshold is chosen. Hence,
it can be readily applied to a unimodal biometric system. We explicitly compared F-Norm with
Z-Norm and client-dependent threshold normalisation and found that F-Norm is in overall superior.
The experimental results based on the average of 13 unimodal biometric experiments carried out on
the XM2VTS multimodal database support our hypothesis.
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2 F-Ratio Normalisation

In biometric authentication, there are only two classes: client or impostor. Suppose that the client
score distribution is Gaussian, with mean µC and standard deviation σC , i.e., N (µC , (σC)2). The
impostor score distribution is defined similarly, i.e., N (µI , (σI)2). By assuming Gaussian distributions
on the scores, it has been shown [16] that the theoretical Equal Error Rate (EER) can be calculated
as:

EER =
1

2
− 1

2
erf

(

F-ratio√
2

)

, (1)

where

F-ratio =
µC − µI

σC + σI
, (2)

and

erf(z) =
2√
π

∫ z

0

exp
[

−t2
]

dt. (3)

The optimal threshold is:

∆ =
µIσC + µCσI

σI + σC
. (4)

It can therefore be seen that F-ratio occurs naturally. The term F-ratio is used here because this
value is somewhat similar to the standard Fisher ratio. In a two-class problem, the Fisher ratio [5,
pg. 107] is defined as

µC − µI

(σC)2 + (σI )2
(5)

In the literature [1], Z-Norm is defined as:

yZ =
y − µI(j)

σI (j)
, (6)

where j indicates a client-dependent estimates of µI and σI(j). T-Norm is defined similarly. They
differ in the ways these parameters are derived. The parameters in T-Norm are derived from scores
obtained from the same access data but from different classifier models of other clients (online).
The parameters in Z-Norm are derived from additional data samples (not used to train the classifier
models) of other simulated impostors (offline). We are interested in Z-Norm here, assuming that a
few additional data samples are available from client for implementing the normalisation.

In [7], client-dependent threshold normalisation, or target-Impostor normalisation as called by the
authors, was studied and has two variants:

yTI1 = y − SEER(j) (7)

yTI2 = y − ∆(j) (8)

where SEER(j) is a threshold found empirically (directly estimated from the data) and ∆(j) is defined
in Eqn. (4), both calculated from a given training set of client identity j. The difference between these
two normalisation techniques is that the latter relies on the Gaussianity assumption whereas the former
does not.

To give a quick idea about F-ratio normalisation, we will consider the effect of Z-Norm and the
desired effect of F-Norm in Figure 1. In the left, there are 3 client score distributions and thier
respective impostor score distributions, respectively modeled from the output of 3 client models. Z-
Norm has the effect of normalising the varying impostor distributions into a single canonical impostor
distribution so that decisions can be taken more easily. Unfortunately, it introduces variations into the
client distributions. The objective of F-Norm is to fix both distributions, such that their means are
“locked” into some pre-designated locations. For instance, it is intuitive to assign 1 to the client mean
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Figure 1: Comparison of the effects of F-Norm and Z-Norm. Left: the original distributions containing
3 client models (each represented by continuous, dotted and dashed lines; client score distributions
are plotted with thin lines and impostor score distributions with bold lines). An global threshold may
not be optimal. Middle: after applying Z-Norm, the impostor distributions become normal whereas
the client distributions vary. Right: after applying F-Norm, all the client and impostor distributions
are aligned so that a global threshold can be found easily.

and -1 to the impostor mean. An immediate problem that may emerge is that the client mean cannot
be estimated reliably because there are not enough client accesses. Here, we assume that at least as
few as two samples are available. Under such limitation, we propose to use some prior information in
a discriminative way.

To begin with, suppose that the “desired” mean ck for k = {C, I}, i.e. client and impostor,
respectively. ck|∀k are defined as:

ck =

{

a if k = C

−a if k = I,

for a positive constant a. To ensure that the F-ratio value will not change, the corresponding σk for
k = {C, I} will have to be changed accordingly. Let σk′

be the modified standard deviations. We can
then write the constraint as:

F-ratio =
µC − µI

σC + σI
=

cC − (−cI)

σC′ + σI′
=

2a

σC′ + σI′
. (9)

The solution to this equation is:

σk′

= α′σk , (10)

where,

α′ =
2a

µC − µI
, (11)

for k = {C, I}. By taking the square of Eqn. (10) and applying the definition of variance of y, we
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obtain

(σk′

)2 = (α′)2E
[

(yk − E[yk])2
]

= E
[

(

α′(yk − E[yk])
)2

]

(12)

Since α′ is not dependent on the class label k, Eqn. (12) is also valid when applying to y, instead
of yk. Therefore, to map the client and impostor means to canonical values, one needs to modify
the variance without affecting the F-ratio and the corresponding EER. This simply translates into
multiplying score y with α′, i.e.,

yk,′ = α′yk. (13)

However, we still need to centre the mean of the transformed scores, so that they are exactly ck|∀k.
The expected value of the distribution sampled from yk,′ is:

µk,′
≡ α′µk (14)

Hence, the desired transformation, i.e., the F-ratio normalisation, can be achieved by shifting yk,′ by
µk,′ and adding ck. This can be done as follows:

yF ≡ y′ − µk,′ + ck (15)

Note that we have a choice between k = C and k = I to perform F-Norm. In biometric authentication
task, one often does not have enough data to estimate the client mean reliably whereas one often has
enough simulated impostor accesses to estimate the impostor mean more reliably. Therefore, k = I is
chosen.

By replacing Eqn. (13) in a class-independent manner (removing the superscript k) and Eqn. (14)
into Eqn. (15), we obtain:

yF = α′y − α′µI + cI

= α′(y − µI) + cI . (16)

As a result, we obtain the F-Norm.
Until now, all variables related to y have not been tied to a particular client. Suppose that client j

consists of a total of Mj scores that can be used for normalisation and that Mj ≥ 2, i..e, there are at
least 2 client scores available (apart from those used to train the baseline systems associated to client
j). Let µC(j) be the client-dependent mean and µC be the client-independent mean of these scores.
µI(j) and µI are defined similarly. Because each client has few scores, µC(j) cannot be estimated
reliably, at least not as reliably as µI(j) (assuming that many more simulated impostor scores are
available). Hence, we need some prior information. One such prior is the overall client and impostor
means. We incorporate these client-independent information sources into Eqn. (11) as follows:

α′ =
2a

β(µC(j) − µI(j)) + (1 − β)(µC − µI)
, (17)

The β parameter weighs the mean difference between the client- independent mean difference and
the client-dependent mean difference. It is tuned by cross-validation1. Similarly, Eqn. (16) can be
incorporated with client-independent information as follow:

yF = α′
(

y −
(

γµI(j) + (1 − γ)µI
))

. (18)

Note that slightly different from Eqn. (16), Eqn. (18) does not inclulde cI . This constant does not
add any additional information. When applied in a client-independent manner, cI actually ensures

1In our implementation, we choose β to maximise the F-ratio, which is the same as minimising EER assuming that
the client and impostor scores are each normally distributed, as shown in Eqn. (1).
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that the impostor mean is exactly −a and the client mean is exactly a. The absence of cI implies that
the impostor distribution is centered around zero whereas the client distribution is centered around
2a, as given by the constraint in Eqn. (9).

Preliminary experiments show that having cI in a class-dependent context can adversely affect
the resultant score. Hence, the final F-Norm function is defined by Eqns. (17 and 18). Preliminary
experiments show that γ = 1 is often optimal, indicating that the shift introduced by client-dependent
impostor mean is useful and very often reliable. This shift is exactly the same as in Z-Norm. Further-
more, these experiments also show that β can take a value of 1 and 0 and any values in between. This
shows that incorporating β as an extra parameter, tuned in a discriminative way, can automatically
adjust to the nature of the scores (which is somewhat experiment-dependent). β = 1 and γ = 1
implies that client-dependent information is beneficial whereas β = 0 and γ = 0 implies that no
client-dependent normalisation is needed. The former case is actually equivalent to client-dependent
threshold normalisation. This can be shown mathematically by finding F-ratio of F-normalised scores
and showing that this value is equivalent to F-ratio of client-dependent threshold normalised scores
(see A). In the latter case (β = 0), it can also be shown mathematically that the effect is equivalent
to no normalisation at all (see ??).

Hence, effectively, F-Norm is an interpolation between client-de-pendent threshold normalisation
and no normalisation at all. It is different from Z-Norm, however, because Z-Norm does not make use
of the client distributions.

3 XM2VTS Database and Systems

The XM2VTS database [13] contains synchronized video and speech data from 295 subjects, recorded
during four sessions taken at one month intervals. The database is divided into three sets: a training
set, an evaluation set and a test set. The training set was used to build client models, while the
evaluation set was used to compute the decision thresholds as well as other hyper-parameters used
by classifiers and normalisation. Finally, the test set was used to estimate the performance. The 295
subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test impostors. There
exists two configurations or two different partitioning approaches of the training and evaluation sets.
They are called Lausanne Protocol I and II (LP1 and LP2). The most important thing to note here is
that there are only 3 samples in LP1 and 2 samples in LP2 for client-dependent adaptation and fusion
training. We used altogether 7 face experts and 6 speech experts for LP1 and LP2. By combining 2
baseline experts at a time according multimodal or intramodal fusion problems, 32 fusion experiments
are further identified. These experiments were reported in [14]. The 13 baseline experiments have 400
× 13 = 5,200 client accesses and 11800 × 13 = 1,453,400 impostor accesses. The score files are made
publicly available and are documented in [15]2.

4 Evaluation Using Pooled EPC Curve

Perhaps the most commonly used performance visualising tool in the literature is the Decision Error
Trade-off (DET) curve [12]. It has been pointed out [3] that two DET curves resulted from two
systems are not comparable because such comparison does not take into account how the thresholds
are selected. It was argued [3] that such threshold should be chosen a priori as well, based on a given
criterion. This is because when a biometric system is operational, the threshold parameter has to be
fixed a priori. As a result, the Expected Performance Curve (EPC) [3] was proposed. We will adopt
this evaluation method, which is also in coherence with the original Lausanne Protocols defined for
the XM2VTS database. The criterion to choose an optimal threhsold is called weighted error rate
(WER), defined as follows:

WER(α, ∆) = αFAR(∆∗) + (1 − α) FRR(∆∗), (19)

2Accessible at http://www.idiap.ch/∼norman/fusion
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where FAR and FRR are False Acceptance Rate and False Rejection Rate, respectively. Note that
WER is optimised for a given α ∈ [0, 1]. Let ∆∗

α be the threshold that minimises WER on a
development set. The performance measure tested on an evaluation set at a given ∆∗

α is called Half
Total Error Rate (HTER), which is defined as:

HTER(α) =
FAR(∆∗

α) + FRR(∆∗

α)

2
. (20)

The EPC curve simply plots HTER versus α, since different values of α give rise to different values
of HTERs. The EPC curve can be interpreted in the same manner as the DET curve, i.e., the lower
the curve is, the better the performance but for the EPC curve, the comparison is done at a given
cost (controlled by α). One advantage of EPC curve is that it can plot a pooled curve from several
experiments. For instance, to compare two methods over M experiments, only one pooled curve is
necessary. This is done by calculating HTER at a given α point by taking into account all the false
acceptance and false rejection accesses over all M experiments. The pooled FAR and FRR across
j = 1, . . . , M experiments for a given α ∈ [0, 1] is defined as follow:

FARpooled(α) =

∑M
j=1 FA(∆∗

α(j))

NI × M
, (21)

and

FRRpooled(α) =

∑M
j=1 FR(∆∗

α(j))

NC × M
, (22)

where ∆∗

α(j) is the optimised threshold at a given α, NI is the number of impostor accesses and NC

is the number of client accesses. FA and FR count the number of false acceptance and the number of
false rejection at a given threshold ∆∗

α(j). The pooled HTER is defined similarly as in Eqn. (20).

5 Experimental Results

Figure 2 shows the pooled EPC curve of 13 baseline experiments without applying normalisation,
applying Z-Norm and applying F-Norm. Note that we could not compare F-Norm with T-Norm
using the current database because we could not have access to the cohort models. As can be seen,
F-Norm improves steadily over Z-Norm. The pooled EPC curve should be interpreted as the average
performance over 13 baseline experiments. Of course, when analysed separately on a per experiment
basis, the performance difference between F-Norm and Z-Norm is not always significant according to
the HTER significant test [4] at 90% of confidence3. However, on average over the 13 experiments,
the gain brought by F-Norm is consistently positive and significant for some large range of operating
costs.

6 Conclusions

In this paper, we proposed F-ratio normalisation, or F-Norm. This normalisation includes a parameter
β that can balance the use of client dependent and client-independent information. It can be shown
that when β = 1, F-Norm is equivalent to client-dependent threshold. When β = 0, F-Norm does not
apply any normalisation. Because β can be tuned, e.g., by cross-validation or directly optimising on
the training data without an extra validation, F-Norm provides the right balance in an experiment-
dependent manner. We compared F-Norm with Z-Norm on 13 baseline biometric authentication
systems on the XM2VTS database and found that on average, F-Norm is consistently superior over Z-
Norm. Furthermore, for some large range of operating costs, the improvement is significant according

3The individual experimental comparisons between Z-Norm and F-Norm are accessible in
“http://www.idiap.ch/∼norman/myphp/expe/fratio”.
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Figure 2: EPC curves of 13 baseline (face and speech) experts taken from the XM2VTS database with
no normalisation, Z-Norm and F-Norm. γ = 1 and β was tuned automatically to maximise F-ratio.
The improvement due to F-Norm is 95% significant compared to Z-Norm for α between 0.2 and 0.5.
The client-dependent threshold normalisation using Eqn. (8) is in the range between 6.2% and 8.5%
of HTER.

to the HTER significant test [4]. Future research will determine which normalisation techniques
should be used under some specific conditions. Another direction of research is to integrate over no
normalisation, Z-Norm and F-Norm such that final fused score will be optimal at a given operational
false acceptance and false rejection cost.
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A Equivalence between F-Norm Scores with β = 1, γ = 1 and

Threshold Dependent Normalised Scores

Suppose that a give client model j has a set of scores generated by

yk ∼ N
(

µk(j), (σk(j))2
)

,

for k = {C, I}, when the scores are known to belong to either the client himself k = C or impostors
k = I . When β = 1 and γ = 0, the score yk is transformed into yk,F by:

yk,F =
2a

µC(j) − µI(j)

(

yk − µI(j)
)

− a. (23)
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Suppose that normalised scores are generated by

yk,F ∼ N
(

µk,F (j), (σk,F (j))2
)

,

and we wish to find the parameters µk,F (j) and σk,F (j), for k = {C, I}. Their solutions are:

µk,F (j) =
2a

µC(j) − µI (j)

(

µk(j) − µI(j)
)

− a, (24)

and

σk,F (j) =
2a

µC(j) − µI(j)
σk(j) (25)

Note that µI,F = −a and µC,F = a. This verifies that the client and impostor means are centred
correctly. The F-ratio of F-Norm normalised scores is:

F-ratioF (j) =
µC,F − µI,F

σC,F + σI,F
. (26)

Replacing Eqn. (24) and Eqn. (25) into Eqn. (26), we obtain:

F-ratioF (j) =
µC(j) − µI (j)

σC(j) + σI (j)
(27)

whereby the factor 2a
µC(j)−µI (j) , µI(j) and a were all canceled out.

The client-dependent threshold normalisation will transform y into yT as follows:

yT = y − ∆(j), (28)

where ∆(j) is a client-dependent threshold found by any algorithms surveyed in [17, Sec. 2], e.g, [11, 8].
Suppose that these normalised scores are generated by

yk,T ∼ N
(

µk,T (j), (σk,T (j))2
)

,

and we wish to find the parameters µk,T (j) and σk,T (j), for all k = {C, I}. These solustions are:

µk,T (j) = µk(j) − ∆(j) (29)

and
σk,T (j) = σk(j). (30)

The F-ratio of the threshold normalised scores is:

F-ratioT (j) =
µC,T (j) − µI,T (j)

σC,T (j) + σI,T (j)
. (31)

Replacing Eqn. (29) and Eqn. (30) into Eqn. (31), we obtain:

F-ratioT (j) =
µC(j) − µI(j)

σC(j) + σI (j)
(32)

in a user-dependent manner. Hence, from Eqns. (27 and 32 ), we see that:

F-ratioF (j) = F-ratioT (j) (33)

As a result, we can conlude that F-Norm with β = 1 and γ = 1 has the same effect as applying a
client-dependent threshold approach. It is important to note that the demonstration above is only
true for a particular client. It does not imply that the effect of F-Norm across all clients is equivalent
to the client-dependent threshold approach. �
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B Equivalence between F-Norm Scores with β = 0, γ = 0 and

Unnormalised Scores

When β = 0 and γ = 0, the score yk is transformed into yk,F by:

y
k,F
β=0 =

2a

µC − µI

(

yk − µI
)

− a. (34)

Note that this is similar to Eqn. (24) except that the means are client-independent. Suppose that
normalised scores are generated by

y
k,F
β=0 ∼ N

(

µ
k,F
β=0, (σ

k,F
β=0)

2
)

,

and we wish to find the parameters µ
C,F
β=0 and σ

C,F
β=0. Their solutions are:

µ
k,F
β=0 =

2a

µC − µI

(

µk − µI
)

− a, (35)

and

σ
k,F
β=0 =

2a

µC − µI
σk (36)

The F-ratio of F-Norm normalised scores is:

F-ratioF
β=0 =

µ
C,F
β=0 − µ

I,F
β=0

σ
C,F
β=0 + σ

I,F
β=0

. (37)

Replacing Eqn. (35) and Eqn. (36) into Eqn. (37), we obtain:

F-ratioF
β=0 =

µC − µI

σC + σI

= F-ratio. (38)

whereby the factor 2a
µC

−µI , µI and a were all canceled out. Note that we obtain the client-independent
F-ratio. In short, F-Norm with β = 0 and γ = 0 has the same effect as no normalisation at all. �
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