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Abstract

Audio segmentation, in general, is the task of segmenting a continuous audio stream in terms of

acoustically homogenous regions, where the rule of homogeneity depends on the task. This thesis

aims at developing and investigating efficient, robust and unsupervised techniques for three im-

portant tasks related to audio segmentation, namely speech/music segmentation, speaker change

detection and speaker clustering.

The speech/music segmentation technique proposed in this thesis is based on the functioning of

a HMM/ANN hybrid ASR system where an MLP estimates the posterior probabilities of different

phonemes. These probabilities exhibit a particular pattern when the input is a speech signal. This

pattern is captured in the form of feature vectors, which are then integrated in a HMM frame-

work. The technique thus segments the audio data in terms of recognizable and non-recognizable

segments. The efficiency of the proposed technique is demonstrated by a number of experiments

conducted on broadcast news data exhibiting real-life scenarios (different speech and music styles,

overlapping speech and music, non-speech sounds other than music, etc.).

A novel distance metric is proposed in this thesis for the purpose of finding speaker segment

boundaries (speaker change detection). The proposed metric can be seen as special case of Log

Likelihood Ratio (LLR) or Bayesian Information Criterion (BIC), where the number of parameters

in the two models (or hypotheses) is forced to be equal. However, the advantage of the proposed

metric over LLR, BIC and other metric based approaches is that it achieves comparable perfor-

mance without requiring an adjustable threshold/penalty term, hence also eliminating the need for

a development dataset.

Speaker clustering is the task of unsupervised classification of the audio data in terms of speak-

ers. For this purpose, a novel HMM based agglomerative clustering algorithm is proposed where,
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starting from a large number of clusters, closest clusters are merged in an iterative process. A novel

merging criterion is proposed for this purpose, which does not require an adjustable threshold value

and hence the stopping criterion is also automatically met when there are no more clusters left for

merging. The efficiency of the proposed algorithm is demonstrated with various experiments on

broadcast news data and it is shown that the proposed criterion outperforms the use of LLR, when

LLR is used with an optimal threshold value.

These tasks obviously play an important role in the pre-processing stages of ASR. For exam-

ple, correctly identifying non-recognizable segments in the audio stream and excluding them from

recognition saves computation time in ASR and results in more meaningful transcriptions. More-

over, researchers have clearly shown the positive impact of further clustering of identified speech

segments in terms of speakers (speaker clustering) on the transcription accuracy. However, we note

that this processing has various other interesting and practical applications. For example, this

provides characteristic information about the data (metadata), which is useful for the indexing of

audio documents. One such application is investigated in this thesis which extracts this metadata

and combines it with the ASR output, resulting in Rich Transcription (RT) which is much easier to

understand for an end-user. In a further application, speaker clustering was combined with pre-

cise location information available in scenarios like smart meeting rooms to segment the meeting

recordings jointly in terms of speakers and their locations in a meeting room. This is useful for

automatic meeting summarization as it enables answering of questions like “who is speaking and

where”. This could be used to access, for example, a specific presentation made by a particular

speaker or all the speech segments belonging to a particular speaker.



Version abrégée

“Segmentation audio” signifie, de facon générale, découper un flux audio continu en régions “ho-

mogènes” du point de vue acoustique. L’homogénéité est définie en fonction de la tâche à accomplir.

Cette thèse développe des techniques non-supervisées et robustes, pour les tâches suivantes : seg-

mentation parole/musique, detection des changements d’orateur et groupement par personne1.

La technique de segmentation parole/musique définie dans cette thèse se base sur système hy-

bride HMM/ANN, où un MLP estime les probabilités postérieures des diffrents phonèmes. Ces pro-

babilités ont une variation particulières au cours du temps. Cette variation est intégrée dans un

système HMM. Le résultat est une segmentation en terme de segments reconnaissables et non-

reconnaissables. De nombreuses expériences démontrent l’efficacité de cette technique, sur des

données “broadcast news”. Ces données ont de nombreuses caractéristiques réalistes : diffrents

styles de paroles et de musiques, parole et musique simultanément, autres sons que parole et mu-

sique, etc.

Cette thèse propose une nouvelle mesure de distance pour trouver les changements d’orateur.

Cette mesure peut être considérée comme un cas particulier de “Log Likelihood Ratio” (LLR) ou

“Bayesian Information Criterion” (BIC). L’idée fondamentale est de contraindre le nombre de pa-

ramètres comme étant constant, dans les deux modèles ou hypothéses. L’avantage majeur de notre

mesure comparée aux mesures LLR, BIC ou autres est qu’elle permet d’obtenir des résultats com-

parables sans qu’il faille ajuster un seuil ou pénalité. En utilisant cette nouvelle technique, il n’est

plus nécessaire d’avoir une base de données de développement.

Le groupement par personnes est une tâche de classification non supervisée des donnes audio

en terme de personne. Dans ce but, nous proposons une nouvelle méthode agglomérative utilisant

1“speaker clustering” en Anglais.
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les HMM. L’initialisation se fait avec un grand nombre de groupes, les groupes les plus proches sont

fusionnés de facon itérative. Un nouveau critère de fusion est proposé, ne nécessitant pas d’ajus-

ter une valeur de seuil. Le critère d’arrêt est ainsi automatique : l’algorithme s’arrête lorsqu’il ne

trouve plus une paire de groupes pouvant être fusionnés. Les expériences sur des enregistrements

“broadcast news” montrent que ce nouveau critère donne de meilleurs résultats que LLR, lorsque

LLR est utilisé avec une valeur de seuil optimal.

Ces trois modules ont un rôle important dans les étapes précédant la reconnaissance de parole

automatique (ASR). Par exemple, identifier correctement les segments non-reconnaissables dans le

flux audio permet de les exclure de l’ASR. Ceci permet de gagner beaucoup de puissance de calcul,

qui serait autrement gaspillée. D’autre part, sur les parties classifiées comme reconnaissables, le

texte résultant a une meilleure qualité. D’autre part, des chercheurs ont clairement montré l’impact

positif de l’identification en terme de personne (groupement par personne) sur la qualité de la trans-

cription automatique. D’autres applications existent : par exemple, les trois modules fournissent de

facon automatique des annotations ou métadonnées, ce qui est très utile pour l’indexation de docu-

ments. Dans cette thèse, nous présentons un exemple d’application qui extrait les métadonnées et

les insèrent dans le texte produit par l’ASR. Le résultat est une Transcription Riche (RT), qui est

lisible et facile à comprendre pour un utilisateur. Dans une autre application, le groupement par

personne est combiné avec une information de position spatiale dans une salle de réunion. L’infor-

mation résultante “qui parle où ?” est très utile pour la production automatique de notes de réunion.

Par exemple, il est ainsi possible pour un utilisateur qui n’aurait pas été présent dans une réunion

d’aller écouter directement la présentation faite par cette personne.
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Chapter 1

Introduction

Audio segmentation is the task of partitioning an audio stream in terms of homogeneous regions.

This definition of the task is quite abstract without specifying the rule of homogeneity, which in

turn depends on the application. In Automatic Speech Recognition (ASR), for example, an initial

segmentation is required in terms of homogeneous speech and non-speech regions. Having seg-

mented speech regions, it is also often necessary to segment these further in terms of homogeneous

speaker turns. Speaker turn information can be helpful for speaker adaptation in ASR, rich tran-

scription of videos, meetings etc. Hence, given an audio stream, there are many possible ways it

can be segmented.

The problem of distinguishing speech signals from other non-speech (pre-dominantly music) sig-

nals is becoming increasingly important as Automatic Speech Recognition (ASR) systems are being

applied to an increasing number of real-world multimedia applications. Furthermore, audio and

speech segmentation will always be needed to break the continuous audio stream into manageable

chunks applicable to the configuration of the ASR system. By using ASR acoustic models trained

for a particular acoustic condition, such as wide bandwidth (high quality microphone input) versus

telephone narrow bandwidth, male speaker versus female speaker, etc., overall performance can be

significantly improved. Finally, this segmentation could also be designed to provide us with addi-

tional interesting information such as division into speaker turns and speaker identities allowing

for automatic indexing and retrieval of all occurrences of the same speaker. It can also provide

“syntactical information” such as end of sentences, punctuation marks etc. Moreover, speaker seg-

1
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     Incoming Audio Stream

       Speech/Non−Speech Segmentation

      Speaker Change Detection

    Speaker Clustering

        Automatic Speech Recognition

(ASR)

       Only    Speech

      Homegenous     Speaker
        Segments

Speaker     Adaptation
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   Transcription

Figure 1.1. The usefulness of the three tasks addressed in this thesis from an ASR point of view. The speech/non-
speech segmentation allows only speech segments to be passed to the recognizer, saving computation time as well
as improving recognition accuracy. The speech segments are further segmented in terms of speakers, which is further
useful for ASR as decoding of well segmented and manageable speech chunks is always more easier and accurate.
These homogenous speaker segments can be further clustered together in terms of speakers to facilitate speaker
adaptation of an ASR system. Finally, the output of all these modules can also be combined with the output of the ASR
system, resulting in Rich Transcription.

mentation information can also be used for efficient speaker adaptation, which has been shown

to significantly improve ASR accuracy (Chen and Gopalakrishnan, 1998; Johnson and Woodland,

1998; Ramabhadran et al., 2003). Finally, all this information, when combined with the text output

of the ASR, results in a Rich Transcription (RT) which is much easier to understand. This is further

illustrated in Fig. 1.1.

In addition to improving ASR systems, audio segmentation is also useful in many other inter-

esting practical applications. Content based audio classification and retrieval have a wide range of

applications in the entertainment industry (ASSAVID Project, 2000), audio archive management,

commercial music usage, surveillance, etc. There are also distributed audio libraries on the World

Wide Web and audio segmentation will be needed for sound indexing and search. This is also an

integral component of content-based indexing, archiving, retrieval, and on-demand delivery of au-

diovisual content (CIMWOS Project, 2000). Audio segmentation would also be an important tool in

summarizing meetings, which has recently gained a lot of interest in the research community (M4

Project, 2002). For example, segmentation of the speech data in terms of speakers could help in

efficient navigation through audio documents like meeting recordings or broadcast news archives.

Using these segmentation queues, an interested user can directly access a particular segment of
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the speech made by a particular speaker. In situations like meeting recordings, information about

presentations made by participants can be automatically and efficiently extracted.

This thesis thus aims at developing and investigating different classification techniques to seg-

ment complex audio signals (typically contained in large multimedia documents or broadcast news),

and comprised of a sequence or a mix of complex signals (such as music, speech from different

speakers, different acoustic environments etc.), with a view to further processing, e.g., indexing and

recognition. In summary, the following three problems will be the main focus of this thesis:

1. Speech/Music Segmentation: To begin with, the audio can be broken down into speech and

music regions. This segmentation can also be extended to finding situations where both speech

and music are present (referred to as “mixtures” in this thesis) and then finding the proportion

of speech in these mixture regions.

2. Speaker change detection: Assuming that the input signal is only speech, finding the speaker

boundaries i.e. begin and end point for every speaker.

3. Speaker clustering: To find speaker segments with not only the correct boundaries, but also

consistent identity-labels. This also involves finding the actual number of speakers in the

speech data.

The next section looks at various contributions of this thesis in addressing these three problems.

1.1 Contributions of this thesis

The focus of this thesis was to develop unsupervised and robust techniques for audio segmentation.

More precisely, techniques which are independent of any thresholding and which can perform ro-

bustly across a variety of data. The following are the contributions in brief, specific to the following

three tasks.

1.1.1 Speech/Music Segmentation

The work in this domain was inspired by Williams and Ellis (1999). Specifically, the posterior

probability based features namely “entropy” and “dynamism” are used in an HMM classification
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framework (Ajmera et al., 2003). These posterior probabilities are the output of an Multi-Layer

Perceptron (MLP) which is an integral module of a hybrid speech recognizer (Bourlard and Morgan,

1994). Specifically, in this thesis a framework is proposed for this task with the following properties:

� Unlike most of the previous work on this topic which was meant for discriminating discrete

segments of speech and music, this framework is meant for segmenting a continuous audio

stream.

� A detailed study about the relative performance of the two features (entropy and dynamism)

and also comparison of their performance with that of standard MFCC features.

� The possibility of training the models for the two classes in a completely unsupervised manner

was also explored.

� Testing this technique on data having different speech and music styles, as well as different

temporal distributions of the speech and music signals.

� Extending the problem to finding “mixtures” of sounds, i.e. regions where both speech and mu-

sic are present simultaneously (e.g. broadcast news). To facilitate this, a confidence measure

was defined which effectively indicates the proportion of speech in an audio segment. A study

of how this confidence score is an indication of the word recognition accuracy is also presented

in this thesis.

1.1.2 Speaker change detection

Much of the previous work on this topic uses the Bayesian Information Criterion (BIC) or Log-

likelihood Ratio (LLR) as a decision making criteria. These criteria suffer from a drawback that

they involve (in some form) an adjustable threshold/penalty term. This threshold term is found

empirically using a development dataset.

In this thesis, an algorithm is proposed for this task which features the following properties:

� It uses a decision making criterion which does not use a threshold/penalty term.

� The above mentioned property makes the algorithm robust to a variety of unseen data. This

was tested using a database which features all kind of acoustic conditions, segment duration

etc.
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� A full real-time speaker change detection framework was developed which uses this decision

criterion.

� The framework is completely unsupervised, i.e. no prior speaker models and thus no training

data is required. The speaker models are created and updated dynamically.

1.1.3 Speaker Clustering

Most of the previous works on speaker clustering have limitations either in the form of assumptions

about segmentation of the data or assumption about the number of speakers. Also, since most

commonly used objective functions (e.g. likelihood or entropy) keep monotonically increasing or

decreasing with variation in the number of clusters, some kind of heuristics or threshold values are

necessary to make the algorithm converge at some point. Some techniques use a threshold/penalty

term to select a good stopping point. These heuristics make the system less robust to unseen data

and generally require an additional development dataset to adapt.

This thesis proposes a solution which features the following properties:

� No prior assumptions are made about the segmentation of the data. The segmentation and

clustering are performed in an iterative manner.

� Completely unsupervised, i.e. no development/training data is required to create speaker mod-

els.

� A new merging criterion (for decision about merging of two clusters) is proposed, which does

not use any adjustable threshold/penalty term.

� A fully automatic stopping criterion, resulting into maxima of a likelihood based objective

function.

This algorithm was applied to NIST speaker diarization evaluations1 and the performance of the

algorithm was found to be highly competitive as shown later in this thesis. Apart from this, the

algorithm was also applied to databases like meeting room recordings, a step toward meeting sum-

marization.

1http://www.nist.gov/speech/tests/rt/rt2003/spring/
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Figure 1.2. A screen-shot of a utility developed to segment an audio stream in terms of speech/music (together with
“confidence” of speech), and different speaker turns and identities. Low confidence regions are marked mixture are
not given any speaker identity. Moreover, only the mixtures and clean speech regions are recognized, saving a lot of
computation time for ASR.

Apart from these specific contributions, these three tasks were also put together in an online sys-

tem (McCowan et al., 2003b) in the framework of (ASSAVID Project, 2000) and (CIMWOS Project,

2000). This also involved, in some cases, modification of these algorithms. Figure 1.2 illustrates the

integration of various tasks related to audio segmentation into one system.

1.2 Organization

This thesis is organized as follows:

� Chapter 2 discusses the background work related to different audio segmentation problems.

This includes discussion of the algorithms which are most commonly used (state-of-the-art),

with their advantages and disadvantages. This is important, as much of the work proposed in

this thesis is motivated by the limitations of these existing algorithms.
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� In Chapter 3, a speech/music segmentation system is presented. This chapter first discusses

posterior probability based features, namely entropy and dynamism, and then the HMM

framework in which these features are used. This chapter also extends the work to defin-

ing a confidence measure indicating the proportion of speech in a segment.

� Chapter 4 first explains some of the most common decision making criteria for speaker change

detection like BIC, LLR, Gish-distance and their limitations. This chapter then defines the

proposed criterion, which does not use any adjustable threshold/penalty term, and explains a

real-time framework to find speaker boundaries in a continuous audio stream.

� Chapter 5 addresses the problem of speaker clustering. It first defines the problem from the

point of view of maximization of an objective function, and then presents a novel algorithm

and framework achieving this. The chapter also presents the participation of this system in

NIST evaluations.

� The integration of these discrete tasks into practical applications including online and real-

time audio segmentation and segmentation of meeting room recordings is also explored in

this thesis. Chapter 6 discusses various issues and performance associated with these appli-

cations.
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Chapter 2

Background Information and

Previous Work

The rapid advance in speed and capacity of computers and networks have allowed the inclusion of

audio as a data type in many modern computer applications. Multimedia databases or file systems

can easily have thousands of audio recordings. However, the audio is usually treated as an opaque

collection of bytes with only the most primitive fields attached: name, file format, sampling rate,

etc. Content based audio retrieval, thus, has become a very useful and necessary task in most audio

based applications. It is because of this that audio processing has gained a lot of interest and focus

recently. In this chapter (in Section 2.1) we present a summary of most commonly used statistical

and signal processing tools used in state-of-the-art audio processing techniques. This chapter also

discusses (in Section 2.2) most of the significant work done to date in addressing various problems

related to audio segmentation, and its limitations.

2.1 Background Information

In this section, some of the state-of-the-art statistical and signal processing tools used in most audio

processing techniques as well as in this thesis are briefly mentioned, mainly to define notations and

abbreviations.

9
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Acoustic Features

All audio processing techniques start by converting the raw speech signal into a sequence of acous-

tic feature vectors carrying characteristic information about the signal. This preprocessing module

(feature extraction) is also referred to as “front-end” in the literature. The most commonly used

acoustic vectors for this purpose are Mel Frequency Cepstral Coefficients (MFCC) (Davis and Mer-

melstein, 1980), Linear Prediction Cepstral Coefficients (LPCC) (Makhoul, 1975) and Perceptual

Linear Prediction Cepstral (PLPC) Coefficients (Hermansky, 1990).

All these features are based on the spectral information derived from a short time windowed

segment of speech. They differ mainly in the detail of the power spectrum representation. MFCC

features are derived directly from the FFT power spectrum, whereas the LPCC and PLPC use an

all-pole model to represent the smoothed spectrum. The mel-scale filterbank centers and band-

widths are fixed to follow the mel-frequency scale, giving more detail to the low frequencies. LPCC

features can be considered as having adaptive detail in that the model poles move to fit the spectral

peaks wherever they occur. The detail is limited mostly by the number of poles available. PLPC

features are a hybrid between filterbank and all-pole model spectral representation. The spectrum

is first passed through a bark-spaced trapezoidal-shaped filterbank and then fit with an all-pole

model. The details of the PLPC representation is determined by both the filterbank and the all-

pole model order. The spectral representation is transformed to cepstral coefficients as a final step.

This is done because of the (near) orthogonalizing property of the cepstral transformation. The

filterbank representation are transformed directly by a Discrete Cosine Transform (DCT). The all-

pole representations are transformed using the recursive formula between prediction coefficients

and cepstral coefficients (Rabiner and Juang, 1993). In all cases, discarding the zeroth cepstral

coefficient results in energy normalization.

PLPC features are used in most state-of-the-art ASR systems (Matsoukas et al., 2003; Woodland

et al., 2003). The effectiveness of LPCC features for automatic speaker identification and verifica-

tion and recognition was shown in (Atal, 1974, 1976). However, MFCC features are now being

used in more and more speaker recognition applications. For example, most of the participating

systems in NIST speaker recognition evaluations in 1998 used MFCC features and some systems
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used LPCC features (Martyn et al., 2000). Following the trends in many state-of-the-art speaker

recognition systems (e.g. (Reynolds et al., 2000)), MFCC coefficients (without energy term (
���

) and

derivatives) are used as acoustic feature vectors in this thesis, unless otherwise mentioned. Also,

PLPC features are used as a front-end for ASR in Chapter 3 and 6.

A sequence of acoustic feature vectors is denoted as � �������	��
������	����������	��� where the subscript
� denotes the time-frame index and � denotes the total length of the sequence in terms of these

time-frames. The time interval between two frames is usually of the order of 10-16 ms.

Hidden Markov Model (HMM)

Most of the work in this thesis is based on Hidden Markov Models (HMM) which are a highly

effective means for sequence analysis (Rabiner and Juang, 1993). A HMM is a stochastic finite

state machine, consisting of a set of states ������������� � , a set of emission distributions (one for

each state) and corresponding transitions probabilities between states. Each state in the HMM

generates an observation (physical event). When used for speech, the HMM usually has a left-

to-right topology and models the sequence of acoustic feature vectors � as a piecewise stationary

process.

The parameters of the HMM will be denoted as  in this thesis. Given a sequence of obser-

vation vectors � , the parameters of the HMM are trained using Expectation-Maximization (EM)

algorithm (Dempster et al., 1977), as expressed in the Baum-Welch algorithm for HMM, to max-

imize the likelihood, i.e.  "! �$#&%	')(*#,+.- �0/ �21  43 . However, in the current work, we have used the

Viterbi approximation of this algorithm, where, in an iterative process, first a best hidden state

sequence ( �6587:9<; ) is derived based on the current set of HMM parameters (  ) using the Viterbi algo-

rithm (Viterbi, 1967), i.e.:

�=5<7>9<; �?#&%	'@(A#,+B �C/ �D�E�F1  G3 �H#&%	'I(*#,+B �0/ �21 �.�	 G3CJ �0/K�F1  G3 (2.1)

then the parameters of the HMM are updated using this best state sequence as:

 ! ��#,%E')(*#�+- �0/ �D�	� 587:9<; 1  G3 (2.2)
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Also, note that the term �0/ �D�	� 5<7>9<; 1  43 is referred to as Viterbi score in this thesis.

The likelihood of an observation vector � � given state �6� , �C/ � � 1 �6�,3 , can be estimated using either

Gaussian Mixture Model (GMM) or a Multi-Layer Perceptron (MLP) as explained below.

Gaussian Mixture Model (GMM)

A GMM is a mixture of several Gaussian distributions and is used to estimate the Probability

Density Function (PDF) of a sequence of feature vectors. The likelihood of a model (GMM) given

observation � � is then estimated as:

�0/ � � 1 � / � � �����	�����K3	3 �
	

��� �

 �� ��� 1�� � 1�� +������
/ � � � ���83�� ��� �� / � � � ���<3� � (2.3)

where � is the number of Gaussian distributions in the GMM. The parameters of these distribu-

tions,  � , � � and � � , are respectively the weight, mean and diagonal covariance matrix of the  ;"!
distribution in the GMM. Given a sequence of observation vectors, the parameters of a GMM can

be trained via the EM algorithm to maximize the likelihood of the data.

Also, the observations in � are assumed to be independent and identically distributed (i.i.d.).

Accordingly, the likelihood of a model (e.g. a GMM or an HMM) parameterized by # given observa-

tion sequence � is estimated as:

�0/ ��1 #�3 �%$ � � �� � � �C/ � � 1 # 3 (2.4)

Multi-Layer Perceptron (MLP)

An MLP is a special case of Artificial Neural Network (ANN) with one input layer, one or sev-

eral hidden layers and one output layer. The parameters of this MLP are trained using the Error

Back Propagation (EBP) algorithm (Bishop, 1996). An MLP can be trained to estimate posterior

probabilities of different classes. When this is used in conjunction with the HMM (e.g. in hybrid

systems (Bourlard and Morgan, 1994)), these classes are the states of the HMM. The MLP thus es-

timates the posterior probability &*/ ���F1 � � 3 that an observation vector � � belongs to class �6� . Using

Bayes rule, these posterior probabilities can be turned into scaled likelihoods to be used in HMM

as:
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�0/ � ��1 � � 3
&*/ � � 3 �

&*/ � � 1 � �F3
&*/K�=�&3 (2.5)

where &*/ �6�,3 is the prior probability of the class ��� , as estimated on the training data, and &*/ � � 3 is

independent of the class and simply appears as a constant scaling factor.

Hypothesis Testing

Setting up and testing hypotheses is an essential part of statistical inference and is used in this the-

sis. In each problem considered, the question of interest is simplified into two competing claims/hypotheses

between which we have a choice; the null hypothesis, denoted �
�
, against the alternative hypoth-

esis, denoted � � . The null hypothesis, �
�

represents a theory that has been put forward, either

because it is believed to be true or because it is to be used as a basis for argument, but has not

been proved. The alternative hypothesis � � on the other hand, is a statement of what a statistical

hypothesis test is set up to establish.

In the case of pattern recognition, the goal is to determine to which category or class a given

observation (or sequence of observations) � belongs. If the PDF of each class is known, this becomes

a problem in statistical hypothesis testing where �
�

and � � are defined as:

�
�
: � is from class �I�

and

� � : � is from class � 


The optimum test according to the Bayes decision rule for minimum error to decide “not to reject”

�
�

is a likelihood ratio test (Fukunaga, 1990) given by:

�0/ ��1 � � 3
�0/ ��1 � � 3

� &*/�� ��3
&*/�� � 3 (2.6)

where �0/ ��1 � �83 �  ���F�=� , is the likelihood of the data � under the hypothesis � � and &*/�� �<3 is the

prior probability of hypothesis � � . If we assume the prior probability of the two classes to be equal,

the term on the right hand side of (2.6) is equal to one. The term on the left hand side of (2.6) is
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referred to as a likelihood ratio. Strictly speaking, the likelihood ratio test is only optimal when the

likelihood functions are known exactly. In practice this is rarely the case and the likelihood ratio

test usually involves a threshold value. A decision to “reject �
�

in favor of � � ” is made only if the

likelihood ratio is less than threshold.

When the PDFs of two classes (hypotheses) are Gaussian densities or Gaussian mixture densi-

ties (which is always the case in this thesis), it is more convenient to compute and write the Log

Likelihood Ratio (LLR) rather than writing the likelihood ratio itself. The LLR is computed by

taking the logarithm of the likelihood ratio and now decision rule becomes:

��� ' �0/ �21 � � 3 �
��� ' �0/ ��1 � � 3�� ���	��
 �������� (2.7)

In many situations, the problem is first formulated as a hypothesis testing problem and LLR

is then used to make a decision. LLR is widely used in speaker recognition research (Gish and

Schmidt, 1994; Reynolds et al., 2000). Sometimes, it is also referred to as Generalized Likelihood

Ratio (GLR) (Gish and Schmidt, 1994). LLR is used in this thesis in Chapters 4 and 5. In Chapter 5,

we have used LLR to calculate a similarity measure between two PDFs.

Model Selection

In many situations, we are forced to choose among nested classes of parametric models, e.g. mod-

els with different number of parameters. The Maximum Likelihood (ML) principle (Edward, 1972)

(i.e. maximizing the likelihood of available training data) was developed only for a single para-

metric family, and hence it is not guaranteed to yield a sensible selection criterion in such situ-

ations. Schwarz (1978) proposed a Bayesian approach to the model selection problem known as

Bayesian Information Criterion (BIC). BIC is an approximation to the posterior distribution

on model classes. While based on the assumption that proper priors have been assigned to each

model, this approximation effectively eliminates any explicit dependence on prior choice. The re-

sulting solution takes the form of a penalized log likelihood. The BIC value for a model � is defined

as:

��� � 	 � ��� ' �0/ ��1 � 3 �
1 � 1� ��� '@� (2.8)
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where �0/ �21 � 3 denotes the maximum-log likelihood of data � given model � , 1 � 1 denotes the

number of free parameters in � and � denotes the number of observations in � . It was shown

in (Schwarz, 1978) that maximizing BIC value also results in maximizing the integrated likelihood

which is the expected value of the likelihood over the set of parameters of � . A model having

maximum BIC value is selected using this theory. The consistency of BIC for GMMs was shown

in (Biernacki et al., 2000).

BIC was introduced for the case of speech and specifically for acoustic change detection and

clustering by Chen and Gopalakrishnan (1998), where the problem was formulated as that of model

selection. Since then, BIC has been used in many speech applications and is a state-of-the-art

approach for acoustic change detection and clustering.

It is also interesting to note that BIC formally coincides with other information theoretic crite-

ria like Minimum Description Length (MDL) (Rissanen, 1989) and Akaike Information Criterion

(AIC) (Akaike, 1974). These information theoretic measures have a completely different motivation

and derivation to BIC. The motivation for MDL, for example, is to select a model that provides the

shortest description of the data, where describing data can be regarded as coding. The term de-

pending on the number of free parameters in BIC (right hand side of (2.8)) is explained in the MDL

framework as the extra cost incurred by transmitting the parameters of the model. Rissanen (1989)

demonstrates that for a regular parametric family of dimension � , this amounts to transmitting at

least �
 ��� ' � bits, where � is the length of the data.

2.2 Previous Works

This section presents a literature review of most of the significant work that addressed the issues

related to audio segmentation and the three tasks addressed in this thesis namely, speech/music

segmentation (Section 2.2.1), speaker change detection (Section 2.2.2) and speaker clustering (Sec-

tion 2.2.3).

2.2.1 Speech/Music Segmentation

Like many other pattern classification problems, speech/music segmentation has two main mod-

ules; a signal processing based feature extraction module and a classification framework which
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uses these feature vectors. We now discuss some of the previous work related to these two modules

for the purpose of speech/music segmentation.

Earlier work regarding the separation of speech and music classes addressed the problem of

classifying known homogenous segments as speech or music. Earlier research also focused more

on devising and evaluating characteristic features for classification. Saunders (1996) designed one

such system to enable an automatic real-time radio channel surfing scheme for broadcast FM and

investigated the use of zero-crossing rate (ZCR) to distinguish between speech and music signals.

Sheirer and Slaney (1997) investigated the use of “low-energy” frames, spectral roll-off points (
��� ;"!

percentile of the power spectral distribution), spectral centroid (correlate of ZCR) and spectral flux

(delta spectral magnitude) and 4 Hz Modulation energy (syllabic rate of speech). K. El-Maleh and

Kabal (2000) used line spectral frequencies (LSF) for speech/music discrimination. More recently, in

a completely different approach, Williams and Ellis (1999) used posterior probability based features

for this purpose.

The limitation of most of these works is that the systems were designed, and experiments were

reported, only on discrete audio segments. These segments were meant to have sound of only one

kind, i.e., either only speech or music. However, in most practical applications like broadcast news

transcription, the audio stream is continuous, with speech and music interleaving randomly. Thus,

deriving segmentation in terms of acoustically homogeneous segments along with classifying these

segments is required in most practical applications and this is the problem that is addressed in this

thesis.

Most recent work addresses this problem of segmenting a continuous audio stream, as part of

a complete ASR system (Siegler et al., 1997; Jain et al., 1996; Spina and Zue, 1996; Moreno and

Rifkin, 2000; Seck et al., 1999). In most of this work, cepstral coefficients (e.g. MFCC) are used for

segmenting and classifying speech and music signals, rather than using specially devised features

such as those mentioned above. This is probably because MFCC coefficients are generally used for

several modules in a big audio processing system, thus using them for speech/music segmentation

avoids the need for calculating special features and saves computation. Moreover, although MFCC

coefficients were originally designed to model the short-term spectral information of speech events

for speech recognition, researchers have also studied their applicability for modeling music (Logan,

2000). These studies showed that the two major aspects of MFCC coefficients i.e. mel-frequency
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scale and DCT transform are well suited for modeling music signals as well. MFCCs have been

used by several other researchers to model music and audio sounds (Foote, 1999; Blum et al., 1999;

Logan and Chu, 2000).

The use of specially devised features (Sheirer and Slaney, 1997; Saunders, 1996) or MFCC for

speech/music segmentation has two limitations from an ASR point of view. The first limitation is

that computing these features is an extra overhead because the features for phone recognition are

computed separately. Secondly, the preprocessor for an ASR system should be such that it can filter

out all the segments that can not be recognized, e.g. even filtering out all the Spanish segments

from the input to an English recognizer. The specially devised features would not be able to do this

because even these segments exhibit speech characteristics from a signal processing point of view.

Moreover, in noisy situations when the signal-to-noise ratio drops, these specially devised features

may classify these regions as non-speech although it may be possible for the ASR system to rec-

ognize these regions with state-of-the-art noise handling/cancellation techniques (Hermansky and

Morgan, 1994). Moreover, although MFCC features are well suited for modeling music class (Lo-

gan, 2000), within the speech class these features are smoothed to hide and remove aspects of the

signal that are not phonetically relevant, such as speaker identity and background noise, so we

might expect these to form a poor basis for distinguishing speech from music signals.

2.2.2 Speaker Change Detection

Although speaker change detection also belongs to the family of pattern classification problems,

and thus has a feature extraction module followed by classification/segmentation framework, no

significant work has been reported on the feature extraction module. Traditionally, MFCC features

are extracted every 10ms and fed to the segmentation algorithm.

However various segmentation algorithms have been proposed in the literature, which can be

categorized as follows:

� Decoder-guided segmentation: The input stream can first be decoded; then the desired seg-

ments can be produced by cutting the input at the silence locations generated from the de-

coder (Kubala, 1997; Woodland et al., 1997). Other information from the decoder, such as

gender information could also be utilized in the segmentation.
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� Model-based segmentation: This involves making different models e.g. GMMs, for a fixed set

of acoustic classes, such as telephone speech, pure music, etc. from a training corpus (e.g.

Bakis (1997); Kemp et al. (2000)); the incoming audio stream can be classified by ML selection

over a sliding window; segmentation can be made at the locations where there is a change in

the acoustic class.

� Metric-based segmentation: A distance-like metric is calculated between two neighboring win-

dows placed at each sample; metrics such as Kullback-Liebler (KL) divergence (Siegler et al.,

1997), LLR (Bonastre et al., 2000; Delacourt and Wellekens, 2000; Delacourt et al., 1999; Mori

and Nakagawa, 2002) or BIC (Chen and Gopalakrishnan, 1998; Delacourt and Wellekens,

2000; Delacourt et al., 1999; Mori and Nakagawa, 2002; Lopez and Ellis, 2000; Zhou and

Hansen, 2000; Tritschler and Gopinath, 1999; Vandecatseye and Martens, 2003) can be used.

The local maxima or minima of these metrics are considered to be the change points.

All of these methods have limitations. The decoder guided segmentation only places boundaries

at silence locations, which in general has no connection with the acoustic changes in the data. The

model based segmentation approaches do not generalize to unseen data conditions as the models are

no longer compatible with the new data conditions. The metric based approaches generally require

a threshold/penalty term to make decisions. These thresholds are set empirically and require an

additional development data.

Chen and Gopalakrishnan (1998) formulated the problem of speaker change detection as a model

selection problem and used BIC (2.8) for this purpose. However, a tunable parameter was intro-

duced in the penalty term. In practice, this parameter is used to improve the performance of the

system for a particular condition. This parameter therefore implicitly defines a threshold. This was

observed in our own experiments and also in several other previous works (Tritschler and Gopinath,

1999; Kemp et al., 2000; Delacourt and Wellekens, 2000; Mori and Nakagawa, 2002; Vandecatseye

and Martens, 2003; Lopez and Ellis, 2000). Later, Tritschler and Gopinath (1999) proposed sev-

eral heuristics not only to make the algorithm of Chen and Gopalakrishnan (1998) faster, but also

to give importance to detecting short changes (less than 2 seconds). There is also works which

attempts to make the detection procedure faster by applying a distance measure prior to BIC. DIS-

TBIC was another work in this direction by (Delacourt and Wellekens, 2000; Delacourt et al., 1999).
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Work Summary
(Gish et al., 1991) Used LLR based Gish-distance for SCD

(Siegler et al., 1997) Used KL distance for SCD
(Chen and Gopalakrishnan, 1998) Proposed BIC for SCD
(Tritschler and Gopinath, 1999) Proposed several heuristics to speed up the BIC based SCD

and to give importance to short speaker segments.
(Liu and Kubala, 1999) Proposed phone based SCD using another penalized LLR
(Delacourt et al., 1999) Proposed using LLR prior to BIC to make it faster

(Kemp et al., 2000) Compared model based, metric based (KL, Gish-distance)
and energy based approaches

(Bonastre et al., 2000) Used LLR for SCD
(Zhou and Hansen, 2000) Proposed using � 
 -statistics prior to BIC to make it faster
(Lopez and Ellis, 2000) Used BIC based clustering to improve SCD

(Mori and Nakagawa, 2002) Proposed VQ distortion measure for SCD and compared
with BIC and LLR

(Vandecatseye and Martens, 2003) Proposed a technique to normalize BIC

Table 2.1. Summary of previous work on speaker change detection (SCD)

An LLR based distance computation prior to BIC was proposed in this work, which is faster than

BIC. Then, only selected change points were passed through the BIC test. In another work in this

direction, Zhou and Hansen (2000) proposed applying � 
 -statistics prior to BIC. Vandecatseye and

Martens (2003) proposed a modification to BIC in terms of normalizing the BIC score and showed

it to be better than the non-normalized BIC.

However, researchers have also explored techniques other than BIC and LLR for this task. Gish

et al. (1991) proposed a distance measure for this purpose, which is referred to as Gish-distance in

the literature. This distance is also based on LLR and was also used by Kemp et al. (2000). Mori

and Nakagawa (2002) used a vector quantization (VQ) distortion criterion, while also comparing

this to BIC and LLR. In an interesting study, Kemp et al. (2000) observed that model based ap-

proaches achieve high precision at moderate recall while metric based approaches are capable of

achieving high recall at moderate precision. Thus, in (Kemp et al., 2000), they combined the two

approaches. Liu and Kubala (1999) introduced a new penalized LLR (BIC-like) criterion for speaker

change detection. Another interesting point in Liu and Kubala (1999) was that the change points

were detected based on the output of a speech recognizer. However, this approach also used thresh-

olds, which were set to minimize the total error (false acceptance and false rejection).

Table 2.1 presents a summary of all the approaches and their comparison with other existing

approaches.
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2.2.3 Speaker Clustering

Most of the state-of-the-art solutions to this problem use a hierarchical clustering approach i.e. start-

ing from a large number of segments (clusters), some of the clusters are merged following a “suit-

able” strategy. This strategy mostly consists of computing a distance metric between two clusters

and then merging the clusters with the minimum distance. Since most of the popular distance

matrices are monotonic functions of the number of clusters, an external method of controlling the

number of clusters (or merging process) is also necessary and part of the problem. Thus, most of the

previous work on this topic revolves around employing a suitable distance metric and corresponding

stopping criterion.

One of the earliest pieces of work on speaker clustering from the point of view of speaker adap-

tation in ASR systems was proposed by Jin et al. (1997). In this work, the Gish-distance proposed

in (Gish et al., 1991) was used as a distance matrix, which is based on Gaussian models of the

acoustic segments. Hierarchical clustering was performed on this distance matrix while selecting

the best clustering solution automatically by minimizing the within-cluster dispersion with some

penalty against too many clusters. The penalty term was needed because the within-cluster dis-

persion will keep monotonically decreasing leading to the unwanted clustering of one segment per

cluster. Although, a study of the number of clusters obtained with different penalty terms was done,

no systematic way was proposed here to deduce the optimal value of this term. It was also shown in

this work that the automatic speaker clustering contributed significantly to reduction in the Word

Error Rate (WER).

Siegler et al. (1997) used KL divergence (relative cross entropy) as the distance metric for this

purpose. The KL distance between the distributions of two random variables � and
�

is an infor-

mation theoretic measure equal to the additional bit rate accrued by encoding random variable
�

with a code that was designed for optimal encoding of � (Cover and Thomas, 1991). In an agglom-

erative clustering approach, the KL distance was also compared with the Mahalanobis distance. In

this framework, an utterance was clustered with an existing cluster if it was within a threshold

distance, otherwise it was used as the seed of a new cluster. Different threshold values were tried

in this work but no systematic way of finding this threshold was proposed.

Solomonoff et al. (1998) used LLR and KL distance matrices for this purpose. An agglomerative

dendogram clustering framework was proposed in this work. Thus, a closest pair of clusters was
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picked using these distance matrices and merged until there was only one cluster. In order to obtain

the appropriate number of clusters, dendogram cutting was used. This was done using “cluster

purity” as a measure, which was also proposed in this work.

A top-down split-and-merge clustering framework was proposed in Johnson and Woodland (1998);

Johnson (1999). This work was based upon the idea that the output of this clustering was to be used

for Maximum Likelihood Linear Regression (MLLR) adaptation, and so a natural evaluation metric

for clustering is the increase in the data likelihood from adaptation. The distance matrices used for

splitting and merging were Arithmetic Harmonic Sphericity (AHS) (Bimbot and Mathan, 1993) and

Gaussian Divergence. The clustering scheme works top-down with each node being split into up to

four child nodes at each stage. The splitting was done until no segments move or the maximum

number of iterations was reached. At each stage of splitting, some of the nodes were merged. The

merging criterion was based on simple distance from the center of the node to its segments. The

decisions were made by comparing this distance against a threshold value. It was also found to be

necessary to define when a split is allowable to prevent data being split back into its constituent

segments. Thus, a heuristic based on minimum occupancy count was used to ensure robust speaker

adaptation. This clustering algorithm was applied to the HTK broadcast news transcription sys-

tem (Woodland et al., 1997; Hain et al., 1998).

The most commonly used distance metric for this purpose is BIC. BIC was proposed for speaker

clustering by Chen and Gopalakrishnan (1998) who formulated the problem of speaker clustering

as model selection. In this work, starting from each segment (hand segmented) as a cluster, hier-

archical clustering was performed by calculating the BIC measure for every pair of clusters and

merging the two clusters with the highest BIC measure (2.8). The clustering was stopped when no

two clusters resulted into an increase in BIC measure, when merged. Although, in this work the

authors used a theoretically motivated penalty value, subsequent work on speaker clustering using

BIC (Tritschler and Gopinath, 1999; Lapidot, 2003; Vandecatseye and Martens, 2003) found that

adjusting this penalty not only produces better results, but is also necessary for the system to run

on unseen data.

Recently, in the framework of the DARPA-EARS program, NIST started the speaker diarization

evaluation1. This task is very similar to speaker clustering, except that the motivation is a little

1http://www.nist.gov/speech/tests/rt/rt2003/index.htm
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Work Distance Matrix Stopping/Merging criterion
Jin et al. (1997) Gish-distance Penalized within-cluster dispersion

Siegler et al. (1997) Kullback Liebler distance Thresholding KL distance
Solomonoff et al. (1998) LLR and KL Dendogram cutting using cluster purity

Johnson and Woodland (1998), AHS heuristics like minimum occupancy count
Johnson (1999) threshold on Gaussian divergence

Chen and Gopalakrishnan (1998) BIC penalty to take care of model complexity
Tritschler and Gopinath (1999) online BIC penalty to take care of model complexity

Zhou and Hansen (2000) KL thresholding the KL distance
Lapidot (2003) BIC-SOM Used BIC-like penalty term in SOM

Vandecatseye and Martens (2003) BIC penalty against too many clusters
Gauvain and Barras (2003) penalized log likelihood penalty against too many clusters

Tranter et al. (2003) AHS same as Johnson and Woodland (1998)
Moraru et al. (2003) BIC penalty against too many clusters

Table 2.2. Summary of previous works done on speaker clustering

different. Speaker diarization is intended to make the transcription of ASR system richer by de-

termining who said what? Whereas, the motivation of speaker clustering work, on the other hand,

is to create speaker clusters from the point of view of speaker adaptation. Thus, in the later case,

it is possible to make a single cluster for two speakers if the two individual clusters do not have

enough data and the two speakers are acoustically very similar. Most of the approaches presented

in this evaluation used BIC as the distance metric (Nguyen, 2003; Reynold et al., 2003; Moraru

et al., 2003). Another penalized LLR distance matrix was proposed by Gauvain and Barras (2003),

where the penalty parameters were tuned to get the best performance. The Cambridge diarization

system (Tranter et al., 2003) used the framework defined in (Johnson and Woodland, 1998).

Table 2.2 summarizes these works from the point of view of the distance metrics they used and

how the stopping criterion was formulated. Thus, it is clear from Table 2.2 that BIC is the state-

of-the-art approach toward speaker clustering. More discussion about BIC will follow in Chapter 4,

however, the important point to note about this approach (in the framework of speech) is the use

of a hidden threshold in the form of a penalty factor. A comprehensive study of the effect of this

penalty factor on the segmentation accuracy for the broadcast news transcription task is presented

in (Tritschler, 1998).



Chapter 3

Speech/Music Segmentation

3.1 Introduction

Speech/music segmentation is the task of partitioning an audio stream into speech (somebody

speaking) and music segments. This is the first fundamental step toward content based audio

information retrieval because most of the signal processing algorithms are separately designed for

these classes. A good segmentation in terms of speech and music has many practical applications.

For example, traditionally, separate codec designs are used to digitally encode speech and music

signals to ensure a low bit-rate. An effective speech/music segmentation would enable these to be

merged into a universal coding scheme. It could prove to be very helpful in automatic navigation of

audio documents or automatic switching of TV channels. From an ASR system point of view, this

problem is even more useful because the recognizers are only trained to recognize speech sounds.

In audio recordings like broadcast news speech, speech is often interleaved with non-speech (pre-

dominantly music) segments. When indexing or summarizing these recordings, filtering out all the

segments that cannot be recognized from the input audio stream will not only result in reduced

computational complexity but also help in generating more understandable and accurate output.

Several works have been reported in the literature as already discussed in Chapter 2. Contrary

to previous approaches, where the speech/music segmentation was based on the acoustic nature

of the signal, the framework proposed in this chapter is primarily based on the functioning of an

ASR system itself. In other words, the proposed system is designed to discriminate all recognizable

23
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speech segments from all others which cannot be recognized. This is very useful as pre-processing

for an ASR system, as it results in lower computational complexity and more accurate output.

This also has the obvious advantage over previous approaches that it does not simply look at the

acoustic nature of the signal to classify it as speech or music but looks at how well the recognizer

can perform over these segments. To further clarify this, let us take the example of a Spanish

speech segment fed as an input to an English recognizer. The previous acoustic based approaches

would tend to classify this as a speech segment, but from an ASR point of view, it is still not

recognizable and should be discarded. On the other hand, let us consider another example where

the speech is accompanied with a very high level of background noise resulting in a very low signal

to noise ratio (SNR). Previous acoustic based approaches (especially if they are trained on clean

speech and music signals) might tend to classify this segment as non-speech. It is possible, however,

that the recognizer is able to take care of this background noise by applying appropriate noise

handling/canceling techniques (e.g. Hermansky and Morgan (1994)) and therefore should not be

prevented from being recognized.

The feature vectors and framework explained in this chapter address these drawbacks as they

are directly based on the functioning of an ASR system. We have chosen a HMM/ANN hybrid ASR

system (Bourlard and Morgan, 1994) for this purpose. In this framework, the emission probabilities

of different states of the HMM are estimated via an MLP. This MLP is trained on clean speech

and estimates the posterior probabilities of the phonemes used for recognition. If we employ an

information theoretic measure, namely entropy (Papoulis, 1991), at the output of this MLP (which

can be seen as a channel in this context), it is expected that the entropy (basically a degree of

disorder) at the output of this channel should be low when the input is a clean speech signal and

high when the input is non-speech. On the other hand, these probabilities are expected to be

changing faster (with changing phonemes) during speech regions exhibiting higher “dynamism”

(mathematically defined later) and slower during non-speech (music in this context) regions. The

work presented is basically motivated by this expected phenomenon.

The two features, entropy and dynamism, were introduced for the purpose of speech/music dis-

crimination by Williams and Ellis (1999). The basic motivation for extracting these feature vectors

is to carefully analyze the behavior of the posterior probabilities. We note that there are vari-

ous other ways of computing feature vectors from these probabilities such as phone distribution
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match and background-label energy ratio (also proposed in (Williams and Ellis, 1999)), or comput-

ing Kullback-Liebler (KL) divergence between two successive frames. The work presented in this

chapter builds upon the work presented in (Williams and Ellis, 1999) by these two features in a

HMM framework. Two different approaches for estimating the emission probabilities of states of

this HMM are investigated, namely GMM and MLP experts. Moreover, a detailed analysis of the

relative behavior of entropy and dynamism features for speech and music classes and also their

comparison with MFCC acoustic vectors is carried out in this chapter. The robustness of the pro-

posed approach is demonstrated with different experiments, including different speech and music

styles, as well as different temporal distributions of the speech and music signals (real data distri-

bution, mostly speech or mostly music).

However, in many practical situations such as broadcast news speech, speech is accompanied by

music or other noisy signals. These segments are referred to as “mixtures” in this thesis. As is the

case for human beings, it may or may not be possible for an ASR system to recognize the signal in

these situations depending on the proportion of speech in the signal. This chapter also presents a

method to compute a confidence measure which basically indicates the percentage of recognizable

speech in the signal. With the help of ASR experiments, it is shown that this confidence score is a

good indication of the resulting WER i.e. segments with high (low) speech confidence consistently

result in low (high) WER. Moreover, since broadcast speech not only has music as a non-speech

category but also other kind of noisy sounds (e.g. clapping, background noise, channel noise during

tele-conferencing etc.), these ASR experiments also show the effectiveness of the proposed approach

for detecting non-speech signals in general. In summary, given an ASR system, the system in this

chapter is shown to discriminate all “recognizable” segments from all the other “non-recognizable”

segments, while also providing a confidence score of “recognizability” of that segment.

This chapter is organized as follows: First, the mathematical definitions and interpretations of

the posterior probability based features, namely entropy and dynamism, is presented in Section 3.2.

The HMM framework in which these features are used is discussed in Section 3.3. Section 3.4

then presents the implementation details, evaluation set-up and the performance of the system on

different test datasets. The confidence measure used to handle “mixture” situations is presented in

Section 3.5.1 and an analysis of how this is an indication of the resulting ASR performance is also

presented in this section. Finally, a conclusive summary of this chapter is presented in Section 3.6.
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3.2 Posterior probability based features

According to information theory, a channel designed for a particular type of signal will exhibit

characteristic behavior at its output when that signal is passed through the channel. Conversely,

the presence of a different type of signal will result in uncharacteristic behavior at the channel

output. In the case where the channel is an MLP trained to emit posterior probabilities for speech

recognition as in hybrid ASR, it should therefore be possible to distinguish between speech and

non-speech signals by examining the behavior of these probabilities. In this section, and building

upon (Williams and Ellis, 1999), we investigate two features, namely entropy and dynamism, with

which we can analyze the behavior of these posterior probabilities.

3.2.1 Entropy

Entropy is a measure of the uncertainty or disorder in a given distribution (Papoulis, 1991). In

the case of an MLP trained to emit posterior probabilities for
�

output classes (usually associated

with speech phones or HMM states ��� , � � �����= � � ), the instantaneous entropy � � at a specific time

frame � is defined as:

� � � �
�

� � � &*/ �6�F1 � � 3

��� ' 
 &*/ �6�F1 � � 3 (3.1)

where � � represents the acoustic vector (PLPC) at time � , � � the � -th MLP output class, and

&*/K�=�F1 � � 3 the posterior probability of class (phone) ��� given � � at the input.

The posterior probabilities at a given time and given current observation vector represent a

true probability distribution, and the entropy of this distribution (the expected value of the log

probability) is a measure of the goodness-of-fit of the current observation to the acoustic model

(channel). Generally, in the case of speech, the value of the posterior probability for a particular

phoneme (the ‘recognized’ phoneme) is much higher than other phonemes. This means that the

value of the entropy will be close to zero, indicating that little information will be gained by knowing

its actual value, or, equivalently, that there is little uncertainty over the unknown segments. In the

case when a music signal is passed through the MLP, the values of the probabilities will be more

uniformly distributed, resulting in a higher value for entropy. Eq. (3.1) gives the instantaneous
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value of the entropy at frame � . As we will see in the subsequent discussion, it is advantageous

to average this instantaneous entropy over a window of several frames, resulting in the averaged

entropy at time � :

� � � �
�

��� ���E


; � � � ���E
��0�

� ; (3.2)

where � is the index of the current acoustic frame and � is the size of the averaging window.

3.2.2 Dynamism

Dynamism is a measure of the rate of change of a quantity and was introduced by Williams and

Ellis (1999). In this case, and using the same notation as above, the instantaneous dynamism at

time � is defined as:

� � �
�

� � �

� &*/ �6�F1 � � 3 � &*/ �6�F1 � ���0� 3�� 
 (3.3)

This feature captures the dynamic behavior of the probability values. As speech is a highly varying

signal, it can be expected that the probability values observed at the output of the MLP in the case

of speech input will change rapidly from one frame to another. Conversely, music is a harmonic

(less varying) signal and hence the dynamism is low, resulting in higher dynamism for speech than

for music.

Similar to the case of entropy, it can be beneficial to average the instantaneous values of dy-

namism over a certain number of frames, resulting in the average dynamism at time � :

� � � �
�

��� ���E


; � � � ���E
��C�

��; (3.4)

where � is the size of the averaging window.
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3.3 Speech/Music Segmentation

The complete block diagram of the proposed speech/music discrimination system is shown in Fig-

ure 3.1. In this figure, the primary1 MLP refers to the one used in standard hybrid ASR. In practice,

this MLP estimates the posterior probabilities of the phonemes given feature vectors corresponding

to a temporal contextual window of a certain duration (typically 9 acoustic frames of 16-ms), i.e.,

&*/K�=�F1 � � 3 where �6� is the phonetic class (with � � �����= � � , where
�

is the total number of output

classes) and � � is the feature vector at time � .

Average entropy � � and Average dynamism � � features are extracted from these posterior

probabilities according to (3.2) and (3.4), respectively, at every time � . These features form a two-

dimensional vector ��� � /��A��� �A�F3 � , which is then used as the HMM observation vector. The in-

dividual PDFs (modeled as a GMM) of entropy and dynamism are shown in Figures 3.2 and 3.3,

respectively. It is clear from these figures that the behavior of these features for speech and music

is quite distinct and that they can be effective discriminatory features. The figures also show both

the distributions for the instantaneous (local) values of entropy ��� (3.1) and dynamism � � (3.3), as

well as the average entropy � � (3.2) and average dynamism � � (3.4). From the figures it is clear

that the averaged measures exhibit better Gaussian properties (due to the central limit theorem),

and are more clearly separated and thus better suited for discrimination purposes.

Acoustic Feature
(PLP) Extraction

Primary
Multi−Layer
Perceptron

(MLP)

Entropy  (H )n

Dynamism(D )n

HMM
xnInput

Signal

yn Output
Segmentation

p(q | x )

p(q | x )

1 n

nK

Figure 3.1. Block diagram of the proposed speech/music segmentation system. PLP Cepstral coefficients ( ��� ) are
extracted every 16ms. These coefficients are then fed to the input of an (primary) MLP trained on clean speech for
ASR. The output of this MLP, the posterior probabilities, are then analyzed in the form of entropy (3.2) and dynamism
(3.4). The two-dimensional vector, � � composed of entropy and dynamism is input to a HMM classifier. The emission
probabilities of the HMM are estimated using a GMM or a secondary MLP expert.

The PDFs of the two classes as shown in Figures 3.2 and 3.3 are modeled by GMMs with 5

mixtures. Although these distributions may appear Gaussian, especially with the averaging, it was

observed in our experiments that a single Gaussian density could not model the full variability and

resulted in inferior performance. On the other hand, the exact value of the number of mixtures
1We refer to this MLP as primary to avoid the ambiguity with another MLP used at a later stage in this work
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Figure 3.2. Distribution of local and average entropy for speech and music. As expected, the average entropy is usually
higher for music than for speech.
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Figure 3.3. Distribution of local and average dynamism for speech and music. As expected, the average dynamism
is usually higher for speech than for music. It should be noted that the histogram shows values only from 0 to 0.4
on the dynamism-axis to highlight the difference between speech and music distributions and also to highlight the
discriminatory advantages of averaged dynamism over local dynamism.
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SPEECH MUSIC

Figure 3.4. HMM topology for the proposed speech/music segmentation system. The two classes are represented by
hyper-states composed of several sub-states to impose minimum duration constraint. The emission probabilities of these
sub-states of the same class are estimated by same GMM or MLP expert.

(greater than 1) did not significantly affect performance. These GMMs are trained via the EM

algorithm in a supervised way. We also investigated the possibility of training these parameters of

GMMs in an unsupervised way using exactly the same HMM topology as shown in Fig. 3.4 (Ajmera

et al., 2002). In our experiments (shown later in Section 3.4.3), we found that the PDFs trained in

an unsupervised way provide similar performance as compared to the PDFs trained in a supervised

way. This is very useful because it not only alleviates the need for labeled training data but also

shows that the system can be adapted to non-speech sounds other than music.

We also investigated the use of an MLP expert (different from the primary MLP) for this purpose.

The motivation for this was to investigate and exploit the discriminatory features of MLP training.

This MLP was trained via the EBP algorithm on labeled training vector sequence � � � /�� � � � � 3�� .

At the time of segmentation, given a vector of entropy and dynamism values, this MLP outputs the

posterior probabilities of speech and music classes, which can be turned into scaled likelihoods to be

used in the HMM, following (2.5). Also, since an equal amount of speech and music data was used

for training this MLP, the prior probabilities were equal and could be dropped. Approximately 2.5

hours of audio data was used for training the GMM and MLP experts. Specifically, we used speech

data from BBC news broadcast database recorded between 1996 and 1998, and music files from the

THISL music database which contains different types of music (rock, pop, classical etc.) recorded

from different Swiss radio stations in 1997.

3.3.1 HMM Classifier

The HMM topology for the proposed system is shown in Figure 3.4. This HMM is a 2-state fully

connected model, where a minimum duration is imposed for each state. This is achieved by simply

concatenating internal states associated with the same PDF.
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As there is no a priori information available regarding transitions across speech and music

segments, transition probabilities are set manually to favor remaining in the current (speech or

music) state. Similarly, as there is no information regarding the beginning of the audio data, initial

probabilities are set manually to make speech and music segments equally likely. The emission

probabilities for the HMM states (�0/ � � 1 �=�,3 ) are estimated by either a GMM (2.3) or an MLP (2.5)

expert. The Viterbi algorithm is then used to find the best possible state (speech/music) sequence

which could have emitted this observation sequence.

3.4 Evaluation Experiments

3.4.1 Implementation

For the posterior probability calculation, we use a (9x13)-2000-42 MLP2. The input acoustic features

are the first 13 PLPC coefficients extracted every 16 ms.

For the purpose of entropy and dynamism calculation, the number of phonemes
�

is 42 (number

of output units of the MLP) and the size of averaging window � is 40. Different averaging windows

were tried for this purpose on a development dataset and � � � � was found to be the optimal

window size for this purpose. Also, we expect at least a couple of phoneme-transitions within this

window to differentiate between the properties of speech and music classes, which is specially true

for the case of dynamism.

The number of states used to impose the minimum duration constraint in the HMM was fixed

to 180, thus assuming in our case that any speech or music segment is never shorter than 2.88

seconds (16ms � 180). The self-loop probabilities were set to 0.9 for the last state of each class.

In our experiments, we observed that this self-loop transition probability did not affect the system

performance as long as values greater than 0.5 (favoring self transitions) were used.

To assess the effectiveness of the entropy and dynamism features, a baseline system using 24-

dimensional MFCC coefficients (without delta and double-delta terms) in a HMM/GMM framework

(using the same topology as in Figure 3.4), was also included in the evaluation for comparison

purposes.

2This MLP was trained as a part of the THISL Project (1997)
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3.4.2 Evaluation

We evaluated the system using 4 labeled data sets, each 10 minutes long. These data sets have a

wide variety of speech and music. For example, they contain speech from a variety of both male

and female speakers, as well as different types of music, such as jazz, pop, and country. To observe

the effect of durations of sounds, segments of different durations have been mixed together. Three

different experiments were performed on each of these data sets using both GMM and MLP experts.

Results were obtained in terms of the percentage frame level accuracy. We calculate three differ-

ent statistics in each case : the percentage of true speech frames identified as speech, the percentage

of true music frames identified as music, and the overall percentage of speech and music frames

identified correctly.

3.4.3 Results

Test Set 1

This is a 10 minute audio stream having alternate speech and music segments of equal (15 seconds)

duration. The classification results are shown in Table 3.1.

� � � 
 � � � 
 � ��� ��
 � � 
�
 � � ��� �  � �  ��� �
GMM Entropy 98.7 92.7 95.6
GMM Dynamism 98.9 64.9 81.8
GMM Both 98.8 93.9 96.2
MLP Entropy 98.8 93.7 96.2
MLP Dynamism 95.0 74.8 84.8
MLP Both 97.4 93.7 95.5
GMM MFCC 94.3 91.6 92.8

Table 3.1. Speech/Music classification results for Test Set 1

In this case, both entropy and dynamism features are capable of identifying the speech segments

with a high degree of accuracy, as is required in ASR applications. However, using dynamism only,

the frame level accuracy for music segments is very low. We found that some of these segments

contained rap music, with less instrumental music in the background. Still, entropy performs well

in discriminating these segments from speech. It is also clear that the performance of these two

features is better than that of the 24-dimensional MFCC features. The performance of the GMM
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and MLP experts are comparable in this case.

Test Set 2

The second test set, which presents a more realistic task, consists of a 10 minute audio stream

containing varying lengths of alternate speech and music segments. These segments include very

short (2 seconds) as well as long (14 seconds) segment durations. These classification results are

shown in Table 3.2.
� � � 
 � � � 
 � ��� ��
 � � 
�
 � � ��� �  � �  ��� �
GMM Entropy 91.4 97.5 94.2
GMM Dynamism 99.6 79.4 89.0
GMM Both 98.1 91.6 94.5
MLP Entropy 97.4 92.4 94.6
MLP Dynamism 93.0 84.8 88.6
MLP Both 98.6 94.6 96.3
GMM MFCC 93.9 92.2 92.9

Table 3.2. Speech/Music Classification results for Test Set 2

The performance of different features and experts for this data set follows the same trend as

in test set 1. This indicates the robustness of the proposed system to sound durations. To test the

significance of the minimum duration constraint, some segments shorter than minimum duration

were included in this test set, with the expectation that they should be filtered out. Examination of

the output transcripts shows that these undesired short segments are correctly ignored in the case

of the entropy and dynamism features. In contrast, due to the slower and less abrupt variations in

the features, these segments appear in the MFCC system, borrowing frames from the neighboring

segments to respect the minimum duration.

Test Set 3

The third test set consists of a 10 minute audio stream comprised mainly of speech data. In this

case, 15 second segments of speech data are interleaved with short segments of music. This repre-

sents a more likely scenario for the case where the speech/music discrimination is being used as a

pre-processing step to segment a predominantly speech audio signal for automatic speech recogni-

tion. These classification results are shown in Table 3.3.
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� � � 
 � � � 
 � ��� ��
 � � 
�
 � � ��� �  � �  ��� �
GMM Entropy 96.9 82.8 91.5
GMM Dynamism 91.7 82.8 88.3
GMM Both 97.0 93.6 95.6
MLP Entropy 94.8 87.2 91.8
MLP Dynamism 83.5 91.0 86.2
MLP Both 91.6 96.4 93.2
GMM MFCC 95.3 87.8 92.4

Table 3.3. Speech/Music classification results for Test Set 3

The advantage of combining the two features becomes evident from the results of this test set,

clearly improving the total performance and the performance over music segments.

Test Set 4

The final test set contains a 10 minute audio stream mostly consisting of music data. In this case,

15 second music segments are interleaved with short segments of speech. The classification results

are shown in Table 3.4.
� � � 
 � � � 
 � ��� ��
 � � 
�
 � � ��� �  � �  ��� �
GMM Entropy 93.3 91.1 91.8
GMM Dynamism 98.3 70.8 81.0
GMM Both 97.2 92.7 94.3
MLP Entropy 93.3 91.0 91.7
MLP Dynamism 90.7 83.7 86.2
MLP Both 91.6 96.4 93.2
GMM MFCC 95.9 92.2 93.5

Table 3.4. Speech/Music classification results for Test Set 4

We note that the speech segments are detected with a high degree of accuracy, despite hav-

ing been interleaved with large segments of music. This ensures no loss of information when

speech/music discrimination is carried out as a preprocessing stage for speech recognition.

Unsupervised Training

As mentioned in Section 3.3, we also explored the possibility of training the PDFs of the two classes

in a completely unsupervised way. This was done using the Viterbi approximation of the EM train-

ing of HMMs as explained in Chapter 2, using the HMM topology defined in Section 3.3.1 and
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as shown in Figure 3.4. The parameters of the GMMs were initialized using K-Means algorithm,

while also utilizing the a priori information that the entropy (dynamism) values are lower (higher)

for speech than that of music. The other parameters of HMM (transition and initial probabilities)

were set manually based on the experiences from supervised training mentioned in previous sec-

tion. and Table 3.5 shows the comparative results of the systems when the PDFs were trained in

a supervised and unsupervised way. The results in this table show that both the systems perform

very similarly on average.

Test Set Supervised Unsupervised
1 96.2 95.7
2 94.5 94.8
3 95.6 95.0
4 94.3 94.9

Average 94.2 94.1

Table 3.5. Comparative study of speech/music segmentation systems using supervised and unsupervised training
methodologies. The results show that both the systems perform very similarly on average.

3.4.4 Discussion

The observations from these four data sets can be summarized as follows:

� The two dimensional entropy and dynamism feature vectors show statistically significantly

better performance (overall 95.2%) in discriminating speech and music classes compared to

standard 24-dimensional MFCC features (92.9%)3. This can also be attributed to the more

training went in the proposed framework as the primary MLP is trained with many more

examples of clean speech.

� Overall, entropy is a better discriminatory feature than dynamism, especially during music

segments. Both features are individually capable of detecting speech frames with a high de-

gree of accuracy. The combination of the two features, in some cases, significantly improves

the results, showing that the two features have complementary information. This can be

attributed to the fact that entropy captures the frame-level behavior whereas dynamism cap-

tures the temporal behavior, of the posterior probabilities.

3As shown by standard proportion test (commonly known as z-test) with 99% confidence
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� Dynamism fails to detect music frames with a high degree of accuracy, especially if the music is

composed of more vocal sounds than instrumental music, as in the case of rap music. However,

entropy still performs adequately in this situation. This shows that the output of the primary

MLP is still music-like in nature (high entropy, probabilities uniformly distributed) within a

frame, but changes rapidly between frames, giving higher values of dynamism.

� In general, the relative behavior of entropy and dynamism does not change in the GMM and

MLP frameworks. The performance of the two experts (GMM/MLP) is also comparable in all

cases.

� In the framework of speech recognition, an important advantage of audio segmentation is

the saving in computation time for non-speech segments. When the proposed system is used

in conjunction with a hybrid HMM/MLP speech recognition system, computation is reduced,

as music segments are not passed to the Viterbi decoder, which is the most computationally

intensive element of the hybrid recognizer.

� The fact that unsupervised training of the parameters of the GMMs provides similar perfor-

mance to the supervised training is useful for two reasons: First, this eliminates the need for

labeled training data. Second, it shows that the system can easily be adapted to more general

speech/non-speech classification problems.

As an aside, we note that some of the error may be attributed to the inherent latency of the

system. At a first level, a high amount of averaging is done in the pre-processing stages in order

to extract the speech recognition features and contextual information for input to the MLP. This is

followed by another level of averaging to obtain the average entropy and average dynamism fea-

tures. Due to these factors, the features will not change abruptly as the signal makes a transition

from speech to music and vice-versa. Another level of latency is introduced by the minimum dura-

tion constraint within the HMM, where a specified minimum amount of time is required to decide

whether the signal is really a music or a speech signal. The combined effect of these factors will

mean that perfect 100% accuracy at the frame level is unlikely to be achieved in practice.
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3.5 Extension and Application to ASR

From the above, it is clear that the framework presented in this chapter is based upon the func-

tioning of a hybrid ASR system. It is also clear that such a system would help ASR by discarding

all “non-recognizable” segments and thus saving computation time, while also leading to a more

understandable and accurate output. However, in many practical situations like broadcast news

speech, the classification of the data in terms of speech and non-speech (or music) is not straightfor-

ward even for a human-being. This is because, speech is often accompanied (overlapped) with other

sounds including music, background noise, etc and these regions are referred to as “mixtures”. The

proportion of speech in the signal is constantly varying during and across these “mixture” regions.

In fact even during clean speech regions (clean for a human listener), the SNR is not perfect (in-

finity). Thus, an automatic way to compute a measure of the proportion of speech in the signal

would be very useful for ASR. For example, depending on the application, all the regions below a

certain proportion of speech can be dropped from recognition. Moreover, this quantity is also like a

meta-data information over the ASR output. In the following, we define a confidence score based on

our speech/music segmentation system which can serve the above mentioned purpose of indicating

proportion of speech and also investigate its usefulness for ASR.

3.5.1 Confidence Measure

In the context of the MLP system (system which uses MLP expert to estimate emission probabilities

of the states of HMM), we obtain the posterior probabilities for the speech and music classes for each

input feature vector ��� . For a segment of length � we can define a measure of the confidence of

the speech class (as an indication of the proportion of speech in that segment) from the arithmetic

mean of these frame probabilities. We adopt the arithmetic mean in this case so that the segmental

confidence measure is not unduly biased by the probability estimates of a single frame (it is evident

that use of the geometric mean would result in an average confidence of � if only one of the frames

gave a probability of � ). Thus, the confidence score for a segment of length � is defined as:

�  ��� / � � 
 
 � � 3 � �
�

�

� � � &*/ � � 
�
 � �01 �&��3 (3.5)
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This confidence score has a range �A� �  ��� / � � 
�
 � � 3 ��� and obeys the constraint that
�  ��� / � � 
�
 � � 3��

�  ��� / ��� �  ��3 � � .
Such a measure would have application, for example, in the context of a multi-modal fusion

application in which the speech/music segmentation information, and indeed the speech recognition

output, are simply input cues (or features) for higher-level processing decisions combining cues from

different modalities. Such a technique has been applied in the framework of the European project

ASSAVID (ASSAVID Project, 2000), which is concerned with automatic indexing of sports videos,

and a demonstration of initial results of the scheme on a sample audio segment is available at

http://www.idiap.ch/˜jitendra/speech-music. The demonstration consists of an MPEG

file which plots the value of the speech confidence measure calculated over segments as the audio

signal is played.

We observed that segments with very high confidence values are usually clean and easily recog-

nizable speech. It is important to emphasize the “recognizable” part because we noticed that even

a clean speech segment but with a different accent of the same language (e.g. American English

accent as an input to our system which is based on an ASR system trained on British English ac-

cent) may result in a lower confidence score. On the other hand, segments with very low confidence

score are mostly music (e.g. music immediately before and after a show or advertisements during

commercial breaks) or other environmental noises. Speech in a different language also falls in this

category. The regions between these two situations are classified as “mixtures”. These regions are

speech accompanied with music or other environmental sounds. Sometimes, clean speech over a

different channel (e.g. a conversation via teleconferencing) or in a different accent (but in the same

language) also has a moderate confidence score. This analysis is further verified with the help of

ASR experiments reported in the following section, where we see that this confidence score indeed

is an indication of resulting ASR performance in terms of WER. The concept of identifying mixtures

along with speech and music classes has also been used in Chapter 6.

3.5.2 Relation to ASR Recognition Accuracy

The purpose of the following study is to investigate the correlation between the confidence score

computed using (3.5) for each segment generated by the speech/music segmentation system and

the performance of an ASR system in terms of Word Error Rate (WER) for these segments. Two
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Figure 3.5. Word error rate as a function of confidence score for (a) English and (b) French systems. Values given are
word error rates for all segments in the different confidence score ranges (i.e. ������� � , ��� �	� ������� � , ..., ��� 
�� �������  ).

different speech/music segmentation systems based on two ASR systems (English and French) were

investigated for this purpose.

The test data used for the English system this analysis was one hour of BBC broadcast news

speech for English system. This data included clean speech, noisy speech and music/non-speech

segments. This English ASR system is the same as explained in Section 3.4.

The French speech recognition system was based on the system presented in Andersen (1998),

which achieved a best performance of 23.3% word error rate on the BREF read-speech corpus. The

primary MLP for the system was re-trained on the CIMWOS broadcast news corpus. The speech

in this corpus showed a high variability in acoustic conditions, ranging from clean speech from

the in-studio news presentation to low quality speech in considerable background noise from field

reporters. The test data for the French system was 2 hour French television news speech.

Figure 3.5 clearly shows the correlation between the proposed confidence score and the recog-

nition accuracy. It is also evident from the figure that the proposed strategy for both English

and French ASR systems basically resulted in segmenting the data into “recognizable” and “non-

recognizable” segments and thus, segments with very low confidence do not need to be sent to the

recognizer.
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3.6 Conclusion

The goal of this chapter was to introduce a new approach for speech/music segmentation. This

approach is primarily suited for an ASR framework where the goal of any such pre-processor should

be to discriminate recognizable from non-recognizable segments. In the proposed system, this is

achieved by using more appropriate features, which are basically based on the performance of the

recognizer itself and independent of the acoustic properties of the signal.

For this purpose, entropy and dynamism features based on posterior probabilities of speech

phonetic classes are used to form a two-dimensional observation vector sequence which is used in a

HMM classification framework. A detailed study of these features and their relative performance to

discriminate between two sounds are presented in this chapter. We have also studied and compared

the use of both GMM and MLP experts to estimate the emission probability distribution of the

HMM states. The relative performances of entropy/dynamism and GMM/MLP are demonstrated

and discussed in the context of an experimental evaluation. Moreover, the performance of these

two features is also compared with MFCC.

The system was tested with different speech and music styles, as well as different distributions

of speech and music signals. The results of these tests illustrate the robustness of the approach,

with the system achieving consistent frame accuracies from 93% to 96% across a variety of real-

istic test scenarios. From these results, we conclude that entropy and dynamism together make a

powerful feature set for speech/music discrimination.

It was shown that the two-dimensional feature vector shows better performance compared to

standard 24-dimensional MFCC features. While analyzing the relative performance of the two

features, we found that overall, entropy is a better feature than dynamism for detecting music

segments, while both features perform very well for detecting speech segments. Moreover, the fact

that the combination of the two features always results in better discrimination accuracy, indicates

the complementary information carried by the two features.

The overall performances of the GMM and MLP experts are comparable in all the cases. It

was shown that the performance of the system based on PDFs trained in unsupervised way is very

similar to that of unsupervised PDFs. This feature can be used to adapt the system to various

non-speech categories in unseen conditions.



3.6. CONCLUSION 41

On the other hand, the MLP expert based system holds an advantage in terms of leading to a

confidence measure as a simple and meaningful (values ranging between 0 and 1) indication of the

proportion of the speech in a given audio segment. Such a confidence measure was defined and an

analysis of the variation in this confidence score with the varying nature of the input audio signal

was presented. The potential use of such a confidence measure in the context of speech/music mix-

tures was also briefly discussed. Furthermore, with the help of ASR experiments on two systems

(English and French), it was shown that this confidence score is also an indication of the resulting

ASR accuracy i.e.segments with high speech confidence are likely to have higher recognition accu-

racy as well and vice-versa. Thus, depending on the task, segments having very low confidence

score can be prevented from being recognized thereby saving computation time as well as resulting

in more accurate and understandable output.

In summary, the proposed speech/music discrimination system provides a powerful and robust

pre-processing technique for reliable segmentation of audio streams in terms of recognizable and

non-recognizable speech for an ASR system.
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Chapter 4

Speaker Change Detection

4.1 Introduction

Speaker Change Detection (SCD) is the problem of finding speaker segment boundaries i.e. time

instants when a speaker begins and stops speaking in a given audio stream. It is also considered

a part of the problem that no information about the sought speakers and their number is known a

priori.

This segmentation of audio data is of interest to a broad class of applications, like surveillance,

meeting summarization or indexing of broadcast news. There are several ways in which SCD could

prove to be useful for these applications. First, ASR technology requires segments of relatively short

length as input and a SCD step provide one such segmentation. Second, as speakers tend to repeat

within an audio stream, speaker adaptation schemes can be used to improve ASR performance. This

is usually done by one such SCD turn, followed by a clustering step. These clusters are then used

as a basis for speaker adaptation. Thus, a segmentation that is used for speaker adaptation needs

to have a high purity i.e. one segment should contain only one single speaker and one acoustic

condition (which is essentially the goal of SCD). In an audio indexing system, SCD provides a

structural summary of the speaker turns contained in a conversation and could also prove to give

an effective cue for boundaries between programs, topics, or scenes in a multi-media application.

Several previous approaches toward SCD have already been discussed in Chapter 2. It was

mentioned that these approaches can be broadly categorized as decoder based, model based and

43
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metric based approaches. The most common approaches used for SCD are metric based, mostly

because these approaches have the advantage that they do not rely on any pre-existing models,

which tend to fail in unseen conditions. In fact, the models in these approaches are built and

updated on the fly as new audio data arrives. A systematic formulation of the SCD problem in

the framework of metric based approaches will be presented in Section 4.2. However, as pointed

out in Chapter 2, most of the previous metric based approaches still rely on threshold or penalty-

like terms, making them less robust to unseen data conditions. A mathematical description of this

limitation for popular distance metrics will follow in Section 4.3.

This chapter proposes a novel metric based approach which overcomes this limitation by employ-

ing a distance metric which can be used to make decision about a potential change point without

using any adjustable threshold or penalty term, therefore, eliminating the need for any develop-

ment data to adjust this value. This is basically achieved by making the distance metric a function

of likelihood ratio of two models with the same complexity. A mathematical description and an

intuitive explanation of this will be presented in Section 4.4. Section 4.5 then presents experiments

conducted on Hub4 1996 evaluation dataset to prove the robustness of the proposed approach and

to compare the performance of proposed method with most commonly used approach, namely the

BIC.

4.2 Formulation of the problem

Most of the metric based approaches toward speaker change detection formulate the problem like

this: to decide if a speaker change point exists at time � or not, two neighboring windows of rela-

tively small size are considered as shown in Figure 4.1. The content of these windows are usually

sequences of acoustic feature vectors extracted from the audio signal. In Figure 4.1, these sequences

are denoted as � � �6� � �:� 
 �=����:� ��� � and � � � � � � � 
 �=���� � ��� � , where ��� and ��� are the number of

data points in the two windows respectively. Let
�

denote the union of the contents of the two

windows having � ����� �2��� data points. The contents of these two windows are compared using

a dissimilarity function. Local optima of this dissimilarity function, compared to a threshold, are

considered to be speaker change points.

It is also a common practice to model the datasets � , � and
�

as Gaussian PDFs. The ML esti-
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Figure 4.1. Two neighboring windows with acoustic vector sequences � and � around time � , when we want to decide
if a change point exists or not.

mates of the parameters of these Gaussian PDFs (the means and standard deviations) are denoted

as # � , # � and #�� , respectively in this chapter.

Various metric based algorithms differ in the kind of dissimilarity function they employ, the

size of the two windows, the time increments of the shifting of the two windows, and the way

the resulting dissimilarity values are evaluated and thresholded. However, the most important

research issue in this framework is the choice of the dissimilarity function and the way it is used

to make the decision about a potential change point. The next section explains some of the most

commonly used criteria for this purpose.

4.3 Common criteria

4.3.1 Log Likelihood Ratio (LLR)

The problem of detecting a speaker change point as defined in previous section can be formulated

as a hypothesis test where the null hypothesis �
�

is that there is no speaker change at time � or the

segments � and � were generated by the same speaker. The log likelihood of this hypothesis given

segments � and � ,
� �

, is given as:

� � �
���

� � �

��� ' �0/ � � 1 # � 3 �
� �

� � �

��� ' �0/ ��� 1 # � 3 (4.1)

where, as mentioned earlier, #�� denotes the ML parameters of the Gaussian density estimated over

complete dataset
�

.

On the other hand, the alternate hypothesis � � is that there exists a change point at time � or

the segments � and � were generated by different speakers. The log likelihood of this hypothesis,
� � , given segments � and � is given as:
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� � �
� �

� � �

��� ' �0/ � � 1 # � 3 �
���

� � �

��� ' �C/ � � 1 # �,3 (4.2)

where # � and # � are the parameters of individual Gaussian densities of segments � and � , respec-

tively.

Note that although
� � (4.2) is mentioned in previous literature (e.g. (Gish et al., 1991)) as log

likelihood of the data under the hypothesis � � , it is not true. In absence of a valid PDF for hypoth-

esis � � , � � is not a valid log likelihood.

Following the hypothesis test decision rule in (2.7), a decision to “reject �
�

in favor of � � ” or to

decide a speaker change point at time � is made, if:

������� � � �
�
� � � � ����
 � � �� � (4.3)

where ������� is the resulting LLR metric between the two windows.

Since, the ‘maximum’ likelihood parameters for subsets � and � in hypothesis � � are estimated

individually, each of the two terms on right hand side of (4.2) are greater than the corresponding

term in (4.1). Hence we always have
� � � � �

or ������� � � . Thus, a threshold is needed to make a

decision about a speaker change point using this metric. This threshold is generally set empirically,

mostly using a development dataset and needs to be adjusted for different test conditions.

4.3.2 Bayesian Information Criterion (BIC)

It was mentioned in Chapter 2 that BIC is a model selection criterion and was used for speaker

change detection and clustering by Chen and Gopalakrishnan (1998) who formulated this problem

as a model selection problem. Chen and Gopalakrishnan (1998) compared two models: one models

the data as just one Gaussian (no speaker change) and the other (a speaker change) models the

data as two Gaussians, one for each of the dataset � and � . The difference of the BIC values (2.8)

of the two models can be written as:
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� 5 ��� � � � �
� �

�
� � J � � J ��� '@� (4.4)

where
� � (4.2) and

� �
(4.1) are the maximum log-likelihoods of the two models as defined in pre-

vious section, � is the total number of data-points in
�

,
� �

is the difference in the number of

free parameters in the two models and � is the penalty weight. The comparison of (4.4) and (4.3)

shows that BIC based metric ��5 ��� is essentially a penalized (thresholded) LLR, where the penalty

(threshold) depends on the difference in the number of free parameters in the two models.

Note that the original BIC criterion (2.8) proposed in (Schwarz, 1978) does not have the param-

eter � . It was introduced by Chen and Gopalakrishnan (1998) as a “tuning” parameter to obtain

various degrees of segmentation and clustering performance.

Another point to note here is that in this model selection formulation of the problem, the model

where the data is modeled as two Gaussians is not valid. This model does not have a PDF and hence

the estimation of the maximum log likelihood of the model,
� � (4.2) is not a valid log likelihood, as

required by true BIC (2.8). This is similar to the problem mentioned in the previous section in the

context of hypothesis testing.

BIC is supposed to have the advantage of not requiring any thresholding. Ideally, local maxima

of � 5 ��� greater than � should be speaker change points. However, this is only true if � � � or

if there is a systematic way to find the optimal value of � . In absence of this, � is an implicit

threshold embedded into the penalty term. This fact has been mentioned in previous work and

was also noticed during our experiments as discussed in Section 4.5. In (Kemp et al., 2000), it

was mentioned that the threshold found using the BIC principle (with � � � ) yielded significantly

worse results compared to the best possible threshold selection. In (Tritschler and Gopinath, 1999;

Vandecatseye and Martens, 2003), the value of � used was different than �& � . In (Delacourt and

Wellekens, 2000) a development dataset was used to find the optimal value of this parameter.

It is mentioned in (Chen and Gopalakrishnan, 1998) and we observed during our experiments

that a higher value of � fails to detect many genuine speaker changes and a lower value, on the

other hand, results in many false alarms.
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4.4 Proposed Criterion

In our approach, we follow the same notations and similar framework defined in previous section.

However, we do not refer to it as hypothesis testing or model selection problem for the reason that

was mentioned in Sections 4.3.1 and 4.3.2 that
� � is not a valid log likelihood. In the proposed

criterion, we calculate
� � in the same way (4.2), but rather refer to it as a score.

For the proposed criterion, we define another score,
���� , which is indeed the log likelihood of

a GMM with 2 Gaussian components, given the complete dataset
�

. The ML estimates of the

parameters of this GMM, # �� , are calculated using EM algorithm.
� �� is then calculated as:

� �� �
���

� � �

��� ' �0/ � � 1 # �� 3 �
� �

� � �

��� ' �0/ ��� 1 # �� 3 (4.5)

Since a GMM can always fit the data better (or equally well) compared to a single Gaussian

density, we always have:

� �� � � �
(4.6)

where
� �

(4.1) was defined in the previous section. The proposed distance metric � ����� � is then simply

the difference of the two scores
� � (4.2) and

���� (4.5):

� ����� � � � � �
� �� (4.7)

Figure 4.2 shows the behavior of the proposed distance metric (when used in a framework ex-

plained in Section 4.5) on a sample waveform consisting of 3 speaker turns. Figure 4.2 shows that

the local maxima of the proposed distance metric greater than zero (the zero is shown by the hori-

zontal line) clearly identify these true change points (indicated by stars in the figure).

From (4.7), � ����� � is very similar to LLR metric � ����� as given by (4.3). However, unlike � ����� which

is always negative, the proposed metric ranges from positive to negative values, making zero a nat-

ural threshold for this problem. All local maxima of � ����� � greater than zero are considered to be

speaker change points. It can be seen that, in contrast to the standard LLR and BIC techniques,
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Figure 4.2. The behavior of the proposed distance metric on a sample speech consisting of 3 speaker turns, as im-
plemented using the algorithm mentioned in Section 4.5. The horizontal line in the figure shows the zero level of the
distance metric, and the stars indicate the location of true change points. The figure clearly shows that the local
maxima of the proposed distance metric greater than zero correspond to the true change points.

all terms in this criterion (4.7) are derived directly from the data, and thus the criterion can be

expected to be robust to changing data conditions. To get a further insight into the working of this

criterion, let us consider two extreme theoretical cases.

Case 1: Let us assume that the subsets
�

and � come from two very different speakers and hence

have very distinct PDFs such that:

�������
	 ���������������	 ����� ������� �
(4.8a)
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�0/ � �E1 # �&3�� �C/ � �E1 # �,3 � � ��� � (4.8b)

Or, in other words we assume that a model with parameter # � is a better match to every point in

dataset � compared to the model with parameters # � and vice-versa. In this case the parameters

of the two Gaussian components of the GMM (estimated by EM algorithm) would approximately

converge to # � and # � , and their weights (  � and  
 ) will approximately converge to ���� and
� �� ,

respectively. Based on this,
���� can be written as:

� ���� ��� ��� '  � �
���

� � �

��� ' �0/ � � 1 # ��3 � ��� ��� '  
 �
���

� � �

��� ' �0/ � � 1 # �,3 (4.9)

Using (4.9) and (4.2) in (4.7), ������� � can be written as:

������� � � � ���
��� ' � �� � ��� ��� ' � �� (4.10)

From (4.10), it follows that in this extreme case:

�F ��� � ����� � � � ��� ' �  � (4.11)

Since ������� �
	 � , the proposed criterion will favor a change point at time � .

Case2: Let us assume that � and � come from the same speaker, and have very similar densi-

ties. In an extreme case, we can assume that # � � # � � #�� ( #�� parameterize the Gaussian density of

complete data
�

). This implies that
� � � � �

. This together with (4.6) also implies that � ����� � � � and

hence the proposed criterion will not detect a speaker change at time � . The equality sign in this

case is only of theoretical interest and holds in a limiting case when the real PDFs of � and � are

mono-Gaussians and exactly the same, which does not occur in practice.

Based on this, it can be seen that more negative values of this criterion provide a strong con-

fidence toward no speaker change and, on the other hand, more positive values provide high con-

fidence toward potential speaker change points. Of course, it may still be advantageous to tune

(whenever possible) an explicit threshold term to further improve performance on a given dataset.
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However, the principal advantage of this approach is that it should provide robust performance

even without tuning any parameter.

4.5 Experimental Setup

An experimental setup was designed (Ajmera et al., 2004b) to compare the performance of the pro-

posed criterion with the main state-of-the art approach for this purpose, the BIC. It was mentioned

earlier that the speaker change detection framework also involves shifting and resizing of the two

neighboring windows. We basically adopted the algorithm presented in (Chen and Gopalakrish-

nan, 1998) for this purpose while also implementing some useful tips presented in (Tritschler and

Gopinath, 1999). The algorithm is as follows:

1. initialize the interval [a, b]

a =0, b = MIN_WINDOW;

2. find the change point in [a, b] according to a criterion.

for BIC find the point of local maxima of $d_{bic} > 0$;

for proposed criterion, find the point of local maxima of $d_{llrc} > 0$.

3. if no change in [a, b]

b = b+ MORE_FRAMES;

else if ’t’ is the change point in [a, b]

a = t+1, b = a + MORE_FRAMES;

4. if b-a > MAX_WINDOW

a = b - MAX_WINDOW;

5. go to (2)

where, the values like MORE_FRAMES, MAX_WINDOW etc. are also optimized for good performance

as well as keeping the computational complexity reasonable to allow real-time implementation of

the algorithm. In our experiments MORE_FRAMES and MAX_WINDOW were chosen to correspond to

1 second and 10 seconds of speech, respectively. For comparison of the proposed approach with

BIC, the basic framework was kept unchanged apart from the criterion in step 2 above. 12-MFCC

coefficients (without
�4�

and derivatives) were used as acoustic feature vectors extracted every 10ms.
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The choice of these feature vectors was based on the comparison across a set of feature vectors made

in Section 5.5.1. Diagonal covariance matrices were used for all the experiments

The HUB-4 1997 evaluation set was used to test the performance of the proposed criterion. The

HUB-4 database consists of nearly 3 hours of broadcast news data in different acoustic conditions,

totaling 515 speaker changes from a large variety of speakers (total 117 speakers and other non-

speech segments), and thus gives a good test of robustness.

4.5.1 Evaluation Metric

A change detection system has two possible types of error. Type-I errors occur if a true change is

not spotted within a certain window (1 second in our case). Type-II errors occur when a detected

change does not correspond to a true change in the reference (false alarm). Type I and II errors also

correspond to as recall ( �
� �

) and precision ( &�� � ) respectively, which are defined as:

&�� � � number of correctly found changes
total number of changes found

(4.12a)

�
� � � number of correctly found changes

total number of correct changes
(4.12b)

In order to compare the performance of different systems, the � -measure is often used and is

defined as:

� �
�  ����&�� � ��� � �

&�� � ���
� � (4.13)

The � -measure varies from 0 to 1, with a higher � -measure indicating better performance.

4.5.2 Results

The results using the proposed criterion and the BIC are presented in Table 4.1. This table shows

that the parameter � acts as a threshold in (4.4). A lower value of � (less than 5 in this case) results

in detecting most of the reference change points correctly i.e. high �
� �

, but also results in high

number of false alarms i.e. low &�� � . A higher value on the other hand (greater than 7 in this
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case) results in low �
� �

and high &�� � . The table also shows that the performance of the proposed

merging criterion (4.7) when used in speaker change detection framework, is comparable (in fact

better, even if slightly) to that of BIC with optimal value of �����F � chosen.

However, the important property of the proposed criterion is that all the terms involved (4.7) in

making a decision about a change point are based on the behavior of the current data and the mod-

els based on it. Thus, the criterion is expected to adapt to different data conditions automatically.

Conversely, the threshold value in LLR and the penalty term in BIC is based on the behavior of a

different dataset (development data) and may not apply across datasets having different environ-

mental conditions, speaker characteristics etc.

To further verify this, we used a 30-minute broadcast news development dataset to find the

optimal value of � . The optimal value of � for this dataset turned out to be 5 (resulting in � � �F ��� ),
which is different from the optimal value of ��� � for the test data (Hub4 1997 evaluation set).

Moreover, � � � resulted in a sub-optimal performance ( � � �  � � ) for the development data. This

shows that the optimal value of � is different from dataset to dataset and that the performance of

BIC as used for speaker change detection is highly dependent on the choice of this parameter.

Criterion RCL PRC F
Proposed 0.65 0.63 0.64

BIC ( ��� �& � ) 0.79 0.22 0.34
BIC ( ��� �  � ) 0.78 0.45 0.57
BIC ( ��� �  � ) 0.72 0.55 0.62
BIC ( �����F � ) 0.67 0.60 0.63
BIC ( ��� �  � ) 0.60 0.63 0.62
BIC ( �����F � ) 0.51 0.65 0.57

Table 4.1. Results of the proposed criterion and BIC (with different values of � ) on HUB-4 1997 evaluation data.

Apart from comparing the performance of the proposed criterion to that of BIC as shown in

Table 4.1, we also analyzed the errors made by the system in detail. There are 515 true speaker

changes in reference. Our system detected 550 changes, out of which 332 changes corresponded

to the true change points. This resulted in total 220 insertions and 183 deletions (with 1 second

tolerance window). In our analysis, we found that there are 44 segments when multiple speakers

are speaking (overlapping) over a window of less than 2 seconds. During these segments, it is

difficult even for a human listener to define boundary points. The data also consists of a large

number (66, excluding multiple speaker segments) of speaker change points with detectability less
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Figure 4.3. The histogram of deleted true reference speaker change points as a function of their detectability. The
detectability of a speaker change point is defined as the duration of the segment following that change. The figure
shows that the accuracy of the proposed algorithm depends on the detectability of true change points.

than 2 seconds, where the detectability of a reference change point is defined as the duration of

the segment following that change. Figure 4.3 shows the histogram of deleted speaker turns with

respect to the detectability of reference speaker changes. This figure shows that the performance of

the proposed speaker change detection framework for a reference change point depends a lot on its

detectability.

26 insertions were made during pure music regions. Moreover, 16 insertions correspond to the

true change points slightly deviated (less than 2 seconds) from their true position. Figure 4.4 shows

the biases of the detected change points from the true reference change points. From Figure 4.4,

it can be seen that the proposed speaker change detection framework detects most of the reference

changes within a very small range (nearly 80% of the change points are detected within 400ms of

the corresponding true reference points). Ignoring the multiple speaker segments, insertions during

music regions and slightly deviated change points from scoring, we obtain the results presented in

Table 4.2.

Criterion RCL PRC F
Proposed 0.73 0.66 0.69

BIC ( �����F � ) 0.73 0.61 0.67

Table 4.2. Results of the proposed criterion and BIC (with ��� � ) after ignoring multiple speaker segments, insertions
made during music regions and slightly (less than 2 seconds) deviated change points.
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Figure 4.4. Histogram of the biases of the detected change points with respect to the location of the true reference
change points. The figure shows that most of the detected change points are precisely located with respect to the
corresponding true reference speaker boundaries. by the proposed speaker change detection framework. Nearly
80% of the detected change points are within 400ms of the corresponding true reference points

4.6 Conclusion

This chapter addressed the issue of detecting speaker turns in a continuous audio stream. To

achieve this, first a general framework which is used by most of the metric based approaches is

explained. A detailed study of the most common distance metrics (LLR and BIC) for this purpose

was presented, mainly, to understand why a threshold value is required to make decisions about

speaker turns while using these criteria.

Based on the understanding of these criteria and their limitations, a novel distance metric for

speaker change detection was proposed in this chapter. In contrast to other metric based ap-

proaches, the proposed criterion does not require an adjustable threshold/penalty value to make

decisions about speaker turns. The form of proposed distance metric is similar to that of LLR ex-

cept that the values of the proposed metric range from negative to positive, making zero a natural

threshold. An intuitive and systematic explanation of the functioning of the proposed criterion was

also provided. The usefulness and robustness of this criterion was further illustrated with the help

of experiments where the proposed criterion achieved comparable results to that of using BIC with

optimal tuning of penalty term.

The detailed analysis of the results indicates that the accuracy of the proposed framework de-

pends on the detectability (duration of the segment following that change) of true speaker change

points. Generally, segments of detectability less than 2 seconds are not detected accurately by the

system. Also, the system finds multiple change points during pure music regions. However, most of

the significant (detectability greater than 2 seconds, clean speech) true change points are detected
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precisely (within a range of 400ms) by the proposed speaker change detection framework.

When used in an online framework, the proposed criterion makes a robust and unsupervised

tool to segment the audio stream in terms of homogeneous regions. This framework is further used

in Chapter 6 as part of an audio indexing application. It should be noted that such a segmenta-

tion is also appropriate as a preprocessing module for an ASR system to convert the continuous

audio stream in terms of manageable and homogeneous chunks. The proposed SCD framework is

presently being used for Mandarin broadcast news ASR at ICSI1 (Stolcke et al., 2003).

1International Computer Science Institute, http://www.icsi.berkeley.edu



Chapter 5

Speaker Clustering and

Segmentation

5.1 Introduction

The “clustering” process in general can be defined as unsupervised classification of data i.e. without

any a priori knowledge about the classes or the number of classes. There are many instances

where classification must and can be performed without a priori knowledge. Consider, for example,

the biological taxonomy problem. Over the years, all known living things have been classified

according to certain observable characteristics. Of course, plants and animals have never borne

labels indicating their kingdom, phylae and so on. Rather, they have been categorized according to

their observable characteristics without outside supervision.

The clustering problem is not well defined unless the resulting classes are required to exhibit

certain properties. The choice of properties or, equivalently, the definition of a cluster, is the fun-

damental issue in the clustering problem. Given a suitable definition of a cluster, it is possible to

distinguish between a good and bad classification of samples.

In the case of speaker clustering, the definition of the task is not very difficult. Ideally, the

clustering should result in a single cluster for every speaker. However, in applications like speaker

adaptation, it may be desirable to have several big clusters of speakers, where each cluster has data

57
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belonging to speakers whose acoustic properties (this may come from gender, speaking style, speak-

ing rate, etc.) are very similar. Thus, depending on the application, there can be different ways of

evaluating a clustering solution. For example, in the speaker adaptation paradigm, the improve-

ment in the recognition accuracy accrued by the adaptation process is a good evaluation criterion.

However, to get an objective evaluation across all the applications, we can define a good clustering

solution when there is perfect one-to-one mapping between the speakers and their clusters in the

solution.

Speaker clustering is important for many practical applications. It has been repeatedly shown

that speaker adaptation results in significant improvement in ASR accuracy (Chen and Gopalakr-

ishnan, 1998; Johnson and Woodland, 1998), and speaker clustering is an essential step toward

speaker adaptation. A by-product of the speaker clustering process is a segmentation in terms of

speakers, which can be useful in many audio indexing applications and meeting summarization.

As already mentioned in Chapter 2, there has been a lot of previous work on this problem. Some

of the previous work assumed a known number of speakers, which is not generally the case in

many practical situations. In some cases, segmentation in terms of either utterances or speakers

was assumed, leaving the solution not very practical. Also, some work reported an independent

segmentation step prior to the clustering stage and our criticism of this approach is that the errors

made in the segmentation step can not be recovered in the later stages.

A major component of the problem of any clustering is finding optimal number of clusters ( � � ).

In practice, the number of classes in which the data should be clustered is rarely known, and has

to be found as part of the problem. For this purpose, one may run the clustering procedure for

different number of clusters, and find the best classification for each of these values. If the optimal-

ity criterion decreases as number of clusters increases, and either reaches the minimum point at

some value of � � or becomes flat after some value of � � , we may use � � as the proper number of

classes. Unfortunately, many of the popular criteria do not have this favorable property. It appears,

therefore, that some external method of controlling � � is necessary. The biggest limitation of most

of the previous approaches for controlling � � , and as clearly pointed out in Chapter 2 is that either

a heuristic (such as a pre-meditated number of clusters or minimum occupancy criterion) is applied

or a threshold-like term is used to ensure a good stopping point. These heuristics or threshold val-

ues are decided empirically and vary from situation to situation. Thus, the clustering solution is no
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longer robust to unseen data conditions or a development dataset is required to adapt the system

to the unseen data.

In this chapter, a speaker clustering algorithm is presented which takes into consideration the

above mentioned limitations of the previous work. The clustering solution is achieved in an ergodic

HMM framework (similar to the framework in Chapter 3 but with a greater number of classes),

where each state in the HMM represents a cluster. In the absence of any a priori information about

the number of speakers, the algorithm starts with over-segmentation, i.e. a large number (signifi-

cantly greater than expected number of speakers) of clusters. The standard EM algorithm (Demp-

ster et al., 1977) is employed to train the HMM in an iterative manner. After this initial HMM

topology is trained, iterative merging of appropriate clusters is done until there are no more can-

didates left for merging. A novel distance metric and a novel merging and stopping criteria based

on this metric are also proposed for this purpose. The important point about this metric is that it

is not a monotonic function of the number of clusters and it thus defines a unique stopping point

for the criterion. Furthermore, all this is achieved without applying any heuristics or adjustable

thresholds.

The chapter is organized as follows: Section 5.2 explains the speaker clustering algorithm and

different modules associated with this. This section also clearly points out several issues associated

with an agglomerative clustering framework, especially the need for a merging and stopping crite-

ria. Section 5.3 first explains the use of LLR as a merging criterion and then points out the need for

thresholding as a stopping criterion while using LLR in Section 5.3.1. Section 5.3.2 presents the pro-

posed threshold free stopping criterion, while using LLR as a merging criterion. Building on these

two merging and stopping criteria, Section 5.3.3 explains the proposed merging criterion, which

in turn also leads to a threshold free method of controlling the clustering algorithm. Section 5.4

presents the evaluation metric and data used to validate parameters of the proposed algorithm and

also to compare its performance against other approaches. Section 5.5 presents a detailed analy-

sis of roles of different system settings and their effect on the system performance. In Section 5.6

we analyze and discuss the performance of the proposed algorithm and also compare it with the

performance of LLR as a merging criterion. Section 5.7 discusses our participation in NIST1 eval-

uations, where the performance of the proposed system was compared with other state-of-the-art

1National Institute of Standards and Technology, http://www.nist.gov/
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approaches in this domain.

5.2 Speaker Clustering Algorithm

Figure 5.1 presents an overview of the speaker clustering algorithm. The clustering algorithm is

based on an ergodic HMM formalism where the number of states in the HMM is equal to the initial

number of clusters. Figure 5.2 presents the topology of this HMM. Each state in this HMM is

composed of several sub-states. These sub-states impose a minimum duration constraint on the

states of the model. Each state of the HMM represents a cluster and is finally expected to represent

a single speaker. The PDF of each state is assumed to be a GMM with � Gaussian components,

which are shared among all sub-states. Thus, in the following, a cluster will mean a set of data

points and the associated PDF, modeled by a GMM with � Gaussian components.

The individual modules of the algorithm shown in Figure 5.1 are explained in the following

sections.

5.2.1 Initialization

In the absence of any a priori information about the number of speakers (and hence number of

clusters), we start by over-segmentation of the data. “Over-segmentation” refers to the process

of segmenting the data into an excessive (compared to the expected number of speakers) initial

number of clusters
�

. The HMM topology thus, has
�

states fully connected to each other. The

parameters of this HMM are the initial probabilities, the transition probabilities and the param-

eters of the PDFs (GMM in this case) of all the states of the HMM. In our experiments, we noted

that the transition probabilities do not play a big role in the clustering process and its performance,

and are thus set manually. In the absence of any a priori information, the initial probabilities of all

the states were also set uniformly. The initialization of the GMM parameters is either done assum-

ing uniform segmentation in the beginning or using the K-Means algorithm explained in (Rabiner

and Juang, 1993). Further details about these two initialization schemes and their comparative

performance are given in Section 5.5.2.

After this initialization, the parameters of the HMM are trained in an unsupervised manner

via the EM algorithm. This is an iterative process, consisting of a segmentation step (explained in
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Figure 5.1. The overall description of the speaker clustering algorithm.The HMM based algorithm runs in an agglomer-
ative fashion, starting with large number of clusters. Most similar clusters (decided by proposed similarity criterion) are
merged in an iterative manner, until there is no more suitable pair of cluster candidates. The segmentation in terms of
these clusters is also obtained before every update of system parameters.
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Figure 5.2. HMM Topology used for speaker clustering. Every speaker hyper-state is composed of several sub-states,
ensuring minimum duration. All sub-states of a speaker class share a common PDF modeled by a GMM.

Section 5.2.2) using current set of parameters and then updating (re-training) the parameters of all

the clusters (explained in Section 5.2.3) based on this segmentation to maximize the likelihood of

the data. The initial HMM topology with
�

clusters (states) is thus trained iteratively, resulting in

over-segmentation of the data.

A result of over-segmentation is that data from a single speaker is likely to be assigned to differ-

ent clusters. At the same time, it is desirable that data from two speakers are not assigned to one

cluster. Following an agglomerative clustering framework, the goal is then to find clusters which

are best candidates for merging (clusters having data from same speaker) and this is achieved in

subsequent stages of the algorithm.
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5.2.2 Segmentation

The well known Viterbi algorithm is used to segment the data based on the current model param-

eters (  ). The Viterbi segmentation tries to find the best possible state sequence, �,5<7>9<; , under given

constraints (minimum duration in this case) such that the joint likelihood of the data and this

sequence (Viterbi score) given current set of parameters,  , is maximized i.e.,

�=5<7>9<; �?#&%	'@(A#,+B �C/ �D�E�F1  G3 �H#&%	'I(*#,+B �0/ �21 �.�	 G3 �0/K�F1  G3 (5.1)

5.2.3 Cluster Models Re-Training

Based on the segmentation achieved in the previous step, a set of data is assigned to each cluster.

The parameters of the PDF (GMM in this case) of each cluster are then individually re-trained using

the EM algorithm for Gaussian mixture densities. The EM algorithm updates the parameters of

the GMM in an iterative manner to maximize the likelihood of the data in each cluster given the

parameters of the model (GMM) of that cluster. This results in an updated set of parameters (  � )
for the HMM maximizing the joint likelihood of the overall data sequence � and best possible path

sequence, � 5<7>9<; (Viterbi score), as follows:

 � ��#,%E')(*#�+- �0/ �D�	� 587:9<; 1  G3 (5.2)

where, � 5<7>9 ; is the solution of Eq. 5.1.

After iterative segmentation and cluster model re-training steps, the initial HMM topology is

trained and the data � is over-clustered. A consequence of over-segmentation is that data belonging

to some speakers is split across a number of clusters. Thus, the next step in the speaker clustering

process is to identify such clusters and merge them as explained in the following section.

We note that the re-training of cluster models is also possible using full EM (generally known as

Baum-Welch algorithm (Rabiner and Juang, 1993) for the HMMs), without making a big difference,

especially because of the minimum duration. However, full EM training is more computationally

expensive than the Viterbi approximation used in this thesis.
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5.2.4 Cluster Merging

Cluster merging refers to the operation of merging the data associated with two clusters and as-

signing it to a single cluster, and the parameters of this resulting cluster are trained to maximize

the likelihood of the combined dataset. In an agglomerative clustering framework, this is generally

done in an iterative fashion. There are three important issues to be considered regarding this:

� How to select appropriate candidates for merging?: This typically involves employ-

ing a similarity metric between all possible pair of clusters and choosing the one with min-

imum/maximum value of this metric. One example of such similarity metric is the log-

likelihood ratio (LLR) which is discussed later in this chapter.

� How to merge the two clusters?: After two clusters are merged and the data is assigned

to a single cluster, the HMM topology changes. In the HMM framework discussed so far, it is

clear that after one such merging, the HMM topology would change to have one less state and

accordingly the number of trainable parameters in HMM would change.

� When to stop merging: Most of the popular objective criteria used in the literature either

monotonically increase or decrease with merging of two clusters in each iteration. Consider,

for example, the Viterbi score on the right hand side of (5.2). With every merging of two

clusters in an iteration, if the total number of parameters decreases (i.e. 1  �F1 � 1  G� � � 1 ), the

Viterbi score will also decrease monotonically i.e.,

�C/ �D�E� 5<7>9<;�� �F1  G�,3 � �C/ �D�E� 5<7>9<;�� � � � 1  G� � � 3 (5.3)

where the subscript � denotes the current number of clusters,  "� denotes the parameters and

�=5<7>9<;�� � denotes the best segmentation of the data in terms of these � clusters.

Thus, it is difficult to decide when to stop the iterative merging process and an external

method of stopping this process is necessary. It is possible to apply heuristics in e.g. the

merging process is stopped after having obtained pre-determined number of clusters or, occu-

pancy of a cluster goes beyond a limit (Johnson and Woodland, 1998). Another solution is to

compare the decrease or increase in the objective function against a threshold (Siegler et al.,

1997). Generally, these threshold values are found empirically and point where the value of
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objective function goes beyond this threshold is considered to be the stopping point.

The next section discusses these issues in detail and also presents the proposed similarity met-

ric, which provides a threshold and heuristic free solution to all the three above mentioned prob-

lems.

5.3 Merging and Stopping Criteria

5.3.1 Thresholded Log Likelihood Ratio

For the purpose of calculating similarity metric between two clusters
�

� and
� 5 with data � � , �A5

and PDFs parameterized by # � , # 5 respectively, let us formulate the problem as a hypothesis test.

The null hypothesis �
�

is that data � � is from cluster
�

� and the alternate hypothesis � � is that

the data � � is from cluster
� 5 . Computing the ratio of log likelihoods of these two hypotheses and

making it symmetrical2 with respect to the two clusters will result in:

� ����� / � � � � 5	3 � ��� ' �C/ � � 1 # � 3
�0/ � � 1 # 5 3 �

��� ' �0/ � 5 1 # 5 3
�C/ � 5 1 # � 3 (5.4)

The first term on the right hand side of Eq. 5.4 is an indication of how well the PDF of cluster
� 5 can model the data associated with cluster

�
� . The best case for merging is when the PDF of

cluster
� 5 can model the data associated with cluster

�
� equally well and in that case this term

would become zero. From (5.4), the value of � ����� is always nonnegative, and that the smaller the

value of ������� , the better the candidates for merging. This value has � as lower limit and theoretically

no upper limit. Thus, if LLR is to be used as a similarity metric for merging criterion, it has to be

compared against a threshold value to decide if the two clusters should be merged or not.

The stopping criterion in this case is when the lowest similarity measure among pairs of clusters

given by (5.4) goes beyond this threshold value. This merging and stopping criterion was used in

our experiments and the results and issues associated with this are reported in Section 5.6.2

2We note that after this symmetrization, the resulting metric is not LLR but we associate the term LLR with the distance
for convenient reading
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5.3.2 Log Likelihood Ratio and Proposed Stopping Criterion

The fact that the use of LLR requires finding a threshold value to ensure a good stopping point is a

result of behavior explained by (5.3). This happens if the total number of parameters used to model

the data is also reduced after every pair of clusters and hence this decrease in the Viterbi score

is not surprising. However, if we force the total number of parameters to be constant even after

merging, we observe that the Viterbi score no longer decreases monotonically. This was reported

in (Ajmera et al., 2002) and is explained below:

� Two clusters with minimum LLR according to (5.4) are selected for merging. Let these clusters

be
�

� and
� 5 .

� A cluster
�

is hypothesized as a result of merging the two clusters. The PDF (a GMM) of

this cluster is modeled by using same number of parameters as the sum of the number of

parameters in the individual PDFs of
�

� and
� 5 . For example, if the two individual clusters

(
�

� and
� 5 ) have � � and � 5 Gaussian components in their GMMs, the hypothesized cluster

is modeled by a GMM with � � � � 5 number of Gaussian components. One of the states

associated with the two clusters
�

� and
� 5 is now assigned this PDF and the other is omitted

from HMM topology. We note that although the HMM topology has now changed, the total

number of trainable parameters remains constant.

� Under these constraints, the Viterbi score first increases and then starts decreasing. We ob-

served that if we consider this point where the Viterbi score starts decreasing as the stopping

point, the resulting clustering performance was quite comparable to the system performance

when a threshold is used for stopping criterion and this is shown in Section 5.6.2. This also

has the obvious advantage that the stopping criterion is met without using any adjustable

threshold value.

In our analysis, it was observed that in the next segmentation (from ��5<7>9<;�� � to �65<7>9<;�� � � � ), the

only segmentation changes were due to cluster merges and the remaining boundaries moved very

little. Moreover, the analysis showed that the Viterbi score was increasing for every good merge

i.e. merging of two clusters having data from the same speaker. The Viterbi score started decreasing

after these “good” candidates were over and remaining candidate pairs were merged. Based on
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these observations, a novel merging criterion was proposed in (Ajmera and Wooters, 2003) and is

explained in Section 5.3.3.

5.3.3 Proposed Merging and Stopping Criterion

We define our merging criterion as follows:

� Consider a pair of clusters
�

� and
� 5 with datasets � � and � 5 respectively.

� Let � � and � 5 represent the number of Gaussian components in the PDF of two clusters

parameterized by # � and #�5 , respectively.

� Let us hypothesize a new cluster
�

having data � � � �

� �*5 with a PDF modeled by a GMM

parameterized by # with � � � � 5 number of Gaussian components. Also, the parameters of

this hypothesized cluster are trained via EM algorithm to maximize the likelihood of complete

dataset � .

Given these conditions, the pair of clusters (
�

� and
� 5 ) becomes a candidate for merging if the

following is true:

��� ' �0/ � 1 # 3 � ��� ' �0/ � � 1 # � 3 � ��� ' �0/ � 5 1 # 5 3 (5.5)

Criterion in (5.5) can also be expressed as:

��� ' �0/ � � 1 # � 3
�0/ � � 1 #�3 �

��� ' �0/ �A561 #�5 3
�0/ � 5 1 #�3 � �F � (5.6)

From (5.6), it is evident that the proposed merging criterion also has the form of LLR, with a

difference that the denominator now is a likelihood associated with the hypothesized cluster. This

makes the most important difference to LLR (which is always positive), since the value of the term

on the left hand side of Eq. 5.6 is not always positive or negative. We select the pair for merging only

if this quantity is negative. Another way of looking at this is by saying that this is an LLR similarity

measure with zero threshold. This is also similar to BIC methodology (2.8) of model selection where
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Figure 5.3. The figure shows the segmentation, resulting Viterbi score and associated number of clusters after every
iteration in proposed speaker clustering algorithm. In this example, there are 3 speakers, and the algorithm starts with 7
clusters. After every iteration of merging two clusters, the Viterbi score increases until there are 3 clusters left and then
starts decreasing. The algorithm is stopped at the point when this Viterbi score starts decreasing. This shows that the
algorithm tries to find maxima of Viterbi score given a fixed number of parameters.

the number of free parameters in the two models are equal, making the log likelihoods of the two

models directly comparable.

It was observed consistently that selecting candidates for merging using this criterion, while

keeping the number of parameters in the two models equal, always results in an increase in the

Viterbi score in the next iteration. In other words, in this framework, we are trying to maximize

the Viterbi score of the data given a fixed number of parameters. This phenomenon is shown in

Figure 5.3. Moreover, it is shown in Section 5.4 that using the proposed merging criterion always

results in a better performance compared to when LLR is used as a merging criterion in both

thresholded (Section 5.3.1) and proposed framework (Section 5.3.2).

After every new segmentation-training step, we look for the best pair of clusters satisfying (5.5).

In the case of many such candidate pairs, we choose the pair that maximizes the difference of the

terms of the left hand side and right hand side of (5.5). The merging is stopped when there are no
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suitable candidates satisfying (5.5).

5.4 Evaluation Metric and Data

In this section, we explain the evaluation metric and data that is used to evaluate the performance

of the algorithm with different settings and also to compare the performance of proposed algorithm

with other approaches.

5.4.1 Evaluation Metric

The concept of cluster purity, introduced in (Solomonoff et al., 1998), is an indication of how well

the data assigned to a cluster is limited to a particular speaker in the reference. However, it was

realized that this is not enough to measure the performance of the clustering algorithm. Consider,

for example, output of a clustering algorithm with too many clusters compared to the number of

reference speakers. In this case, all the clusters may be limited to single reference speakers and

thus may have a very high purity. This, however, is not a good clustering solution because the

reference speakers are split across several clusters.

To consider the effect of having too many or too few clusters compared to the number of reference

speakers, the � -Measure was introduced in (Ajmera et al., 2002)3 and is explained below:

First we define:
� ��� : Total number of frames in cluster  spoken by speaker �
� 9 : Total number of speakers

� � : Total number of clusters

� : Total number of frames
��� � : Total number of frames spoken by speaker �
� � � : Total number of frames in cluster  

3In (Ajmera et al., 2002), this is referred to as � -Measure. In this thesis we denote it as � -Measure to avoid ambiguity
with initial number of clusters which is also denoted as � .
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The purity of a cluster � � � is defined as:

� � � �
���

� � �

� 
��� � � 
� � (5.7)

The average cluster purity � � � is then calculated as:

����� � �
�

���

� � � � �

�  � � � (5.8)

Similarly, we calculate the speaker purity � � � and average speaker purity ����� as:

� � � �
� �

� � �

� 
� � � � 
 � � (5.9)

� ��� � �
�

���

� � � �

� �, � � � (5.10)

The � ��� gives a measure of how well a speaker is limited to only one cluster, and the � � � gives

a measure of how well a cluster is limited to only one speaker. The two measures are important

to take into account the effect of too many or too few clusters. Finally, to get a single objective

criterion, the � -Measure is defined as:

� ��� � � �*J ����� (5.11)

The value of � varies between � (very good mapping between clusters and speakers) and � (very

poor mapping between speakers and clusters). Note that it is also possible to define other objective

measures e.g. arithmetic mean of ����� and ����� . However, the goal of the proposed evaluation metric

� (5.11) is to penalize the whole clustering performance if one of � � � and ����� is very poor, which is

underachieved by arithmetic mean.
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5.4.2 Data

The Hub4 1996 evaluation set4 was used for most of the experiments presented in this chapter.

This consists of 4, 30-minute audio files, namely, �  � 
 �&� �  ��
 � � �  ��
�� and �  � 
 �
. These files have 7,

13, 15 and 20 speakers respectively. Along with speech data, the files also have significant amount

of non-speech data. Although the non-speech data should be ideally removed prior to the speaker

clustering step, we ran our algorithm without any pre-processing to understand the behavior of the

algorithm in presence of non-speech regions as well.

5.5 System Settings and Parameters

From Sections 5.2 and 5.3 we see that the proposed clustering algorithm provides a fully automatic

framework to resolve the three issues related to clustering mentioned in Section 5.2.4. However,

there are a few basic system settings in this algorithm, namely the initial number of clusters (
�

),

the initial number of Gaussian components in each cluster ( � ), the minimum duration ( ��� ) con-

straint imposed, the type of feature vectors used and the type of initialization used to create the

clusters. In the following section, we present the experimental studies in which we explore the

effect of varying these settings on the system performance.

5.5.1 Feature Vectors

The feature vector to be used in this algorithm is not really a system setting, as the algorithm is

designed to cluster any given set of feature vectors, with minimal human interaction. The resulting

performance across different feature vectors is only limited by the information carried, and their

behavior in speaker clustering paradigm. However, in the following study, we compared the perfor-

mance of the most commonly used feature vectors in speaker recognition research, to find the best

feature vectors among these and to be used in rest of the experiments in this chapter.

As mentioned in Chapter 2, the most common characteristic feature vectors for speaker recog-

nition and related applications are LPCC and MFCC, while some researchers use PLPC features

claiming its efficiency over LPCC features, especially in the event of acoustic mismatch (Vuuren,

1996). LPCC features were introduced for speaker verification and recognition applications by Atal
4http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC97S66
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Data MFCC LPCC PLPC
File1 0.92 0.90 0.90
File2 0.88 0.83 0.87
File3 0.83 0.83 0.80
File4 0.73 0.70 0.58

Table 5.1. Comparison of performance of MFCC, LPCC and PLPC coefficients in terms of � -measure when used as fea-
ture vectors in the proposed speaker clustering algorithm. All these feature vectors are based on spectral information
derived from a short time-windowed (30ms in our case) segment of speech. 12 cepstral coefficients were extracted
every 10ms in each case. The MFCC model order is fixed at 24 mel-spaced filters while 12 order all-pole model was
used for derivation of LPCC and PLPC. Although the performance of all the features is reasonable, the table clearly
shows the superiority of MFCC feature vectors over these other features for the purpose of speaker clustering.

(1974) and are still used (Misra et al., 2003). However, more and more systems are now using MFCC

features. For example, most of the participating systems in NIST speaker recognition evaluations

in 1998 used MFCC features and some systems used LPCC features (Martyn et al., 2000). However,

no clear task-independent conclusions about their comparative performance have been made in the

literature. Theoretically, both features are based on the smoothed spectral information derived

from a short time windowed segment of speech and are expected to provide similar performance.

The comparative performance of MFCC, LPCC and PLPC features is summarized in Table 5.1.

All the feature vectors mentioned in Table 5.1 are derived from spectral analysis of a short, 30ms

time-windowed segments of speech. 12 cepstral coefficients were derived in each case, every 10ms.

The model order for the MFCC features was fixed at 24 mel-spaced filters, while 12 order all-pole

model was used for the derivation of LPCC features. Although the performance LPCC and PLPC

features is reasonable, Table 5.1 clearly shows the superiority of MFCC features over LPCC and

PLPC features. The zeroth cepstral coefficient
� �

was discarded in all the cases for the purpose

of energy normalization. Moreover, although first and second order derivatives are widely used in

speaker recognition research, this resulted in inferior performance in our framework. Based on

this, MFCC features, without
�4�

or derivatives, are used for rest of the experiments reported in

this chapter.

5.5.2 Initialization

As mentioned earlier in Section 5.2.1, in the absence of any a priori information about the speakers

and their number, the algorithm starts with over-segmentation of the data in terms of
�

clusters,

where
�

is of the order of twice the number of expected number of speakers. Further discussion
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about the choice of this parameter
�

and its effect on the system performance is presented in

Section 5.5.3. In this thesis, two different initialization schemes were explored. The first one is

K-Means clustering algorithm (MacQueen, 1967) and second one is uniform initialization.

The K-means algorithm is a simple non-parametric clustering method and was first described

in (MacQueen, 1967). This algorithm iteratively assigns vectors to
�

classes according to a distance

metric. The K-Means clustering algorithm finds
�

distinct centroids in the feature space. The dis-

tance metric used for this purpose is the Euclidean distance. These
�

means are then deviated

depending on the corresponding standard deviation to generate initializing parameters for � dif-

ferent Gaussian components of the GMM in each of the
�

clusters. However, since the individual

feature vectors characterize phonetic events rather than speakers, the
�

centroids in the feature

space are expected to point to distinct phonetic events. Thus, an algorithm using this initialization

is expected to segment the data in terms of phonetic events rather than speakers. However, the

large minimum duration (of the order of 200 frames) imposed in the algorithm not only prevents

the data from being segmented in terms of phonetic events but also deviates these phonetic
�

cen-

troids to speaker centroids from the first iteration to the second iteration when the cluster models

are re-estimated based on the segmentation resulting from this initialization.

Another alternative to K-Means initialization is uniform initialization i.e. if there are
�

clusters

and the length of the audio stream is
�

, initializing the system by assigning uniform segments of

length �� to each cluster in the beginning. The parameters of the cluster models then can be trained

on these uniform segments. Table 5.2 contains the performance of the two initialization schemes

for Hub4 1996 evaluation dataset. This table shows that uniform initialization is a better choice

compared to K-means algorithm in the current framework. In our analysis, it was observed that

the K-means algorithm results in poor performance when all of the
�

clusters at the start are not

occupied, meaning that in effect the algorithm starts with less (than
�

) number of clusters. Thus,

the desired over-segmentation does not take place. This is not a problem with uniform initialization

where each cluster is assigned a set of data which is then used to initialize the parameters of that

cluster. This uniform initialization is used for all the remaining experiments in this chapter.
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Data K-Means Uniform Initialization
file1 0.86 0.92
file2 0.84 0.88
file3 0.84 0.83
file4 0.61 0.73

Table 5.2. Comparative clustering performance in terms of � -Measure for K-Means and Uniform initialization. Overall,
the uniform initialization is a better choice compared to K-means algorithm.

5.5.3 Initial number of clusters (
�

)

The proposed speaker clustering algorithm starts with
�

clusters, assuming that
�

is much larger

than the expected number of speaker in the data. In our case,
�

also determines the total number

of parameters in the system which is kept constant throughout the algorithm. We observed in our

experiments that the algorithm is not very sensitive to the exact value of this hyper-parameter,

as long as the value is of the order of twice the expected number of speakers. Empirically, it was

observed that assuming one speaker every 2 minutes of audio data is a reasonable choice for this

parameter. This “rule-of-thumb” is followed in most of our experiments including participation

in NIST evaluations presented in Section 5.7. This assumption fails when there are too many

speakers in the data. however, it should be noted that in these situations, some of the speakers

speak for very short durations (e.g. very brief interviews) and there is not enough data to train

good statistical models for these speakers. As expected, it was observed that in these situations,

the speaker clustering algorithm tries to make “pure” clusters for dominant speakers. Figure 5.4

shows the performance of the clustering algorithm with varying initial number of clusters. This

figure shows that the algorithm is not very sensitive to the choice of this parameter as long as a

sufficiently large value of
�

is chosen.

Furthermore, with the help of a “cheating experiment” (i.e. one that relied on ground-truth

information not available in a ‘real’ test), we also observed that this approach (starting with over-

segmentation and then merging appropriate pair of clusters iteratively) is in fact better than start-

ing with the number of clusters equal to the known number of speakers ( �*9 ). In this case, the

algorithm was started with � 9 � � number of clusters, allowing an extra cluster for non-speech

data. The results of this study are summarized in Table 5.3. Thus, even if we have a priori in-

formation about the number of speakers in the data, it is better to exploit it in an agglomerative

clustering framework rather than starting with those many states in the HMM.
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Data
� ��� 9 �?� � � � �

file1 0.67 0.92
file2 0.75 0.88
file3 0.61 0.83
file4 0.50 0.73

Table 5.3. Speaker clustering performance in terms of � -Measure of the cases when the number of speakers were
known and unknown. When the number of speakers ( ��� ) was known, the algorithm starts with ������� number of initial
clusters. When the number of speakers was not known, the algorithm was started with over-segmentation ( � ��� � ).
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Figure 5.4. Performance of the speaker clustering algorithm in terms of � -Measure with varying number of initial clusters
(from � �
	 � to � �
�  ). This figure shows that the algorithm is not sensitive to the choice of this parameter, as long as
the algorithm is started with sufficiently large number of clusters.

5.5.4 Initial number of Gaussians per cluster ( � )

As mentioned earlier, the PDFs of all the clusters in the proposed algorithm are modeled by GMMs.

At the start of the algorithm, the GMM for every cluster is composed of equal number ( � ) of Gaus-

sian components. Thus, if there are
�

clusters to begin with, there are
� � � Gaussians components

in the whole system, and this is kept constant throughout all clustering iterations as explained ear-

lier. This way, � is another determining factor for the total number of parameters in the system

and in the following we study the effect of this hyper-parameter on the system performance.

To understand how the choice of this parameter may affect clustering performance, let us revisit

the merging and stopping criterion (5.5). In Section 5.3.3, we noted that when we merge appropriate

pair of clusters (clusters having data from the same speaker), we expect the term on the left hand

side of (5.5) to be greater than the term on the right hand side for the merging criterion to make

correct decision. Following the reasoning presented in Chapter 4 for single Gaussian density case,

we note that when we try to model the similar (or same in extreme case) PDFs associated with

these appropriate clusters with more parameters (equal to the sum of the number of parameters

used to model the individual PDFs of these clusters), the PDF of the total data is modeled better,
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Figure 5.5. Performance of the speaker clustering algorithm with different number of initial number of Gaussian com-
ponents per cluster ( � ). The figure shows that the performance of the clustering algorithm is quite stable with variation
in the value of � .

resulting into higher likelihood of the hypothetical cluster (the term on the left hand side of (5.5)).

This is even more true when the individual PDFs of the two clusters are not sufficiently modeled

i.e. modeled using insufficient parameters (or lower value of � ). Thus, the higher the value of

� , the lower would be the increase in this resulting likelihood and less likely it is that the two

clusters are merged. When the individual models of the two clusters are optimal, even using more

parameters in the hypothetical cluster would not yield higher likelihood of the data, resulting in a

no-merging decision.

However, we note that a good speaker cluster model generally requires a very high number of

Gaussian components (Reynolds et al., 2000) to capture all the variability of the speaker efficiently.

In our framework, we use a much smaller number of Gaussian components to start with (of the

order of 5) and thus the speaker cluster models are not modeled optimally. In a way, our merging

criterion is based on this insufficient or non-optimal modeling of the individual cluster models and

actually exploits this fact, so that the hypothetical cluster created by merging these two clusters

can yield a higher likelihood of the data.

Figure 5.5 shows the effect of this parameter on the system performance on �  � 
 � for values of �

varying between 3 and 10. We notice from this figure that the exact value of this hyper-parameter

does not make significant difference in the system performance. However, following the discussion

earlier, when a large value of � � � � is used, very few pairs of clusters are merged, and the system

performance drops down to � � �F � �
.
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Figure 5.6. This figure shows the behavior of the proposed speaker clustering algorithm with different values of minimum
duration ( ��� ). The figure demonstrates that although a sufficiently large minimum duration (of the order of 2 seconds
or 200 frames) is required, the system performance does not vary significantly with variations around this value. On the
other hand, a larger minimum duration may be beneficial in some cases (e.g. this particular example) but in absence
of any a priori information, this may also prove to be a erroneous as all the speech segments shorter than this duration
will be misclassified.

5.5.5 Minimum Duration ( ��� )

As shown in Figure 5.2, each of the cluster states in the HMM is composed of several sub-states

to impose minimum duration constraints. This constraint plays a major role in our system and

specifically in the segmentation step where all the speaker segments shorter than this minimum

duration are not considered by the segmentation step explained in Section 5.2.2. Imposing a min-

imum duration constraint of this form in HMM can also be regarded as providing the HMM with

a prior information that speakers, especially in broadcast news speech, speak for at least a certain

time to exchange useful information. In our experiments, we observed that the algorithm is not very

sensitive to the exact value of this parameters as long as it is large enough (more than 150 frames,

corresponding to 1.5 seconds). While an overly large ��� may be beneficial in some cases, in the

absence of any a priori information, this may also prove to be erroneous as all the speech segments

shorter than this duration will be misclassified. However, if there is more information available

about the minimum duration of speakers, this can be used to achieve better clustering. This is

shown in Figure 5.6, where different minimum durations (from 50 frames to 400 frames) are inves-

tigated. This figure shows that the system performance is not optimal for minimum duration less

than 150 frames, but is quite stable for larger value of this hyper-parameter. The use of objective

function like Viterbi score was also investigated for the purpose of selection of this hyper-parameter,

but we observed (as expected) that the Viterbi score is a monotonically decreasing function of this

increasing ��� .
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Data � 9 � � ����� � � � �
�  � 
 � 7 18 0.90 0.94 0.92
�  � 
 � 13 14 0.92 0.85 0.88
�  � 
 � 15 17 0.90 0.76 0.83
�  � 
 �

20 22 0.75 0.71 0.73

Table 5.4. Speaker clustering performance in terms of average speaker purity ( ����� ), average cluster purity ( ����� ) and� -Measure on four half hour broadcast news shows. ��� denotes the true number of speakers in the data. �	� denotes
the number of clusters found by our stopping criterion.

5.6 Experiments and Analysis

This section presents the experiments on the Hub4 1996 dataset explained in Section 5.4.2, results

and a discussion of these results. For the experiments presented in this section, the system settings

were selected following the analysis presented in previous section:
� � � � , � � �

, ��� �
�

seconds

and uniform initialization. Table 4.1 presents the results of the speaker clustering performance in

terms of average speaker purity ( ��� � ), average cluster purity ( ����� ) and � -Measure. This table also

shows the “optimal” (optimal according to the maximum Viterbi score objective function) number of

clusters ( � � ) found by our proposed automatic stopping criterion.

5.6.1 Discussion

� The number of clusters found by the algorithm � � often corresponds to the actual number of

reference speakers plus a few extra clusters for non-speech data. Although this is not true for

�  ��
 � ( � 9 � � , � � � � � ), the high value of ����� � �  � and � � � � �  � �
shows that most of the

speakers are limited to their corresponding clusters and that the extra clusters are occupied

with non-speech data.

� The non-speech clusters are not merged using proposed criterion (5.5). In �  � 
 � , 33% of

the data is non-speech and the algorithm results in having 11 extra clusters for these non-

speech clusters. This can be explained by the fact that different kind of non-speech categories

(e.g. clapping, music, cheering etc.) exhibit different acoustic properties. The amount of non-

speech data in �  � 
 � , �  ��
�� and �  ��
 �
is 2%, 9% and 11%, respectively.

� The performance of the algorithm degrades with increasing number of reference speakers.

This can be explained in two ways: First, the amount of data available for each speaker de-
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creases, making it difficult to model some of the speakers. Second, the possibility of overlap

in the feature space increases as the number of speakers increases. Moreover, with increasing

number of speakers, the stated rule-of-thumb (starting from clusters equal to the duration

of audio stream in minutes) may not apply. This is evident in case of �  � 
 �
where the num-

ber of speakers is 20 and the initial number of clusters (30) can not over-segment the data.

Another experiment on �  � 
 �
with 40 initial number of clusters resulted in a much improved

performance ( � � 0.79 compared to 0.73) and showed the importance of over-segmentation.

� The results show that on an average the average speaker purities for these dataset are very

high, indicating that speakers are mostly limited to their respective clusters. This feature is

very important for speaker adaptation where the emphasis is more on the average speaker

purity i.e. acoustically similar speakers can be put in one cluster (low ����� ) but the speakers

should not be split across several clusters � ��� .

5.6.2 Comparison of the proposed criterion with LLR

In Section 5.3, it was mentioned that the LLR can also be used as a merging criterion in a speaker

clustering framework. For the stopping criterion using LLR, we discussed the use of threshold-

ing (Section 5.3.1) and also proposed a framework in which this is done without the use of any

threshold (Section 5.3.2). The threshold value for these experiments was estimated by K-fold cross

validation of the optimal threshold values for the four datasets and the value resulting in total best

performance was picked to be the threshold value for all the datasets. In this section, we study the

performance of these two cases and compare them with the performance with proposed merging

and stopping criteria. Table 5.5 summarizes the results obtained from these experiments.

Table 5.5 shows that while using LLR, the proposed stopping criterion (stopping the algorithm

at the point of decreasing Viterbi score) not only eliminates the need for thresholding, but also

results in an improved performance on an average. However, the proposed merging and stopping

criterion (5.5) outperforms, on an average, the use of the LLR as a distance metric in both the pro-

posed (Section 5.3.2) and thresholding framework (Section 5.3.1). The proposed framework has the

additional obvious benefit of being a threshold and heuristic-free framework, and that no additional

development data is required to tune or decide parameters.
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Data Thresholded LLR and proposed Proposed merging and
LLR stopping criterion stopping criterion

�  ��
 � 0.88 0.86 0.92
�  ��
 � 0.81 0.85 0.88
�  ��
 � 0.78 0.79 0.83
�  ��
 �

0.71 0.75 0.73

Table 5.5. The comparative performance in terms of the � -Measure of three systems differing in the employed merging
and stopping criteria. The second column shows the results when LLR was used as merging criterion and, a threshold
(empirically chosen) was used to decide the stopping point. The third column shows the results when LLR was used
as merging criterion but used with a proposed stopping criterion (Section 5.3.2). The last column shows the results
when the proposed merging and stopping criteria were used. The results show that the proposed stopping criterion
while using LLR as distance metric eliminates the need for thresholding while also resulting in better performance on an
average. Moreover, on an average the proposed merging and stopping criterion outperforms the use of LLR, both in
proposed as well as thresholding framework.

5.7 Participation in NIST evaluations

In March-April 2003, NIST conducted a “who spoke when” speaker diarization evaluation for broad-

cast news speech5. This was done in the framework of Rich Transcription EARS6 project funded by

DARPA. The goal of this project is to make transcripts generated by ASR systems more readable

and provide extra value to both human and machine users of the data.

Specifically, the task of speaker diarization is to identify segments of speech (speech/non-speech

segmentation) and group them by speaker. This is very similar to the speaker clustering task

handled in this thesis, and we used the algorithm presented in this chapter to participate in this

evaluation. This section explains the evaluation metric used, data on which evaluations were run

and finally compares the performance of the proposed system with other participating systems.

5.7.1 Evaluation Criterion

The evaluation criterion used in NIST evaluations is a time-based score (diarization error) which

corresponds to speaker time not attributed correctly to a reference speaker. Thus, a score of �F �
would represent a perfect segmentation. Also, it is possible to have an error 	 � � �  � because of the

inclusion of false alarms. This error is calculated as:

5http://www.nist.gov/speech/tests/rt/rt2003/spring/
6Effective Affordable Reusable Speech-to-text
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�  � �  ���� �   � � ������ �

�

�9 � � ��� � ��/ ��3 � /�� � �0/K� � 7�� / ��3 �E� 9 � 9,/ ��3:3 � � ��� � � 7 � ; / ��3	3 �
�

�9 � � � � � ��/ ��3 �4� � 7�� / �63 �
(5.12)

where the speech data is divided into � contiguous segments whose boundaries are defined by all

speaker change points (including both reference and hypothesized speakers) and where, for each

segment � :

� � ��/ �63 = the duration of �

� � 7�� / ��3 = the number of reference speakers speaking in �

� 9 � 9�/ ��3 = the number of system speakers speaking in �

� ��� � � 7 � ; / � 

	F3 = the number of reference speakers speaking in � for whom their matching (mapped)

system speakers are also speaking in � .

This error has three components; missed speaker time, false alarm speaker time, and speaker

error time. Missed speaker time is the total time when there is a reference speaker speaking but the

system finds no speaker or “non-speech” region. This error comes from the speech/non-speech pre-

processing module, which may classify some of the genuine speaker segments as non-speech and

these regions are then omitted from the final output. False alarm speaker time is the total time

when there is no reference speaker speaking but system commits an error by assigning a speaker

to these regions. This error also comes from the non-speech segmentation module which may keep

some of the non-speech regions in the system output classifying them as speech.

It should be noted that non-speech segments were not part of the reference segmentation,

i.e. they were omitted from evaluation. However, the task involved processing of complete audio

stream. Thus, a perfect speech/non-speech segmentation module will lower the first two types of

errors to zero. We applied the speech/non-speech segmentation system presented in Chapter 3 for

this purpose.

Finally, speaker error time is the time when both reference and system claim speech activity,

however, the system assigns a wrong speaker label to a segment. This constitutes the major part

of the error especially for broadcast news speech. This is done by finding the most suited match

between every cluster found in system output and the reference speakers. The speaker clustering



82 CHAPTER 5. SPEAKER CLUSTERING AND SEGMENTATION

system presented in this chapter exactly takes care of this task and only tries to minimize this last

component of the error.

This evaluation metric (5.12) is developed for speaker diarization or “who spoke when” task,

where the goal is to make a perfect system cluster for every reference speaker. Any time instant

which deviates from this definition of the task is counted as an error in this metric. This is dif-

ferent from the way, these errors are handled in the � metric (5.11) proposed and used earlier in

this chapter. The � metric penalizes every erroneous mapping between a reference speaker and a

system cluster from a “clustering” point of view. Consider, for example two cases when a reference

speaker is assigned to two and three clusters, respectively. The diarization error (5.12) will be the

same in these two cases. Conversely, the proposed � metric will be higher for the case when the

reference speaker is split in two clusters, which is indeed a better clustering compared to the case

when the reference speaker is split in three different clusters. Similarly, this difference between the

two evaluation criteria is also evident for the cases when a system cluster has data from more than

one speaker. Thus, we note that the proposed � metric (5.11) can be used more generally to com-

pare two clustering solutions, opposed to diarization error which is specific to speaker diarization

or “who spoke when” task.

5.7.2 Data

All the datasets for these evaluations were released by NIST and consisted of several hours of

English broadcast news. As reported in (Ajmera and Wooters, 2003), these datasets were called

dryrun and evaldata. The dryrun data consisted of 6, 10-minute excerpts of American English

broadcast news and evaldata consisted of 3, 30-minute excerpts of American English news shows.

For these experiments as well, MFCC vectors were extracted every 10ms to be used in the speaker

clustering algorithm. As an indication of the number of speakers, there were 47 male and 12 female

speakers in the evaldata.

5.7.3 System Parameters

Based on the observations from our Hub4 experiments (explained in previous section), the system

parameters were decided to fit the data sizes. For dryrun 10 minute datasets,
� � � � and � � �
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System % Diarization Error
A 28.75

Proposed 30.90
B 32.02
C 35.05
D 58.82
E 63.59

Table 5.6. The performance of different speaker clustering systems participated in Dryrun experiments as part of RT-03
evaluations in the framework of DARPA-EARS program. In this evaluation, the proposed criterion performs better than
most of the participating systems.

were used. For the evaldata 30 minutes datasets,
� � �

� and � � �
were used. The minimum du-

ration of 2 seconds (which is equivalent to 200, 10ms frames) was used for both the shows. Uniform

initialization was used for all the experiments.

For the speech/non-speech segmentation task, we applied the system presented in Chapter 3.

However, we realized that the system presented in Chapter 3 is based on a British English ASR

system, and the data in this evaluation was American English speech. From our preliminary experi-

ments, we observed that although this system improves the overall performance, it was not efficient

enough to be used as a pre-processing module for this task. Thus, after running the speaker cluster-

ing algorithm on the complete dataset, non-speech segments identified by our system were omitted

from the output segmentation. The analysis of this processing is presented in next section.

5.7.4 Comparison with other approaches

For these dryrun and final evaluation sessions, 7 and 8 different systems participated, respectively,

including the proposed system. The performance of all different systems participated in these eval-

uations are presented in Tables 5.6 and 5.7.

Table 5.6 presents the performances of the different systems participated in the Dryrun exper-

iments involving dryrun dataset. The table shows that the proposed system performs better than

most of the participating state-of-the-art approaches.

Table 5.7 shows the performance of the systems participated in the final evaluations involving

evaldata. This table 5.7 shows that the performance of the proposed clustering algorithm is com-

parable to many state-of-the-art algorithms for this purpose. However, when this is combined with

the fact that the proposed system required no training or tuning for these evaluations, the pro-
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System % Diarization Error
A 13.53
B 14.38
C 17.04
D 17.23

Proposed 18.70
E 19.37
F 24.50
G 27.65

Table 5.7. Performance of different systems participated in NIST speaker diarization evaluations. The performance of the
proposed system is highly competitive with other approaches, with a clear advantage of being a threshold/adjustment
free approach.

Error Type Without SND With SND
Missed speaker time 0.1 2.8

False Alarm Speaker Time 11.6 7.0
Speaker Error Time 9.8 8.9

Total 21.5 18.7

Table 5.8. The analysis of the errors for the cases when a speech/non-speech discrimination (SND) was applied and
when it was not applied. The SND module significantly improves the overall speaker diarization performance.

posed algorithm holds a clear advantage. Moreover, during our detailed analysis, it was observed

that the evaldata consisted of a lot of non-speech data (11.6% of the scored time) and thus, the

speech/non-speech segmentation also held an important key in the performance of different sys-

tems. For clarity, we would also like to mention that the numbers presented in Table 5.7 are a re-

sult of both speech/non-speech discrimination (SND) and speaker clustering.The system presented

in Chapter 3 was used for SND for this purpose. Table 5.8 presents the results of the proposed

system with and without the speech/non-speech discrimination (SND).

As expected, speech/non-speech discrimination (SND) helps the system by lowering down the FA

speaker time errors. However, it results in increased missed speaker time. While comparing this

break-down of the results with other systems, we realized that our SND performance (reflected by

false alarm speaker time and missed speaker time) was considerably worse than the other systems,

resulting in overall higher diarization error. On the other hand, our speaker error time was much

lower compared to other systems. The breakdown of the performance of different systems in terms

of three kind of errors is shown in Figure 5.7. As mentioned earlier, we applied the system presented

in Chapter 3 for this task, and this system is primarily based on a British English ASR. Whereas,

the data used in these evaluations was American English broadcast news speech. On the other
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AB DE FCG Pro.
Figure 5.7. Breakdown of performance of different participating systems in RT-03 speaker diarization evaluations in terms
of False Alarm Speaker Time (top partition), Missed Speaker Time (middle partition) and Speaker Error Time (lowest
partition). The performance of the proposed system is labeled as Pro. The figure shows that the while the performance
of the proposed system in terms of speaker error time is very competitive compared to other systems (second after ’A’),
the performance in terms of other two types of errors is considerable poor.

hand, the performance of the speaker clustering algorithm alone (in terms of speaker error time)

was in fact superior to most of the participating systems.

5.8 Conclusion

This chapter addressed the problem of speaker clustering where the goal is to segment the speech

data and group them by speakers. A HMM based agglomerative clustering framework was de-

veloped for this purpose, where the system starts by assuming large number of speaker clusters.

Following this, best pair of clusters according to a distance/similarity metric is chosen and merged.

This is done iteratively until a stopping criterion is met. It was pointed out clearly that in most of

the previous approaches, this stopping criterion is based on heuristics or empirically chosen thresh-

old values.

This chapter presented a novel distance metric, which can be used as a distance metric for merg-

ing two clusters. The distance metric has the form of LLR where the number of free parameters in

the two models is forced to be equal. This makes the important difference that unlike LLR which is
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always a negative value, the value of the proposed distance metric ranges from negative to positive

values, making zero a natural threshold for this problem. The important property of this metric

is that it does not rely on any heuristic or threshold values and the merging decision is made au-

tomatically. The clustering process is stopped at a point when no more pair of clusters satisfy this

merging criterion.

Although the proposed algorithm is efficient and requires a minimum of human interaction,

there are still a number of basic system settings involved in this system. A detailed analysis of

the system performance with variations in these settings was carried out. It was shown that the

system performance does not depend heavily on the exact choice of the values of these parame-

ter within a reasonable range. Moreover, the performance of the proposed merging and stopping

criteria was compared with that of log-likelihood ratio (LLR), and it was shown that the proposed

criteria outperforms LLR in most of the situations.

Finally, details of our participation in NIST evaluations were presented where the proposed

algorithm could be compared directly with other state-of-the-art approaches in this domain. The

comparison showed that the proposed system performs quite comparable to other approaches on an

average. This together with the fact that unlike other approaches, the proposed algorithm does not

require any threshold adjustment and hence development data shows that the proposed algorithm

holds a clear advantage over other state-of-the-art approaches.



Chapter 6

Applications

The problems and proposed solutions for speech/music discrimination, speaker changed detection

and speaker clustering have been discussed individually in Chapters 3, 4 and 5 respectively. How-

ever, it is clear that in practical applications, these problems do not arise independently. For ex-

ample, if broadcast news has to be indexed in terms of speakers, it is rarely the case that the data

contains only speech segments. Moreover, depending on the application, the algorithms also need

to be modified. For example, in the task of online TV captioning, only part of data is available for

processing. Thus, all the modules of audio segmentation need to run in an online fashion as opposed

to offline algorithms (such as speech/segmentation system in Chapter 3 and speaker clustering al-

gorithm in Chapter 5) which make global decisions by utilizing all the data.

This chapter presents two applications that were developed as part of relevant projects during

this thesis work. These applications are built using the basic modules and algorithms presented in

the previous chapters, with task dependent modifications. These algorithms are appropriately mod-

ified whenever needed. The first application concerns online audio indexing, i.e. as the audio stream

arrives, it should be first verified whether it is a speech segment or not and, in case it is speech seg-

ment, a speaker label should be assigned to the segment to identify “who is speaking”. Also, the

speaker changes and their labels should be found on-the-fly and consistently. This application is

explained in Section 6.1.

The second application relates to the problem of meeting summarization. After the meeting has

taken place, the recorded audio should be segmented and indexed so that it can be navigated easily

87
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by the content. This navigation will include finding the identities of the attendees of the meeting,

identity of the person who made a presentation or all the segments spoken by a particular speaker.

The application proposed in this chapter facilitates this by segmenting the audio data jointly in

terms of both speaker identities and their locations. This application is explained in Section 6.2.

6.1 Online Audio Indexing

A recent research domain that has received much attention is multimedia content analysis, which

concerns the automatic extraction of semantic information from multimedia documents (Wang

et al., 2000). This has a variety of applications, such as indexing, retrieval and browsing of archives

of broadcast news programmes (THISL Project, 1997) or sports videos (ASSAVID Project, 2000).

This application focuses on extraction of information from the audio stream of a multimedia doc-

ument. This audio indexing system has been integrated into retrieval systems in the ASSAVID

Project (2000) and CIMWOS Project (2000) within the European Information Society Technology

(IST) Programme. Both of these projects investigate more general multimedia content analysis, in

which the audio processing system is integrated with video processing modules such as recognition

of on-screen text, face recognition, and object recognition.

A block diagram of the audio indexing system is shown in Figure 6.1. It consists of process-

ing modules for segmentation, classification, clustering, recognition and resynchronization. These

modules interact to process the input audio stream in an online manner, producing output XML

annotations in real-time. The modules are described in more detail in the following sections.

6.1.1 Segmentation

The input audio stream is first processed by the segmentation module, which detects transitions

in the audio characteristics. The module is expected to find change points whenever there is a

transition from music to speech or from speech to music. Moreover, within speech regions, the

module also detects transitions from one speaker to another. However, the task in practice is a little

more complicated as these transitions are not so obvious all the times. For example, in broadcast

news shows, the anchor starts speaking with a theme music in background (referred to as mixture

regions as explained in Chapter 3) and the intensity of this music gradually fades. Sometimes, the
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Incoming Audio Stream

1) Segmentation

2) Speech/Non-speech Classification

Speaker Cluster Index

3) Speaker Clustering

4) Speech Recognition

5) Resynchronisation

Output XML Stream

Non-speech Mixture Speech

Confidence Score

Start/End Times

Speech Words

Word Timings

Figure 6.1. Block diagram of system. Italicized text indicates meta-data output after each processing module. The input
audio stream is first segmented in terms of homogeneous acoustic regions using the system presented in Chapter 4.
Each of these homogeneous segments is then classified as speech, music or “mixture”. Two consecutive music or
mixture segments are combined back to form one big segment. The speech segments, on the other hand are grouped
together (clustered) in an online fashion. A newly arrived speech segment is compared with all previous speaker
clusters using the merging criterion proposed in Section 5.3.3. If this segment does not match with any of the previous
clusters, a new speaker cluster (identity) is created. An ASR system is then employed to convert all speech and mixture
regions into text. Finally, all this meta-data information is properly time-tagged and written in the form of an XML output.
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environmental sounds change while a reporter is speaking. Thus, many times it is not obvious even

to a human listener, whether a change point should occur or not. These situations are handled by

the segmentation module in conjunction with the following speech/non-speech discrimination block.

The algorithm and online framework presented in Chapter 4 is used for the segmentation mod-

ule. We note that this technique finds speaker changes in a given audio stream assuming that the

input is composed of all speech segments. However, in the complex situations as mentioned above,

the algorithm is forced to find change points whenever there is a remarkable change in the acoustic

properties of the input signal. For example, the algorithm will find a change point in the above

mentioned example of an anchor, when the background switches from background music to clean

speech.

The behavior of this module is quite obvious during speech and mixture regions as the algorithm

tries to find speaker turn points or points where the background acoustics within a single speaker

turn changes significantly. However, during music regions, the acoustic properties of the signal

are dynamically changing and hence this module is not expected to find boundary points at the

beginning and end of these music regions. In these situations, the algorithm in fact finds multiple

change points. This problem of finding too many segments during music is resolved in conjunction

with the following speech/non-speech discrimination block where all consecutive music segments

are identified and combined together to form single music segment as described in the following

section.

6.1.2 Speech/Non-speech Discrimination

Once a homogeneous audio segment has been detected by segmentation module explained in the

previous block, the next task is to classify it as speech or non-speech. We refer to this process as

speech/music discrimination as opposed to speech/music segmentation where the task also includes

finding segment boundaries.

The techniques explained in Chapter 3 are used for this module. The system explained in Chap-

ter 3 is primarily designed for speech/music (as opposed to speech/non-speech) segmentation, how-

ever, one of the conclusions made about this system was that it essentially tries to classify the audio

signal in terms of “recognizable” and “non-recognizable” segment. This is further verified in this

application as the data used for experiments (broadcast news speech) in this application has mu-
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sic as the dominant non-speech category but is also composed of several other non-speech sounds.

Moreover, our use of system explained in Chapter 3 is that it is primarily based on functioning of

an ASR system which is also an integral part of an audio indexing application.

First, PLPC feature vectors extracted from each homogeneous segment found by the segmen-

tation module are presented at the input of an MLP which is trained to recognize clean speech.

This results into a set of posterior probabilities every time frame. A sequence of two dimensional

feature vector composed of entropy (3.2) and dynamism (3.4) is extracted from these posterior prob-

abilities as explained in Chapter 3. This feature vector sequence is then presented to a secondary

MLP, which outputs the posterior probability of speech or music classes given input feature vector

sequence. Arithmetic mean of these probabilities over the whole segment (homogeneous segment

detected by the segmentation module) serves as a confidence score as given by (3.5). The confidence

score is also explained in detail in Chapter 3.

Depending on the confidence score, a segment is identified as speech, music or mixture signal.

If the confidence score lies below a lower threshold, the segment is classified as non-speech or

music. On the other hand, if the confidence score is above an upper threshold, the segment is

classified as clean speech. Segments having scores between these two thresholds are marked as

mixtures i.e. having speech with a background non-speech/music element. Two consecutive music

segments are combined to form a single music segment, thereby also solving the problem mentioned

in previous section of over-segmenting the music regions. Two consecutive mixture segments are

combined as well and no speaker identity is given to these segments.

The identified speech segments from these blocks, however, need further identification in terms

of speaker identity. This is done in the speaker clustering step, as explained below.

6.1.3 Speaker Clustering

Segments that have been classified as speech (not including mixture segments) are subsequently

passed through a speaker clustering module, which assigns a cluster index to the segment. Speaker

clustering information is useful for improving the segmentation, and for grouping segments belong-

ing to similar speakers across a database for browsing and retrieval. It could also potentially be

used in adapting acoustic models for speech recognition, or as a pre-processing step to full speaker

identification, although these are not implemented in the current system.
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Whenever a new speech segment comes in, it is compared with all existing speaker cluster

models. If the new segment is not found to match with any of the existing clusters, a new speaker

cluster is formed. Every cluster is composed of a set of data and an associated PDF in the form of a

GMM. The merging criterion (5.5) presented in Section 5.3.3 is used to decide if the latest segment

belongs to any of the previous speaker clusters or not.

To further improve upon the possible errors that have been made in the segmentation step,

this clustering module also merges any contiguous speech segments belonging to the same speaker

cluster.

6.1.4 Speech Recognition

This module is not a focus of this thesis, however, for the completeness of the system description,

the information about this module is also mentioned below in brief.

The final stage of the processing passes each speech and mixture segment as input to a large

vocabulary hybrid ASR system. The MLP used in this recognition system is same as the primary

MLP of speech/non-speech discrimination module and was trained in the framework of THISL

Project (1997). Since the phonetic posterior probabilities for this are already calculated during

speech/non-speech discrimination module, they can be directly used for this without any additional

processing.

The language model for the ASR system is trained using a corpus containing text from BBC

News and English newspaper and news-wire services. To help in ranking results in any eventual

retrieval system, each word in the speech recognition output is assigned a confidence value. In

this case, this is the speech confidence score output by the speech/non-speech classification module

described above, and as such all words within a segment are assigned the same confidence.

The above modules are implemented as separate processes that run in parallel, with inter-

process communication via pipes. Because it is possible for some segments to pass through the

system faster than others (music and mixture segments involving less processing than speech seg-

ments), it is necessary to resynchronize the meta-data at the output. A demonstration of this

application can be found at IDIAP website1 and a snapshot of this demonstration is already shown

in Figure 1.2 in Chapter 1.

1http://www.idiap.ch/pages/contenuTxt/Demos/demos.php
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6.1.5 System Performance

For experiments and evaluating the performance of the different modules explained above, BBC

broadcast news show was used as data. The total duration of this audio stream is 1510 seconds,

labeled in terms of speakers and “excluded regions” which are considered “non-speech” for this

evaluation. The total duration of such “excluded regions” is 360 seconds.

The evaluation metrics used for these different modules have been explained in previous chap-

ters of this thesis. The segmentation module is evaluated in terms of precision ( &�� � ), recall ( �
� �

)

and � -Measure explained in Chapter 4 in Section 4.5. �
� �

is an indication of how well the true

change point are spotted by the system in a certain time window (1 second in our case) and &�� �
is an indication of how precisely the system finds true change points without finding other change

point (false alarms).

Speech/non-speech segmentation module is evaluated in terms of percentage of total frames

classified correctly, referred to as frame accuracy. This measure is also used for the purpose of

evaluation in Chapter 3.

Speaker clustering module is evaluated in terms of average speaker purity ( ��� � ), average clus-

ter purity ( � � � ) and their geometric mean referred to as � -measure as explained in Chapter 5 in

Section 5.4.1. More specifically, ����� provides an indication of how well (on an average) a particular

speaker is assigned to a particular cluster, and not split across several clusters. On the other hand,

� � � provides an indication of how well (on an average) a particular cluster label is assigned to a

particular speaker.

The results for different modules using respective evaluation metrics are summarized in Ta-

ble 6.1. Our system detected total 181 seconds of “mixtures”. Out of these, 87 seconds of mixtures

were labeled as speech/speaker and remaining 94 seconds were labeled as “excluded region” in the

ground-truth. In our analysis, we observed that these “excluded region” are mostly commercial

advertisements with mainly music but also with a significant speaker activity and hence it is not

surprising that our system detected most of these regions as “mixtures”. The other “mixture” re-

gions were mostly beginning and end of programme when an anchor is speaking with background

music.

There are 44 true reference change points (from one speaker to another and from speech to

music) in the test data. The offline system (as explained in Chapter 4) detects a total of 85 changes.
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Out of these 39 changes correspond to the true reference change points, resulting in �
� � � �  � � ,

&�� � � �  � � , � � �F �F� . Most of the 46 inserted changes, occurred during pure music regions.

As expected, the speech/non-speech discrimination block merges most of these short consecutive

music regions and hence improves the precision ( &�� � ). The number of segments after speech/non-

speech discrimination is 66. This results in improved segmentation performance of �
� � ���F � �

,

&�� � � �F � � and � � �F � � .

If we consider the “mixture” regions (as identified by our system) as speech for speech/non-

speech segmentation evaluation, the performance in terms of frame accuracy is 86.2%. In our

analysis of errors related to this module, we observed that most of these errors are made during

music regions i.e. music frames are classified as speech. However, as mentioned earlier, most of

these identified “mixture” regions corresponded to the regions of commercial advertisements which

are indeed “mixtures” but labeled as “excluded regions” and we considered them as non-speech for

this evaluation. This analysis was also supported by the performance of the system presented in

Chapter 3 on the same data, which provided 95% frame accuracy. If we do not consider these regions

(total 93 seconds) in evaluation, the speech/non-speech classification frame accuracy is 92.4%.

The performance of the speaker clustering algorithm in terms of � -Measure is 0.72. Note that

the mixture regions are not clustered with regular speaker clusters and hence for the purpose

of evaluation, a new speaker identity was assigned for every mixture segment. This resulted in

� ���F � � . In our analysis, we observed that this is also similar to the performance of the offline

system (as presented in Chapter 5 which is � � �F � � . This indicates that online clustering done in

this way is a good alternative way to the previously presented agglomerative clustering framework.

However, we note that the current clustering does not deal with segments classified as non-speech

and mixtures, whereas the offline clustering deals with these segments as well.

Also, we note that this system was implemented in a way that only a limited number of samples

are considered to characterize a cluster, and this also results in a much reduced computational

complexity compared to the offline algorithm presented in Chapter 5, where the complexity of the

algorithm in quadratic in the number of clusters.
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Module Metric Performance Offline Performance
Segmentation Precision 0.55 0.46

Recall 0.87 0.89
� 0.67 0.61

Speech/Non-speech Speech Frame Accuracy 98% 99%
Music Frame Accuracy 49% 82%
Total Accuracy 87% 95%

Speaker Clustering Average Speaker Purity 0.79 0.85
Average Cluster Purity 0.66 0.61
� 0.72 0.72

Table 6.1. Summary of performance for different modules of the proposed online audio indexing application. The table
also presents the performance of corresponding offline system presented in one of the previous chapters. As expected,
some of the errors made in the segmentation step are recovered in later stages of speech/non-speech classification
and speaker clustering and hence system performance improves over the offline system. We note a big degradation
in speech/music classification accuracy for the compared to the corresponding offline system, mainly because of the
inclusion of the “mixture” class, which is considered as speech for the evaluation purposes. The performance of the
speaker clustering done in this online fashion is similar to the performance of the offline system, however, note that the
current system does not cluster non-speech and mixture segments.

6.1.6 Application to Multimedia Content Analysis

The audio annotation system described in this chapter has been integrated into two multimedia

annotation systems in the scope of the ASSAVID Project (2000) and CIMWOS Project (2000) Eu-

ropean projects. The ASSAVID system is designed to address the requirements of archivers in the

BBC sports library. The system architecture is detailed in (Christmas et al., 2003). In the context

of the ASSAVID system, the non-speech/music confidence score (converse of the speech confidence)

was found to be a particularly useful cue for higher level processing. In sports video, it was found

that a high value for this score generally indicated either significant crowd noise (and thus sig-

nificant moments) or music (often national anthems). Similarly, the CIMWOS system contains

a number of integrated audio and visual processing modules to automatically annotate general

multimedia data. Specific modules include face detection and recognition, object recognition, text

detection and recognition, audio segmentation and speech recognition. The XML output of these

modules is merged in an indexing and retrieval system.

In such a multimedia retrieval system, particularly useful aspects of the audio system are the

segment-based speech confidence score and the speaker cluster information. The correlation be-

tween the confidence score and speech recognition accuracy (Figure 3.5 in Chapter 3) can be ex-

ploited in searches to enlarge or restrict the number of hits. Along with speech words, and visual

information, the speaker clustering information can be useful in retrieving similar segments from
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Figure 6.2. IDIAP Smart Meeting Room

across an archive. Further work could integrate this with visual information to more accurately

cluster presenters or reporters across an archive.

6.2 Clustering Speakers and Their Locations in Meetings

This application relates to the task of meeting summarization in the framework of M4 Project

(2002). This project is concerned with the construction of a demonstration system to enable struc-

turing, browsing and querying of an archive of automatically analyzed meetings, which have taken

place in a room equipped with multi-modal sensors. One such “smart” meeting room (SMR) has

been setup at IDIAP (Moore, 2002). Figure 6.2 shows the setup of this SMR.

The IDIAP SMR is a 8.2m � 3.6m � 2.4m rectangular room containing a centrally located 4.8m � 1.2m

rectangular table (suitable for seating 12 people). A white-board and retractable projector screen oc-

cupy the wall at one end of the room. This room is capable of recording high quality, multi-channel,

audio-visual meeting data. The current configuration uses three cameras with wide-angle lenses,

six lapel microphones, and two 8-element microphone arrays to record meetings containing up to

six participants. All channels of audio and video are accurately synchronized and time-stamped.

The overall motivation behind such a setup is to investigate how information from meetings can be
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captured, stored, structured, queried, and browsed using multi-modal sensors, analysis, and user

interfaces. The aim is to provide techniques that will help people quickly obtain required informa-

tion from a meeting archive without having to listen and view entire recordings. This will assist

both people who have missed a meeting, as well as those who attended but need to recall certain

details.

The presented application concerns processing of audio signal acquired from meetings. Ideally,

this should be integrated together with processing of other modalities: vision, gestures, text, touch

etc. to generate richer and more accurate information set, but it was not focus of this thesis work.

Specifically, in this work, we concentrate on segmenting the audio archives from these meetings

in terms of speakers and their locations (Ajmera et al., 2004a). Unlike speaker clustering which

segments the data only in terms of speaker and unlike location based segmentation (Lathoud and

McCowan, 2003) which segments the data only in terms of the location (direction) of the sound

source, the goal of this application is to segment the data both in terms of speaker identities and

direction of the sound source. To the best of our knowledge this has not been tried before.

This is an important step toward automatic meeting summarization as it enables the automatic

answering of questions like “who is speaking and at what place?”. For example, based on this

knowledge, a user could query a structured database to show “the last presentation made by such

person” or “the last meetings attended by such person”. Conversely, a user may simply want to

know who attended a meeting that he missed. Globally such structuring of meeting recordings also

greatly enhances the playback experience, insofar as the user can quickly access information that

is relevant to him (survey in Cutler et al. (2002)).

This work was done in collaboration with a colleague at IDIAP (Mr. Guilluame Lathoud) who has

developed an efficient and precise technique for segmenting the audio data from meetings in terms

of locations (direction) of the sound source (Lathoud and McCowan, 2003). Given that the speakers

do not change their locations during a meeting or if the processing is only limited one meeting, this

would also reflect in accurate speaker segmentation and clustering. However, in real-life meetings

people may stand up and move e.g. to the presentation screen and switch places. Moreover, it

may also be desirable to process several meeting archives at a time to access all the speech made

by a particular speaker across these meetings. In these situations, although the location based

segmentation would result in precise audio segments but this processing is incomplete without
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meaningful and consistent identities of these segments.

It was realized that this issue can be resolved in conjunction with the speaker clustering algo-

rithm presented in Chapter 5, where the acoustic properties of the signal can be used to provide

consistent labels (clustering) to the segments found by location based segmentation. This applica-

tion also provided us a framework for testing the performance of the proposed clustering algorithm

on meeting data, which is different from broadcast news speech data in many aspects. The broad-

cast news speech data is mostly single channel, with relatively long speech segments. The meeting

data on the other hand are real discussions, short speech segments with frequent interruptions and

overlaps. Therefore, it may be more difficult to train accurate speaker models and obtain accurate

speaker segmentation in such environment.

Thus, the goal of the proposed system is to design a framework for jointly segmenting and clus-

tering the audio stream, while utilizing information from two sources i.e. acoustic and directional

properties of the signal.

6.2.1 Feature Extraction

Two sequences of characteristic feature vectors are extracted from the signal; acoustic and location

feature vector sequences. Acoustic features are derived by short term spectral analysis of single-

channel audio stream. MFCC coefficients are one example of such processing and are used for this

application. Location features are derived from multi-channel cross-correlation analysis. Specifi-

cally, the microphone array in SMR is used to locate the dominant sound source at each time frame

in terms of bearing: at each time frame � , an estimate of azimuth (angle in horizontal plane, # ; )
and elevation (angle in vertical plane, � ; ) is derived. A single source localization technique based

on the SRP-PHAT measure (DiBiase et al., 2001) is used for this purpose, due to its simplicity and

suitability for reverberant environments.

6.2.2 Clustering Locations

One way to achieve the joint segmentation would be to concatenate the two feature vectors (acoustic

and location feature vectors) and then using the clustering framework defined in Chapter 5, thereby

also deriving the number of locations automatically. There are several problems with this approach.
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First, each class in this framework corresponds to every possible speaker speaking at every possible

locations and this results in large number of classes. A direct consequence of this is that there is

not enough data for every class to make a good statistical model based on GMM, which is clearly

needed for clustering algorithm proposed in Chapter 5. Second, we are looking for a partition of

the two-dimensional space ( # , � ) into simple, connected regions. This leads to modeling with single

Gaussian densities rather than GMMs. On the contrary, using the GMM framework presented

in Chapter 5 would lead to non-connected clusters, i.e. each cluster potentially containing various

non-connected regions of the space. Since we cannot use a GMM framework for clustering location

feature vector sequence, we decided to use K-Means algorithm to achieve this, where the distance

metric used is the angle between two feature vectors.

6.2.3 Combined System

The final goal of the combined system is to derive a joint segmentation of the audio archives in

terms of speakers and their locations. We achieve this in an HMM framework similar to the one

used in Chapter 5 except that the number of classes in this case is much larger, as already men-

tioned above. Each class in the HMM corresponds to a particular speaker speaking at a particular

location. After the data is segmented in terms of these classes, the speaker “clusters” are created

by getting all the data for this speaker from all possible locations and the parameters of the PDF

(a GMM) of this cluster are trained using this data. This resolves the above-mentioned problem

of having too many classes and little data for each of them. On the other hand, the segmentation

of the data is derived by considering the information in both sets of feature vectors. However, it

is not done by concatenating these two sets (for the problems mentioned above) but by assuming

independence between the two information sources and accordingly factorizing the joint PDF. The

resulting system, thus, consists of the following steps:

1. The
�

� locations are partitioned using the K-Means algorithm, resulting in to
�

� centroids

and their corresponding standard deviations. From this, a Gaussian PDF is defined for each

location cluster. These PDFs are unmodified in the rest of the algorithm.

2. An ergodic HMM with minimum duration constraints is constructed with
�

� �
� � number of

classes. In other words, we define a class for each possible active speaker (
� � ) at each possible



100 CHAPTER 6. APPLICATIONS

location (
�

� ). A joint Viterbi segmentation of the two streams (location and acoustic features)

is achieved in terms of
�

� �
� � classes following independence between speaker location and

speaker identity. The PDF of each state ��9��F�	� � � � is therefore:

�C/ � 9�� � � � � �61 � 9�� �E� � � � 3 � �C/ � 9�� 1 � 9�� 3 J �0/ � � � ��1 � � � �E3 (6.1)

where � 9�� and � 9�� � � �IJ=J�J � � � are respectively an acoustic feature vector and a speaker state,

while � � � � and � � � � � � �IJ�J=J � � � are respectively a location feature vector and a location state. It

should also be noted that
� � is the current number of speaker clusters and changes following

a merging in step 5.

3. From the joint segmentation in terms of
�

� �
� � classes, all the data belonging to each of the

� � speaker clusters is collected, and a cluster model (GMM) is re-trained using EM algorithm

to maximize the log-likelihood of this data.

4. Based on these speaker clusters (characterized by a PDF and data associated with it), the

cluster merging criterion (5.5) defined in Chapter 5 is applied to find the best candidates for

merging.

5. If the cluster merging is possible, then these speaker clusters are merged. The model of the

new cluster is re-trained and the algorithm goes back to step 2. Else, the algorithm stops and

the segmentation achieved in step 2 is the output of the system.

6.2.4 Experiments and Evaluation

Data

6 four-people meetings, which are part of a corpus that is fully described in (McCowan et al., 2003a)2,

were used for the experiments. Each of these meetings are 5 minutes long in duration and the con-

catenation of these meetings can be viewed as a single 30 minute meeting, where the participants

and their places (location) change. The room setup is explained in (Moore, 2002) and is shown in

Figure 6.3.
2These meeting recordings are publicly available at http://mmm.idiap.ch/
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Figure 6.3. Recording setup. “S” denote participants’ seats, “P” presentation screen, “W” the white-board and “MA”
the microphone array.

Evaluation Metric

To evaluate the speaker segmentation performance, a precise ground-truth (GT) segmentation of

the recordings was created by an independent observer. There are 6 GT speaker clusters and 1

GT silence cluster. Each GT cluster is segmented independently in terms of “activity” and “non-

activity”. In other words:

� In the case of a GT speaker cluster, “active frame” means this person is speaking - which does

not exclude other speakers also being active. Indeed, the data does feature overlaps.

� In the case of the GT silence cluster, “active frame” means nobody is speaking.

As explained in Section 6.2.3, our scheme produces a single speaker segmentation, therefore not

allowing overlaps between speakers; whereas the GT does include overlaps between speakers. In

order to compare with the GT, we transformed our single segmentation into a series of active/non-

active segmentations, one for each speaker cluster. The data contained very short speech segments,

50% of them being shorter than 960 ms. Therefore we could not use the usual segmentation mea-

sures of precision and recall. Two metrics were used: Frame Accuracy (FA) and Half-Total Error

Rate (HTER). FA is the overall proportion of correctly classified frames. HTER is the average

of False Alarm Rate (FAR) and False Rejection Rate (FRR). FAR is the proportion of erroneous

frames in the active frames of the result. FRR is the proportion of erroneous frames in the non-

active frames of the result. We used HTER to determine the best combinatorial match between GT

speaker identities and result speaker identities.
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#1 #2 #3 #4 #5 #6

acoustic only

combined

GT

Figure 6.4. Time-line of speech activity for the 6 speakers. “GT” row shows the ground-truth, while the “combined”
and “acoustic-only” rows show the respective results from the two systems. Each column spans over 1800 seconds of
meetings.

Results

We first ran the acoustic clustering algorithm described in Chapter 5 alone, then the combined

system. While both systems provided the correct number of acoustic clusters (6 speakers and 1

silence), the quality of the speaker segmentation was improved in terms of both HTER and FA, by

using the combined system, as shown in Table 6.2.

System HTER FA
Acoustic Only clustering 19.2 92.6

Combined Clustering 17.3 94.6

Table 6.2. HTER and Frame Accuracy (FA) in percentages for the acoustic only and for the combined system. The results
show that the combined system improves over the acoustic clustering.

The actual speaker segmentation results and ground-truth are shown in Fig. 6.4. It shows the

entire speech/silence time-line for each speaker. This high-level view shows the concatenation of the

6 meetings, in other words it shows how usable the results are to answer the question “who attended

that meeting?”. Improvement brought by the combined system is clearly visible for speakers #1 and

#2, while results for the other speakers are similar to the acoustic-only results.

On the other hand, the performance of combined clustering in terms of locations is very similar

to the performance of the locations based clustering alone. In fact, the combined system makes use

of the precise location based segmentation and uses the acoustic cues to provide consistent labels

to these segments.
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6.3 Conclusions

This chapter presented two applications which are based on the building blocks from previous chap-

ters of this thesis. The first application concerns online audio indexing which is important for many

real-life applications like online TV captioning or broadcast news speech summarization. This

application consists of an integrated system of audio processing tools to extract meta-data (infor-

mation other than content of the data) from an audio document. The system accepts an input audio

stream, partitions it into homogeneous segments, and classifies these segments as being either

clean speech, noisy speech (mixture), or non-speech. The clean speech segments are additionally

assigned a speaker label, and then words in the speech and mixture segments are recognized. All

time-stamped meta-data is written to an output XML stream. This XML output can then form the

basis of a system for browsing, indexing and retrieving of multimedia documents. The system runs

online, in real-time operation on a modern PC.

The second application concerns automatic analysis of audio stream for structuring, browsing

and querying an archives of meetings. The archived meetings are held in a room equipped with

multi-modal sensors (smart meeting room). The goal of this audio processing was to segment the au-

dio stream jointly in terms of speaker identity as well as the direction of the sound source. An HMM

framework was adopted for this joint segmentation. The information from two streams (acoustic

and location) is effectively combined during segmentation by assuming an independence assump-

tion between the two and factorizing the PDFs. However, the clustering of the two feature sequences

is carried out independently, also resolving the problem of having too many classes and little data.

Our experiments on 6 concatenated, 5-minute meetings (corresponding to a single 30 minute meet-

ing) data recorded at IDIAP SMR showed that the proposed system not only effectively segment the

data jointly in terms of “who spoke when and where?” but also the speaker clustering (consistent

labeling) performance is improved compared to the clustering done using only acoustic information

in the audio. This clearly shows that the precise location segmentation is very helpful for speaker

segmentation and should be used in scenarios like smart meeting room where microphone array is

part of the setup.
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Chapter 7

Conclusion

The major contributions of this thesis can be broken down into three parts related to three dif-

ferent tasks or stages of audio segmentation, namely speech/music segmentation, speaker change

detection and speaker clustering. While the specific contributions remain module dependent, the

underlying common theme has been to develop robust (threshold or heuristic free) and unsuper-

vised techniques for audio segmentation. Following sections present brief summary and specific

contributions related to different tasks.

7.1 Speech/Music Segmentation

The proposed technique for speech/music segmentation (Chapter 3) is primarily based on the func-

tioning of a hybrid ASR system (Bourlard and Morgan, 1994), with an MLP estimating the pos-

terior probabilities of the phonemes in the language being recognized. The features (entropy and

dynamism) used in this work are derived from the analysis of these posterior probabilities and were

introduced for the purpose of discriminating between speech and music classes by (Williams and

Ellis, 1999). In the present work, we further studied these features in detail and used them in a

HMM framework, where both GMM and MLP experts were investigated for the purpose of estimat-

ing state emission probabilities. This framework was used to segment continuous audio streams in

terms of speech and music classes. The system was tested on broadcast news data which exhibits

real-life scenarios (different speech and music styles, different durations, overlapping speech and

105
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music, etc.). We make the following conclusions from this work:

� Entropy and dynamism features have complementary information and make a strong discrim-

inatory feature set (better than MFCC) for speech/music segmentation.

� There is no remarkable difference between the performance of GMM and MLP experts for this

task. However, GMM parameters can be trained in an unsupervised way without compromis-

ing on performance.

� Since the output of the MLP expert are real probabilities of speech and music classes, defining

a meaningful confidence score over a segment which can indicate proportion of speech in that

segment is easier. This measure can be used to provide metadata information in terms of

mixtures (defined in this thesis as regions where both speech and music signals are present

simultaneously and noticeably).

� The confidence score is also shown to correlate with the resulting ASR performance, and thus

can be used to exclude segments below a threshold from recognition. This also shows that

the proposed system essentially tries to segment the data in terms of recognizable and non-

recognizable segments. However, the recognizability and hence the performance of the pro-

posed system for a given sound segment are limited by the (primary) MLP.

In summary, while the proposed technique can also be used for other applications, it provides an

efficient and robust pre-processing module for a hybrid HMM/ANN ASR system.

7.2 Speaker Change Detection

A metric based approach to speaker change detection is presented in Chapter 4 where two neigh-

boring windows of relatively small sizes are dynamically moved over the audio signal. The major

contribution of this thesis is to propose a novel distance metric which is used to compute the dis-

tance between the two windows and accordingly decide if there exists a change point between the

two windows. We make the following conclusions from this work:

� Unlike BIC and LLR distance metrics which make use of an adjustable threshold, the pro-

posed distance metric is free of any tuning parameters and still provides similar performance.
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� A systematic, although intuitive, analysis of the functioning of the proposed distance metric

showed that the metric results in values ranging from positive to negative values for the cases

of a speaker change and no speaker change, respectively, making zero a natural threshold for

the problem.

� Most of the significant speaker change points are detected within a very small range (order of

400ms). However, the system performance for a true reference change point depends a lot on

its detectability (distance in time from the next true change point).

7.3 Speaker Clustering

Chapter 5 proposed a speaker clustering algorithm which is efficient and requires minimal hu-

man interaction. The algorithm is based on an HMM framework and runs in an agglomerative

manner. Starting with a large number of clusters, the algorithm identifies pairs of closest clus-

ters and merges them in an iterative manner. The major contribution of this chapter is to define

a novel merging criterion to decide if two clusters should be merged or not. Several experiments,

with different settings, datasets and feature vectors were carried out to examine the efficiency and

robustness of the algorithm. We make the following conclusions from this work:

� The proposed merging criterion is shown to be free of any “tunable” parameters and still

outperform the LLR, which requires a threshold value to make a decision about the merging

of two clusters.

� The algorithm converges when there are no more pairs of clusters left for merging, eliminating

the need for an external method of controlling the clustering process such as heuristics or

adjustable threshold values.

� The study of system performance as a function of basic system settings involved in the system

illustrated the robustness of the algorithm, as long as the values of these parameters were

selected to be in a reasonable range.

� Our experiments with different commonly used feature vectors showed that although all fea-

ture vectors perform reasonably well, MFCC coefficients provide the best performance. This
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is also in accordance with the choice of feature vectors made in most state-of-the-art speaker

recognition systems.

� The performance of the algorithm degrades with increasing number of reference speakers

in the data. In the case of a limited number of speakers, the number of clusters found by

the algorithm often corresponds to the number of reference speakers. When the number of

speakers is too large, the algorithm tries to form pure clusters for dominant speakers.

� The proposed merging criterion fails to merge clusters having non-speech data and ends up

forming a few extra clusters for non-speech data.

� The algorithm showed very competitive performance compared to other state-of-the-art ap-

proaches in NIST “who spoke when” speaker diarization evaluations. Moreover, we note that

the system often results in high speaker purities, a feature that is desirable in applications

such as speaker adaptation for ASR.

7.4 Integration

The three tasks investigated in this thesis individually may have to be integrated and/or modified in

a practical application. This issue was explored in Chapter 6, where two practical applications are

built around these basic tasks. The first application addressed the problem of online audio indexing,

where the goal was to first segment the incoming audio stream in terms of homogenous regions,

then classify each segment as speech, music or mixture, and finally provide consistent labeling

(in terms of speakers, speaker clustering) to the speech regions. In this case, the performance of

individual modules is clearly dependent on other modules. When compared with the performance of

corresponding “independent” module on the same data (broadcast news), we observed the following:

� As expected, some of the insertions made in the segmentation step, especially in the pure

music regions, were corrected by the following speech/non-speech discrimination and speaker

clustering tasks.

� The performance of the online segmentation system in terms of speech/non-speech classifica-

tion is inferior compared to that of the offline system, especially for detecting music segments
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classes correctly. This is because of the inclusion of the mixture class, which is considered as

speech for the evaluation of the online system.

� The performance of the speaker clustering was very similar to the performance of the offline

system presented in Chapter 5. However, we note that the clustering in an online framework

as presented in Chapter 6 only deals with clean speech segments as all the non-speech and

mixture segments are excluded from clustering process. On the other hand, the offline clus-

tering algorithm deals with all the data. A similar performance of the two frameworks shows

that in offline framework, non-speech segments are assigned to clusters other than speech

clusters.

The second application in Chapter 6 addressed the problems of clustering the data both in terms

of speakers as well as their locations in a meeting room recording. The motivation behind this work

was to use the clustering algorithm proposed in Chapter 5 with additional information in terms

of precise location based segmentation (Lathoud and McCowan, 2003), available in scenarios like

Smart Meeting Rooms. This approach not only results in joint segmentation of the data in terms

of “who is speaking and at what place?” but also improves the speaker clustering performance

compared to the clustering done using only acoustic cues.

7.5 Future Directions

It was mentioned earlier that, in general, audio segmentation is task of partitioning an audio

stream in terms of homogeneous regions, where the rule of homogeneity depends on the application.

In this thesis, three significant tasks related to audio segmentation were explored. However, there

are various other ways in which an audio stream can be segmented in terms of homogenous regions,

e.g. languages, environments, music-types, genders, channels, etc. In an extreme case, automatic

segmentation in terms of basic sound categories (e.g. phonetic, syllabic etc.) may also be considered.

In the following, I mention two such ways of segmenting the audio data, which can be approached

using basic principles used in this thesis.

Language Identification: We conclude from the work in this thesis and specifically in Chapter 3

that the proposed speech/music segmentation technique essentially tries to segment the data in

terms of recognizable and non-recognizable segments, where the recognizability is determined (or
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limited) by the ASR system. If we have hybrid HMM/ANN ASR for several languages and wish

to have a language identifier as a preprocessing module, methodology similar to our speech/music

segmentation can be employed.

Specifically, the entropy and dynamism features analyzed in this thesis for the purpose of

speech/music segmentation can also be investigated for the purpose of language identification. One

way to achieve this would be to concatenate the entropy and dynamism feature vectors from indi-

vidual language ASR systems and make PDFs of these features for each language. This could then

be used either in a HMM framework like the one used in this thesis or in hypothesis testing done

using LLR.

Automatic Subword Unit Extraction: Subword units can be defined as basic sound units

used to represent words in ASR methodology. Almost all state-of-the-art techniques use phonemes

or units derived from phonemes as subword units. Phonemes are based on “expert” human lin-

guistic knowledge and rely on human perception rather than acoustic observations (data). In an

otherwise statistical framework of ASR subword units and a lexicon based on these units are the

only components that are not decided by data. I strongly believe that subword units extracted di-

rectly from the data would better handle the co-articulation effects within a word and pronunciation

variability across different speakers and hence would result in better ASR performance.

Several researchers have addressed this problem in literature as one of segmentation and clus-

tering (Bacchiani and Ostendorf, 1999; Singh et al., 2002; Svendsen et al., 1995). In this formula-

tion of the problem, the acoustic data is first segmented in terms of homogenous “phonetic” regions

and then these segments are clustered to provide a consistent subword unit index. Although, the

performance achieved in previous work related to subword units is promising (in fact better than

phoneme based systems in some cases), no clear conclusions have been made about the potential of

automatic subword units in ASR. I feel that the reason for this is that most of the previous work

was based on heuristics such as pre-determined number of clusters or linear pronunciation length

of a word (Bacchiani and Ostendorf, 1999; Bahl et al., 1993). These heuristics forbid a systematic

analysis of the system performance as a function of parameters in the system and hence deriving

clear conclusions about the potential of subword units in general is difficult.

I tried to use the threshold and heuristic free segmentation and clustering algorithm proposed

in this thesis for this purpose and realized that the subword unit clustering problem is different
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to speaker clustering problems in many aspects. Although I observed similar behavior of the algo-

rithm (in terms of likelihood) in the context of subword unit clustering, it did not translate in ASR

performance in terms of WER. However, I believe that a more detailed analysis of the problem and

appropriate modifications of the algorithm would result in efficient functioning of the algorithm for

this task. This may involve, for example, investigation of optimality criterion other than maximum

likelihood, like maximum mutual information (MMI) or WER on a held-out dataset, etc. Another

thing I observed and I strongly believe in, is speaker dependent subword units. It is well known

that acoustic features like MFCC are highly influenced by the speaker identity, even after sufficient

smoothing is done to eliminate this. Thus, it may be a good idea to first cluster the data (automati-

cally ) in terms of speakers and then cluster the data within one speaker cluster in terms of subword

units. These speaker dependent subword units may better capture the pronunciation pattern and

co-articulation effects within a speaker, and hence result in better ASR performance. This can then

be extended to the speaker independent case by investigating correlations between subword units

across different speakers.

In summary, I feel that automatic subword units is an open, challenging and promising research

issue and the techniques proposed in this thesis can be appropriately modified and used to approach

this.

Investigation of other threshold free techniques: As mentioned earlier, apart from the

three major tasks addressed in this thesis, there are various other ways in which an audio stream

can be segmented and classified (e.g.environments, music-types, genders, channels, etc.). Investi-

gating the application of threshold free techniques proposed in this thesis for various other audio

segmentation tasks would be fruitful.

There are tasks other than audio segmentation such as speaker verification and keyword spot-

ting, which rely a lot on thresholding or other parameter tuning. In my opinion, similar investiga-

tion of threshold free techniques for these tasks is also required to make these technologies robust

across datasets and acoustic conditions.
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