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Abstract

We address the problem of clustering multimodal group actions in meetings using a two-layer HMM frame-
work. Meetings are structured as sequences of group actions. Our approach aims at creating one cluster for
each group action, where the number of group actions and the action boundaries are unknown a priori. In our
framework, the first layer models typical actions of individuals in meetings using supervised HMM learning
and low-level audio-visual features. A number of options that explicitly model certain aspects of the data (e.g.,
asynchrony) were considered. The second layer models the group actions using unsupervised HMM learning.
The two layers are linked by a set of probability-based features produced by the individual action layer as input
to the group action layer. The methodology was assessed on a set of multimodal turn-taking group actions,
using a public five-hour meeting corpus. The results show that the use of multiple modalities and the layered
framework are advantageous, compared to various baseline methods.

1 Introduction

The automatic analysis of meetings has recently attracted attention in a number of fields, including audio and
speech processing, computer vision, human-computer interaction, and information retrieval [23, 16, 5, 13, 9,
24, 7]. Analyzing meetings poses a diversity of technical challenges, and opens doors to a number of relevant
applications. On one hand, meetings constitute an important case study of human interaction. Understanding
people interaction has been a long-term goal in social psychology [15], so a computational framework to
analyze group behavior could be useful to facilitate analysis performed by psychologists in organizations (e.g.,
for training of staff on issues like interpersonal communication and teamwork management). On the other
hand, meetings can be seen as raw, unlabeled data, possibly generated in large amounts, for which automatic
analysis could add value for browsing and retrieval purposes, e.g., to structure a single meeting into a sequence
of high-level items, or to discover recurrent patterns in a large meeting collection.

Meetings are characterized by their multimodal and group nature [11, 15]. Regarding the first factor, single
modalities [23, 16, 9, 24] have been used for various tasks, but there are few works that model individual and
group behavior in conversational settings using multiple modalities (as captured by cameras and microphones)
[3, 13, 14], despite the experimental evidence supporting this approach. For the second factor, a meeting can
be seen as proceeding through diverse phases, where a group disseminates information, discusses, and makes
decisions [15]. A simple model can thus be used to define a meeting as a continuous sequence of group actions
(i.e., involving multiple simultaneous participants) chosen from one or more pre-defined action dictionaries,
which is well suited for supervised learning [13, 7], as long as the action dictionaries are well defined. This
implies that the actions comprising each dictionary should be mutually exclusive, exhaustive, and unambiguous
to human observers, at least to a degree for which manually labeled data for supervised learning can be reliably
generated.

In reality however, meetings are not restricted to pre-defined action sets. Furthermore, high-level group
actions in meetings can be ambiguous (and expensive) to label. Roughly speaking, the degree of ambiguity
correlates with the actions’ level of semantic meaning. Basic actions like writing or speaking can be clearly
identified, group actions like discussions are more ambiguous, and high-level actions like information sharing
might be very difficult to label reliably, which could seriously challenge supervised methods.

In this view, modeling high-level group actions with unsupervised approaches, which find “action struc-
ture” in either individual meetings or whole collections, without the need for labeled data or previous knowl-
edge of the actions, become very attractive options [26, 27], especially given the vast amount of data that is
generated in many real cases. Given adequate features, clustering an individual meeting could partition it into
action-consistent segments. Clustering an entire collection could further find action-consistent clusters across
meetings. Additionally, unsupervised methods could naturally deal with variations (e.g. in the number of
participants) that would otherwise need to be modeled explicitly in supervised methods.

In this paper, we present a layered probabilistic framework for group action clustering in meetings, as an
alternative to fully supervised methodologies. Through the definition of an adequate set of individual actions,
we decompose the group action clustering problem into two layers. The first one performs supervised learning
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to recognize individual actions of participants using low-level audio-visual (AV) features. Supervision at this
level can be especially convenient because individual actions are often well-defined and thus can be reliably
labeled. Individual actions constitute the link between low-level AV features and high-level group actions. The
second layer models group actions in an unsupervised way, using the output of the first layer as observations,
and producing a temporal segmentation of a meeting into group action segments. Both layers use HMM-based
approaches for action recognition and clustering, respectively. Our framework is extensible: with minor modi-
fications, it can be used to cluster group actions in either individual meetings or in an entire meeting collection.
We apply the methodology to a publicly available meeting corpus, for a set of eight group actions based on
multimodal turn-taking patterns, and illustrate its validity with respect to a number of baseline methods. In our
view, our methodology constitutes an attractive option for analysis of high-level group actions in meetings, due
to its potential to deal with actions that would otherwise be difficult to pre-define and/or expensive to label.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 introduces our
approach. Section 4 presents experiments and discussion. Concluding remarks are provided in Section 5.

2 Related Work

Learning-based approaches for the automatic interpretation of human activities in videos have been used for
the past ten years. Most works have focused on supervised learning methods, defining models for a handful
of activities in a particular domain, and using statistical models for recognition. Individual action [22], and in-
teraction recognition [20, 10] have been predominately investigated using visual features, although some work
on the speech community can be categorized as interaction recognition [9, 24]. To our knowledge however,
little work has been conducted on recognition of group-based, multimodal actions from multiple audio-visual
streams captured by cameras and microphones [3, 13, 14]. [3] described automatic discovery of “influence” in
a lounge room where people played interactive debating games. [13, 14] are the closest works to ours, which
studied various sequence models to recognize turn-taking patterns in a formal meeting room scenario, where
people discuss around a table and use a white-board and a projector screen.

Most of the existing work has used Hidden Markov Models (HMMs) and extensions (see [18] for a recent
review of models). The basic HMM works well for temporally correlated sequential data, but it is challenged by
a large number of parameters, and the risk of over-fitting when learned from limited data [19]. This situation
might occur in the case of multimodal group actions where, large vectors of audio-visual features from all
participants are concatenated to define the observation space [13, 14].

The above problem has been recently addressed with hierarchical representations [19, 7, 25]. In [19],
(supervised) layered HMMs were proposed to model multimodal single-person office activities at various time
granularities. The lowest layer captured video, audio, keyboard and mouse activity features; the middle layer
classifies AV features into basic events; the highest layer uses outputs of previous layers to recognize higher-
level office activities. In [7], two methods for meeting structuring from audio-only were presented, using
multilevel Dynamic Bayesian Networks (DBNs). In [25], an approach for unsupervised discovery of multilevel
video structures using hierarchical HMMs was proposed, in the context of sports videos. In this model, the
higher-level structure elements usually correspond to semantic events, while the lower-level states represents
variations occurring within the same event. However, in both [25, 7], the low-level actions have no obvious
interpretation, and the number of low-level actions is a model parameter learned during training, or set by hand,
which makes the structure of the models difficult to interpret.

Different from supervised methods for activity recognition, unsupervised data-driven approaches find action-
based clusters from the data, without a priori knowledge of the action dictionaries [26, 27]. In [26], a normalized-
cut approach was used to cluster single-person actions like running, walking, etc., using features at different
temporal scales, and a distribution-based distance measure to compute similarity between video segments. One
limitation of such approach was the lack of a sound mechanism to detect the number of clusters. Recently, an
unsupervised technique was proposed to detect unusual human activity in a surveillance setting, using analysis
of co-occurrence between video clips and motion/color features of moving objects, without the need to build
models for usual activities [27]. The two approaches relied only on visual information.

Unlike previous work, our work combines supervised HMM recognition and unsupervised HMM cluster-



4 IDIAP–RR 04-24

Person_1 AV Features

Person_2 AV Features

Person_N AV Features

Group AV Features

  G-HMM

I-HMM 1

I-HMM 2

I-HMM N

Cameras

Microphones

Figure 1: Framework overview

ing in a stratified framework, to model multimodal group actions in meetings. The layered structure in our
approach, that explicitly considers different semantic levels (individual and group) coincides with the struc-
ture of meetings as modeled in social psychology [15]. The distinct treatment for each layer (supervised vs.
unsupervised) tries to respond to the different nature of each of the action types.

3 Group Action Clustering

In this section, we first introduce our framework. We then apply it to a specific set of individual and group
actions.

3.1 Framework Overview

In our framework, we distinguish group actions (which belong to the whole set of participants) from individual
actions (belonging to specific persons). Our ultimate goal is to identify and group together all meeting segments
of the same group action, and so individual actions should act as the bridge between group actions and low-level
features, thus decomposing the problem in stages. The definition of both action sets is thus clearly intertwined.

Let I-HMM denote the lower recognition layer (individual action), and G-HMM denote the upper clustering
layer (group action). I-HMM receives as input audio-visual (AV) features extracted from each participant,
and outputs the probability for each individual action model (see section 3.2). In this layer, a number of
HMM variants that might capture better the characteristics of the data (e.g. asynchrony [4], or different noise
conditions [8] between the audio and visual streams) can be used. For the second layer, G-HMM uses as input
both the output from I-HMM, and a set of group features, directly extracted from the raw streams, which are
not associated to any particular participant (see section 4.2). Our approach can be summarized into three stages
(Fig.1):

1. Feature Extraction: Extract individual-level and group-level audio-visual features.
2. Supervised Individual Action Recognition: Given individual features for each person, train I-HMM

and output probabilities for individual action models.
3. Unsupervised Group Action Clustering: Apply G-HMM clustering using features constructed by con-

catenating individual action features and group-level features.
Compared with a single-layer HMM, which directly uses audio-visual features for group action clustering,

our approach has the following advantages: (1) a single-layer HMM is defined on a possibly large observation
space, which might face the problem of over-fitting with limited amount of training data. In contrast, the layers
in our approach are defined on small-dimensional observation spaces, which might result in more stable per-
formance in cases of limited data. (2) The I-HMMs are person-independent, and in practice can be trained with
sufficient data, as each meeting in the training set provides multiple individual streams. Better generalization
performance can then be expected. (3) The G-HMM is less sensitive to variations in the low-level features
because their observations are the outputs of the individual action recognizers, which are expected to be well
trained. (4) The two layers are handled independently, and so different HMM combination systems can be
studied. The framework is therefore simple to interpret, and can be improved at each level. In particular, in this
paper we explore models for the lower layer that could be particularly suitable for multimodal asynchronous
data sequences.
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3.2 Supervised I-HMM

The I-HMM layer is learned in a supervised fashion. We investigate three models for the lower-layer, each of
which attempts to model specific aspects of the data (please refer to the original references for details):

1. Early Integration (Early Int.), where a basic HMM [21] is trained on combined AV features. This method
involves aligning and synchronizing AV features to form one concatenated set of features which is then treated
as a single stream of data.

2. Audio-Visual Multi-Stream (MS-HMM), which combines the audio-only and visual-only streams. Each
stream is modeled independently. The final classification is based on the the fusion of the outputs of both
modalities by estimating their joint occurrence [8].

3. Audio-Visual Asynchronous (A-HMM), which also combines audio and visual streams, by learning the
joint distribution of pairs of sequences when these sequences are not synchronized and are not of the same
length or rate [4].

As features for the group action clustering algorithm, the lower layer outputs the probability ���� for each
individual action model � �����
	��������������� , given a sequence ��� � 	 � � ��������� � � , where ��� denotes the number of

individual actions. Let ����� ���� "!�#%$	'& �(�)� � ��* � 	 �  denote the forward variable, which is the probability of having
generated the sequence ��� � and being in the state � at time � in the standard Baum-Welch algorithm [21]. Given
that the probabilities of all states sum up to one, +-,/.021 � & � * � 	435 6	7� , where �98 is the number of all states
for all models, the probability & � * � 	 �;: �)� �  of state � given a sequence ��� � is:

& � * � 	 �;: � � �  <	 & � * � 	 � � �=� �  & �(� � �  	 & � * � 	 � � �=� �  
+>,/.021 � & � * � 	?3@� � � �  

(1)

	 �A�(� ���� 
+-,".021 � ��� 3@���� � (2)

The probability �=�� of model � � is then computed as:

� � � 	CBD�E@F6G & � * � 	 �H: � � �  I	CBD�E@F6G
�A�(� �2�� 

+ ,/.021 � ��� 3@���� � (3)

where � is the state in model � � , which is a subset of the states of all models, and �
8 is the total number of
all states. The probability ���� of model � � is the sum of the probabilities of all states in model � � . For each
participant, the probabilities for all models are represented by a vector �J�K� � �L������� �)�,NM  . We then concatenate the
individual vectors from all participants, together with the group features, into a ( � �IO ��PRQS��TVU )-dimensional
vector (where ��P is the number of participants, and �9TWU is the dimension of the group features) as observa-
tions for group action clustering.

3.3 Unsupervised G-HMM

For the upper layer, we employ an agglomerative clustering algorithm, recently proposed in the speech commu-
nity for speaker clustering [2], and that has shown good performance for such a task. The algorithm is based on
an ergodic HMM framework with a minimum duration constraint, where the number of clusters and segmen-
tation boundaries are unknown a priori. Each state of the HMM represents a cluster having several identical
states in cascade to impose the minimum duration constraint. A three-cluster case is illustrated in Fig.2. The
HMM clustering algorithm can be summarized as follows:

1. Initialization: Start by over-clustering, i.e. clustering the data into a number of clusters larger than the
hypothesized number of actions. The probability density function of each cluster is represented by a Gaussian
Mixture Model (GMM) and the parameters of this GMM are estimated using the expectation maximization
(EM) algorithm. The initialization for each distribution is done using K-means.

2. Segmentation: Obtain the segmentation using the Viterbi algorithm [21] on the current HMM topology
and parameters.
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Figure 2: Fully connected HMM topology

3. Training: Reestimate the parameters of all clusters based on this segmentation.
4. Merging: Search for the best candidate pair of clusters for merging based on the criterion described in

[2].
The segmentation-training-merging process is iterated until no more cluster pairs satisfy the merging crite-

rion.
The HMM clustering algorithm has a number of advantages [2]. First, the final number of clusters is decided

automatically using a robust merging criterion. Secondly, instead of making local threshold-based decisions,
the HMM clustering algorithm produces a global segmentation of the meeting video without using any pre-
defined threshold, which is optimal in the maximum likelihood sense, while avoiding the need for development
data. Thirdly, the clustering algorithm can be applied directly on the data sequences, deriving the segmentation
in the process without assumptions regarding the number of clusters and their boundaries.

The clustering algorithm can be applied to one individual meeting, as well as to a complete meeting col-
lection, with a minor difference. When clustering a collection, the features for all meetings are concatenated.
However, the inter-meeting boundaries are known a priori, so this particular knowledge is used as part of the
clustering process.

3.4 Definition of Actions

As an implementation of the proposed framework, we define a set of group actions and individual actions
in this section. Motivated by the relevance of turn-taking patterns in meetings [11, 15], we defined a set of� T 	�� group actions based on “multimodal turn-taking” actions, commonly found in meetings. The list is
defined in Table 1. The set is somewhat richer than the one defined by other authors [13, 14, 7], as it includes
simultaneous occurrence of actions, like “monologue Q note-taking” which could occur during real situations,
like dictating or minute-taking. As discussed in section 1, this group action set is assumed to be non-overlapping
and exhaustive for modeling purposes, although such situation does not strictly hold in practice. Also note that
this action set would likely be labeled with a good degree of agreement by people (see section 4.1 for details
on ground-truth generation), so a fully supervised approach would also be appropriate. For our purposes, this
action set is especially useful to thoroughly evaluate the performance of the unsupervised modeling of group
actions.

For individual actions, we define a small set ( � � 	�� ) which, as stated earlier, will help bridge the gap
between group actions and low-level AV features. The list appears in Table 1. While the list of potentially
interesting individual actions in meetings is large, our ultimate goal is to cluster group-level actions defined in
Table 1.

Finally, meeting rooms can be equipped with white-boards or projector screens which are shared by the
group. Extracting features from these group devices also helps recognize group actions. They constitute the
group features described in the previous subsection. Their detailed description will be presented in section 4.2.

The logical relations between individual actions, group actions, and group features are summarized in
Table 2. The group actions can be seen as combinations of individual actions plus states of group devices. For
example, “presentation Q note-taking” can be decomposed into “speaking” by one individual, with more than
one “writing” participant, while the group device of projector screen is in use. Our approach is not rule-based,
but Table 2 is useful to conceptually relate the two layers.



IDIAP–RR 04-24 7

Table 1: Description of actions
Group action description

Discussion most participants engaged in conversations
one participant speaking

Monologue
continuously without interruption

Monologue+ one participant speaking continuously
Note-taking others taking notes
Note-taking most participants taking notes

one participant presenting
Presentation

using the projector screen
Presentation+ one participant presenting using
Note-taking projector screen, others taking notes

one participant speaking
White-board

using the white-board
White-board+ one participant speaking using
Note-taking white-board, others taking notes

Individual action description
Speaking one participant speaking
Writing one participant taking notes

Idle one participant neither speaking nor writing

Table 2: Relationships between group actions, individual actions and group features. The symbol � ��� � indicates
that the white-board or screen are in use when the corresponding group action takes place. The symbol �

� � �

indicates that the number of participants for the corresponding action is not certain.

Individual Actions Group Features
Group Actions speaking writing idle white-board projector screen

discussion � 2 / /
monologue 1 0 /

monologue+note-taking 1 ��� 1 /
note-taking 0 � 2 0
presentation 1 0 / �

presentation+note-taking 1 ��� 1 / �
white-board 1 0 / �

white-board+note-taking 1 ��� 1 / �

4 Experiments and Results

In this section, we first describe the data set we used in the experiments. We then describe the audio-visual
feature extraction process. We later present the performance measures used to evaluate our results. Finally, we
present results for group action clustering and discuss our findings.

4.1 Meeting Data Set

We used a public meeting corpus [13], which was collected in a room equipped with synchronized multi-
channel audio and video recorders1. The sensors include three fixed cameras and twelve microphones. Each
meeting consists of four participants seated at a table in a typical workplace setting. Two cameras have an
upper-body, frontal view of two participants including part of the table. A third wide-view camera captures the
projector screen and white-board. The multi-camera meeting room and visual feature extraction are illustrated
in Fig.3. Audio was recorded using lapel microphones for all participants, and an eight-microphone array
located in the center of the table. The corpus consists of 59 short meetings with five-minute average duration.
The group action structure was scripted before recording, according to a group action set simpler than the one
we defined here [13], so for our work part of the group actions labels were already available as part of the

1http://mmm.idiap.ch/
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Table 3: Number of frames ( � U ) and number of actions ( ��� ) in different data sets.

train test
Individual Actions ��� ��� ��� ���

speaking 35028 1088 33747 897
writing 15803 363 27365 390

idle 127569 1426 112488 1349
total 178400 2877 173600 2636

test
Group Actions ��� ���

discussion 14450 49
monologue 7585 26

monologue + note-taking 6695 23
note-taking 320 3
presentation 3345 9

presentation + note-taking 3865 9
white-board 265 1

white-board + note-taking 6875 19
total 43400 139

public corpus. We manually relabeled the rest of the group actions, and labeled the entire corpus in terms of
individual actions.

Among the 59 meetings, 30 are used as training and the remaining 29 for testing. The number of actions
and the number of frames in the different data sets are summarized in Table 3. The number of individual actions
is much larger than that of group actions for two obvious reasons. First, for individual action recognition, there
are ��� meetings O
	 participants = ���� streams for training, and �� O�	 	 �@��� streams for testing. Second, the
duration of individual actions is typically shorter than that of group actions. For group action clustering, there
is no need for a training set.

4.2 Feature Extraction

We now describe the process to extract the two types of features used in this work. Person-specific features
are extracted from participants. Group-level features are extracted from the white-board and projector screen
regions.

4.2.1 Person-Specific AV Features

Person-specific visual features were extracted from the cameras that have a close view of the participants.
Person-specific audio features were extracted from the lapel microphones attached to each person, and from
the microphone array. The complete set of features is listed in Table 4.

Regarding visual features, for each video frame, the raw image is converted to a skin-color likelihood

Figure 3: Multi-camera meeting room and visual feature extraction
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Table 4: Audio-visual feature list
Description

head vertical centroid
head eccentricity

Visual right hand horizontal centroid
Person- right hand angle
Specific right hand eccentricity
Features head and hand motion

SRP-PHAT from each seat
speech relative pitch

Audio speech energy
speech rate

mean difference from white-board
Group

Visual
mean difference from projector screen

Features SRP-PHAT from white-board
Audio

SRP-PHAT from projector screen

image, using a 5-component skin-color GMM. We use the chromatic color space, known to be less variant
to the skin color of different people. The chromatic colors are defined by a normalization process: � 	�
��� T ��� ����	 T

��� T ��� . Skin pixels were then classified based on thresholding of the skin likelihood. A
morphological postprocessing step was performed to remove noise. The skin-color likelihood image is the
input to a connected-component algorithm (flood filling) that extracts blobs. All blobs whose areas are smaller
than a given threshold were removed. We use 2-D blob features to represent each participant in the meeting,
assuming that the extracted blobs correspond to human faces and hands. First, we use a multi-view face detector
to verify blobs corresponding to the face. The blob with the highest confidence output by the face detector is
recognized as the face. Among the remaining blobs, the one that has the rightmost centroid horizontal position
is identified as the right hand (we only extracted features from the right hands since the participants in the corpus
are predominately right-handed). For each person, the detected face blob is represented by its vertical centroid
position and eccentricity [22]. The hand blob is represented by its horizontal centroid position, eccentricity, and
angle. The motion magnitude for head and right hand are also extracted and summed into one single feature.

For audio, we extracted two types of features using the microphone array and the lapels. On one hand,
speech activity was estimated at four seated locations, from the microphone array waveforms. The seated
locations were fixed 3-D vectors measured on-site. The speech activity measure was SRP-PHAT [6], which
is a continuous, bounded value that indicates the activity at a particular location. On the other hand, three
acoustic features were estimated from each lapel waveform: energy, pitch and speaking rate. We computed
these features on speech segments, setting a value of zero on silence segments. Speech segments were detected
using the microphone array, as it is well suited for multiparty speech. We used the SIFT algorithm [12] to
extract pitch, and a combination of estimators [17] to extract speaking rate.

4.2.2 Group AV Features

Group AV features were extracted from the white-board and projector screen regions, and are listed in Table 4.
Group visual features were extracted from the camera that looks towards the white-board and projector

screen area. We first get difference images between a reference background image and the image at each time,
in the white-board and projector screen regions (see Fig.3). On these difference images, we use the average
intensity over a grid of ��� O � � blocks as features.

Group audio features are SRP-PHAT features extracted using the microphone array from two locations
corresponding to the white-board and projector screen.

4.3 Performance Measures

Two measures (action error rate and frame error rate) were proposed to evaluate results of supervised continu-
ous group action recognition in [7, 14]. However, these measures cannot be used in unsupervised group action
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Table 5: Clustering results for individual meetings
���

Method
mean std

aap (
�

) acp (
�

) K (
�

)

two-layer HMM
Visual 6.20 2.19 41.4 77.0 56.8
Audio 3.10 1.12 71.3 56.1 63.7

Early Int. 3.59 0.95 69.5 71.3 70.1
MS-HMM 4.17 1.13 72.7 70.8 71.8
A-HMM 3.51 0.78 78.6 70.0 73.8

Baseline: single-layer HMM
Visual 8.72 2.17 33.6 76.1 50.6
Audio 3.03 1.94 61.1 57.8 58.6

AV 4.10 1.35 68.8 64.2 65.7
Baseline: true number of clusters ( � � � ��� )���

64.3 60.1 62.1�	� 3.93 0.73
78.4 70.9 74.1�	��
�

2.93 0.73 83.5 62.7 71.8�	�����
4.93 0.73 72.6 70.9 71.1

clustering because the labels of the clusters are unknown. Instead, we use three measures used in speaker clus-
tering to evaluate our results: average cluster purity (acp), average action purity (aap) and overall evaluation
criterion � [1, 2]. These measures are explained below. First we define:

- � D 0 : total number of frames in cluster � by action 3
- ��� 0 : total number of frames of action 3
- � D � : total number of frames in cluster �
- ��� : total number of actions
- ��� : total number of clusters
- � : total number of frames

The purity of a cluster � D � and the ��� � are defined as

� D � 	 ,��B D�1 �
���D 0
� �D � � ��� � 	 �

�
,��B D�1 � �J�

D � O � D �  H� (4)

Similarly, the action purity ��� 0 and the ��� � are given by

� � 0 	 ,��B D�1 �
���D 0
� � � 0 � ��� � 	 �

�
,��B021 � �J� �

0 O � � 0  H� (5)

The ��� � gives a measure of how well a cluster is limited to only one action, while the ��� � gives a measure
of how well one action is limited to only one cluster. In the ideal case (one cluster for each group action),
��� � 	 ��� � 	�� .

However, from only acp or aap taken separately, it is hard to evaluate the overall performance because acp
can achieve a high value with more number of clusters than really required, and aap can achieve a high value
with less number of clusters. In the extreme case, acp=1 if a cluster has only one frame and aap=1 if there is
only one cluster for the whole meeting. In order to facilitate comparison between systems, an overall evaluation
criterion � is defined as follows, where larger � indicates better overall performance.

� 	! �"� � O ��� � � (6)

As a percentage, the average criterion � is around # �"$ for the robust speaker clustering algorithm described
in [1].
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4.4 Results and Discussion

To test our approach, we investigated the following combinations of modalities and models for the lower layer:
Early integration, visual-only. The clustering algorithm was applied on the concatenation of the results

produced by an early integration I-HMM trained on visual-only features, and the visual group features.
Early integration, audio-only. Same as above, but replacing visual-only by audio-only information.
Early integration, AV. Same as above, but using AV data.
Multi-stream, AV. Same as above, but using the MS-HMM approach described in section 3.2 as I-HMM.
Asynchronous, AV. Same as above, but using the A-HMM.
Additionally, to analyze the benefit of the layered approach, we investigated a number of single-layer

clustering schemes, which use the same clustering algorithm directly applied on the low-level features (visual,
audio, and AV).

The performance regarding model selection was also studied. We define two baseline systems based on
K-means ( � � ), and HMM clustering ( � � ) respectively, which model an “ideal” case, in which the final number
of clusters is exactly the same as the number of group actions (as indicated by the ground-truth). For these
systems, the model used for the lower layer was A-HMM, as it produced the best performance for the two-layer
method (see discussion below).

Finally, we investigated two clustering cases. In the first case, we cluster group actions for each meeting.
Usually, the number of group actions within one meeting is less than the complete set of eight actions. In the
second case, we cluster the whole test meeting collection, which produces a segmentation for each meeting
where segments belonging to the same cluster get consistent labels across the corpus. In this case, there are
eight group actions.

Parameter Selection. For the individual action layer, parameters were selected by six-fold cross-validation,
splitting the training set into training and validation subsets. For the group action layer, we obtained results by
varying the number of initial clusters (10-30), the number of Gaussians (5-10), and the minimum duration of
each cluster (15-30s). In Tables 5-6, the results for the number of clusters ( � � ) are shown in terms of mean and
standard deviation. We report mean values for average action purity (aap) and cluster purity (acp), and for the
overall criterion ( � ).

The results can be summarized as follows.
Single- vs. multi-modality and single- vs. two-layer HMM. For both the single- and the two-layer

cases, the use of AV features produced better results than using only one modality. Audio-only features were
more discriminant than video-only, which is not surprising given the type of group actions we addressed.
We noticed that methods using audio features got high aap and low acp while methods using video features
showed the opposite trend. This is because, according to the ground-truth, the number of clusters �����  was
usually underestimated using audio, while overestimated using visual features. Audio-only features thus seem
to be described better by simpler models, while visual-only features describe a more complex cluster structure.
Additionally, the layered approach outperformed the single-layer method under the same conditions (using one
or multiple modalities, and when clustering individual meetings or the whole data set). Given the large total
number of frames ( � 	 �)� � ��� ), these improvements are significant, which confirms the effectiveness of the
layered approach, and the multimodal nature of group actions in meetings.

Comparison between I-HMM methods. Although multi-stream HMM improved over early integration,
the asynchronous HMM produced the best results among all HMM systems for the two meeting clustering
cases. This indicates that the probability-based features obtained from this model were more discriminative,
and suggests the presence of asynchrony between the audio-visual streams for individual actions. In Tables
5-6, both acp and asp of A-HMM are above # �"$ . This means that more than # ��$ of all group actions are in
the right clusters, while more than # ��$ of all clusters are composed of data from the same group action.

Comparison with “ideal” baseline systems. The layered method using AV features outperformed the K-
means baseline ( � � ), while performed slightly worse than HMM clustering baseline ( � � ). We can also see that
with a slight increase/decrease of the number of clusters, the performance of this baseline system decreased. (In
Tables 5-6, “ � ��� � ” and “ � � Q � ” denote the baseline system, in which we deliberately increase or decrease the
number of clusters by 1.) Interestingly, the best two-layer HMM method outperforms these two cases, which
somewhat suggests that our approach is not too far from the “ideal” case.
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Table 6: Clustering results for meeting collection
���

Method
mean std

aap (
�

) acp (
�

) K (
�

)

two-layer HMM
Visual 11.67 2.16 31.0 47.2 38.2
Audio 3.50 2.65 77.7 41.4 56.7

Early Int. 10.60 1.93 70.9 65.7 68.3
MS-HMM 7.28 1.41 74.8 65.2 69.8
A-HMM 7.10 1.70 74.0 70.5 72.2

Baseline: single-layer HMM
Visual 16.33 4.08 20.2 46.3 30.6
Audio 3.16 2.40 76.1 33.6 50.6

AV 6.73 2.51 64.3 60.1 62.1
Baseline: true number of clusters ( � � � ��� )���

47.3 51.1 49.2�	� 8 0
71.5 73.8 72.6� � 
�

7 0 74.5 67.1 70.7� � ���
9 0 63.9 78.5 70.8

Single meeting vs. entire meeting collection. The results of clustering the whole collection are slightly
worse than the results of clustering single meetings for the multimodal layered models (between 1.6-2.0%);
the degradation is more pronounced for the single-modality approaches. This decrease in the clustering quality
could be explained by the larger variation in the data (the number of meeting participants in the test set taken
as a whole is 10), but mainly by the increasing possibility of overlap between different group actions in the
feature space, due to the larger number of actions. Note however that clustering the whole corpus generates
consistent action labels across meetings; this important benefit was traded by the decrease in performance.

Model selection. For both individual meeting clustering and whole collection clustering, the methods using
AV features obtained a number of clusters closer to the true number of actions. For the first case, there are �)� � �
group actions on average in the ground-truth. The average number of clusters found using AV features ranges
from �)� � � to 	 ��� # , which is close to the true number (Table 5). For the second case, there are � group actions in
the ground-truth. The two-layer AV systems MS-HMM and A-HMM both converged around # clusters (Table
6), which is in good accordance with the true number, although slightly underestimated.

To evaluate the quality of the clustering results, we display the found clusters and ground-truth actions
in Fig.4, for the top � � meetings ranked by decreasing order, based on the criterion � (the symbol ��� is
the meeting index in the test set). Dashed-line rectangles denote automatic clusters (with labels � �@� � ��������� ),
which are compared against the ground-truth actions denoted by solid-line rectangles, showing discussion (D),
monologue (M), monologue + note-taking (MN), note-taking (N), presentation (P), presentation + note-taking
(PN), white-board (W) and white-board + note-taking (WN). The left and right columns of Fig.4 show the
results of clustering individual meetings and the entire meeting collection, respectively. For both cases, we can
see that for meetings with large overall criterion � , the obtained alignments between clusters and actions are
better. The results degrade with decreasing � . Notice that, for the case of clustering the meeting collection
(Fig.4: right-column), cluster labels are consistent across meetings. For example, most clusters with label “3”
correspond to “MN” (monologue + note-taking) group action, and clusters with label“1” often correspond to
the “D” (discussion) action.

5 Conclusions

In this paper, meetings were defined as sequences of multimodal group actions. We addressed the problem
of clustering group actions, proposing a layered HMM framework to decompose the group action clustering
problem into two subproblems. The first layer maps low-level AV features into probability-based, individual-
action features. The second layer groups such features into clusters, which correspond reasonably well to
group actions. Experiments on a public meeting corpus demonstrate the effectiveness of our framework. For
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Figure 4: Results of clustering individual meetings (left column), and entire meeting collection (right column).

future work, we will consider the use of semi-supervised approaches to assign semantic labels to the clustering
outputs, and the extension of our approach to other dictionaries of group actions.
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