
 
 

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

Rue du Simplon 4

IDIAP Research Institute
1920 Martigny − Switzerland

www.idiap.ch

Tel: +41 27 721 77 11 Email: info@idiap.ch
P.O. Box 592
Fax: +41 27 721 77 12

How Do Correlation and

Variance of Base-Experts

Affect Fusion in Biometric

Authentication Tasks?

Norman Poh Hoon Thian a Samy Bengio a

IDIAP–RR 04-18

April 2004

first revision : October 2004

second revision : November 2004

to appear in

IEEE Transacations on Signal Processing, 2005

a IDIAP, CP 592, 1920 Martigny, Switzerland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147915421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




IDIAP Research Report 04-18

How Do Correlation and Variance of

Base-Experts Affect Fusion in Biometric

Authentication Tasks?

Norman Poh Hoon Thian Samy Bengio

April 2004

first revision : October 2004

second revision : November 2004

to appear in

IEEE Transacations on Signal Processing, 2005

Abstract. Combining multiple information sources such as subbands, streams (with different
features) and multi modal data has been shown to be a very promising trend, both in experi-
ments and to some extents in real-life biometric authentication applications. Despite considerable
efforts in fusions, there is a lack of understanding on the roles and effects of correlation and
variance (of both the client and impostor scores of base-classifiers/experts). Often, scores are
assumed to be independent. In this paper, we explicitly consider this factor using a theoretical
model, called Variance Reduction-Equal Error Rate (VR-EER) analysis. Assuming that client
and impostor scores are approximately Gaussian distributed, we showed that Equal Error Rate
(EER) can be modeled as a function of F-ratio, which itself is a function of 1) correlation, 2)
variance of base-experts and 3) difference of client and impostor means. To achieve lower EER,
smaller correlation and average variance of base-experts, and larger mean difference are desirable.
Furthermore, analysing any of these factors independently, e.g. focusing on correlation alone,
could be miss-leading. Experimental results on the BANCA multimodal database confirm our
findings using VR-EER analysis. Furthermore, F-ratio is shown to be a valid criterion in place of
EER as an evaluation criterion. We analysed four commonly encountered scenarios in biometric
authentication which include fusing correlated/uncorrelated base-experts of similar/different per-
formances. The analysis explains and shows that fusing systems of different performances is not

always beneficial. One of the most important findings is that positive correlation “hurts” fusion
while negative correlation (greater “diversity”, which measures the spread of prediction score with
respect to the fused score), improves fusion. However, by linking the concept of ambiguity decom-
position to classification problem, it is found that diversity is not sufficient to be an evaluation
criterion (to compare several fusion systems), unless measures are taken to normalise the (class-
dependent) variance. Moreover, by linking the concept of bias-variance-covariance decomposition
to classification using EER, it is found that if the inherent mismatch (between training and test
sessions) can be learned from the data, such mismatch can be incorporated into the fusion system
as a part of training parameters.
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1 Introduction

Biometric authentication (BA) is the problem of verifying an identity claim using a person’s be-
havioural and physiological characteristics. Examples of biometric modalities are fingerprint, face,
voice, hand-geometry and retina scans [9]. Biometric data is often noisy because of deformable na-
ture of biometric traits, corruption by environmental noise, variability over time and occlusion by the
user’s accessories. This affects the accuracy and the reliability of a BA system. One popular trend to
improve accuracy is to use multiple modalities of biometric traits, or multiple features (of the same
biometric traits), multiple classifiers or multiple samples. Scores are then fused using a COmbination
Mechanism (COM, also called a supervisor, a fusion expert/classifier).

Although fusion in the context of BA has been discussed elsewhere, in the authors’ opinion, there
is still a lack of theoretical analysis and understanding, particularly with respect to correlation. Hong
et al [6] shed some light on this subject by demonstrating that combining the expert opinions using
AND and OR will result in improved performance. Unfortunately they assumed that the baseline
expert opinions are not correlated. Sanchez et al [10] showed both theoretically and empirically that
fusing multiple instances of biometric trait can indeed reduce the system error by as much as 40%.
The theoretical analysis, unfortunately, again did not deal with the case where the expert opinions
are correlated. Since multiple instances of the same biometric traits are likely to be correlated, it is
not clear how correlation in expert opinions can hamper the expected improvement, although they
observed that “saturation” may happen, i.e., using more instances of the same biometric trait cannot
help improve the performance further. Using the XM2VTS database, Kittler et al [11] examined
intramodal (i.e., different base-experts of the same biometric trait) and multimodal (i.e., base-experts
of different biometric traits) expert fusion. According to this empirical study, for multimodal fusion,
there is no strong evidence that trainable fusion strategies (based on Decision Template [13] and
Behaviour Knowledge Space [7]) offer better performance than simple rules (based on sum and vote).
They remarked that although adding more experts can reduce variance, such gain is downplayed by the
increased ambiguity due to the weak experts. For intramodal fusion, where the expert scores are highly
correlated, increasing the number of experts improve monotonically with fusion results. Unfortunately,
the issue of correlation is not examined in details. Vermuulen et al [17] studied empirically the case of
combining two systems’ hypotheses. Specifically, they examined the combination of two systems with
equal performance, with unequal performance and with one system outperforming the other under
certain conditions. They observed that fusing two systems is advantageous when the errors committed
by both systems are not correlated, i.e., the combined system may benefit from the case where, for
the same access, one system commits an error and the other makes the right decision and vice-versa.
Again, the correlation of these errors are not explored further.

The goal of this study is to apply the VR-EER analysis (the first part is Variance Reduction (VR)
and the second part is Equal Error Rate (EER) analysis) that we have proposed in [16] on the fusion
using a non-trainable COM, namely the mean operator. Different from our previous work, this study
takes into account the effect of score normalisation such that the resultant scores have zero-mean
and unit-variance. The VR-EER analysis provides a very simple framework to analyse what happens
when the scores are correlated, or when the variances of the base-expert are high/low. Since these
factors are actually inter-related, attempts to analyse one or the other often fail. Using the proposed
framework tested on the BANCA database, we were able to identify different contributing factors that
determine the success and failure of fusion, in the context of BA. Based on the VR-EER analysis, four
commonly encountered scenarios of fusion in biometric authentication are discussed and analysed.

In this paper, we also linked the concepts of ambiguity decomposition [12] and bias-variance-
covariance decomposition [19] that are important analysis tools in regression problems to specific
classification problems (using Equal Error Rate evaluation criterion). To the best of our knowledge,
the link between these concepts and classification problems have not been shown elsewhere in the
literature, as also pointed out by Brown [3].

In the literature, fusion in BA often relies on one or two reported experiments. It should be stressed
that our approach to fusion is different in that, we tried to conduct as many experiments as available
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to us, such that some meaningful statistics can be derived and generalised to other fusion using the
same technique.

Section 2 presents briefly the BANCA experiment setup whereby 1186 experiments were used to
study EER and another 70 experiments were used to study fusion. Section 3 discusses the preliminary
findings of the VR-EER analysis and notations used. Section 4 presents what happens to fusion when
scores are normalised. The effects of variance and correlation are verified in Section 5. Using these
findings, we analysed four commonly encountered scenarios of fusion in Section 6. Two important
analysis tools and concepts that are well-studied in regression problems are linked to a specific classi-
fication problem in Sections 7 and 8. Future extensions and limitations of the study are discussed in
Section 9. This is followed by conclusions in Section 10.

2 Experiment Setup

The BANCA database [1] is the principal database used in this paper. It has a collection of face and
voice prints of up to 260 persons in 5 different languages. In this paper, we only used the English
subset, containing only a total of 52 persons; 26 females and 26 males. There are altogether 7 pro-
tocols, namely, Mc, Ma, Md, Ua, Ud, P and G, each simulating matched control, matched adverse,
matched degraded, uncontrolled adverse, uncontrolled degraded, pooled and grant test, respectively.
For protocols P and G, there are 312 client accesses and 234 impostor accesses. For all other pro-
tocols, there are 78 client accesses and 104 impostor accesses. There are altogether 1186 score files
containing single modality experiments or fusion experiments, thanks to a study conducted in [14]1.
The classifiers involved are Gaussian Mixture Models (GMMs), Multi-Layer Perceptrons (MLPs) and
Support Vector Machines (SVMs). All the score files are used to test the Gaussian hypothesis as
reported in Section 3.3.

A subset of single modality experiments were selected to study fusion as reported in Section 5.
These experiments were carried out by University of Surrey (2 face experiments), IDIAP (1 speaker
experiment), UC3M (1 speaker experiment) and UCL (1 face experiment). The specific score files
used are as follow:

• IDIAP_voice_gmm_auto_scale_33_200

• SURREY_face_svm_auto

• SURREY_face_svm_man

• UC3M_voice_gmm_auto_scale_34_500

• UCL_face_lda_man

for each of the 7 protocols. Each of these files contains the following columns of data: the true identity,
the claimed identity, a unique access tag and the associated expert score for the access. Moreover, for
each protocol, there are two subgroups, called g1 and g2. In this paper, g1 is used as a development set
(called dev) while g2 is used as an evaluation set (called eva). By combining each time two baseline
experts of a protocol, one can obtain 10 fusion experiments, given by 5C2 (5 “choose” 2). This results
in a total of 70 experiments for all 7 protocols.

3 Preliminary and Recent Findings on VR-EER

Our proposed theoretical model [16] has two parts. The first one deals with Variance Reduction (VR)
and the second relates F-ratio (which involves variance discussed in the first part) to Equal Error Rate
(EER).

1Available at “ftp://ftp.idiap.ch/pub/bengio/banca/banca scores”
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3.1 Variance Reduction

The fundamental problem of BA can be viewed as a classification task to decide if person x is a
client or an impostor. In a statistical framework, the probability that x is a client after a classifier fθ

observes his/her scanned biometric trait can be written as:

y ≡ fθ(fe(s(x))), (1)

where, s is a sensor, fe is a feature extractor, θ is a set of classifier parameters associated to the
classifier fθ. If the classifier is associated to a unique client identity j, we can replace θ by θ(j). Note
that there exists several types of classifiers in BA, all of which can be represented by Eqn. (1). They
can be categorized by their output y, i.e., probability (within the range [0, 1]), distance metric (more
than or equal to zero), or log-likelihood ratio (a real number). In the context of multimodal BA, y
is associated to the subscript i, which takes on different meanings in different context of fusion, as
follows:

yi =







fθ(fe(s(xi))) if multi-sample
fθ(fe(si(x))) if multimodal
fθ(fe,i(s(x))) if multi-feature
fθ,i(fe(s(x))) if multi-classifier

(2)

Note that i is the index to the i-th sample in the context of multi-sample fusion. i can also mean
the i-th biometric modality in multimodal fusion, etc. In a general context, we refer yi as the i-th
response and there are altogether N responses ( i = 1, . . . , N).

The analysis here, based on Equal Error Rate (EER), requires that the class label of the claimant
be known in advance. EER is a commonly used performance evaluation criterion in BA and will be
defined in Section 3.2. Suppose that yk

i is the i-th response (sample, modality, feature or classifier)
belonging to class k = {C, I}, i.e., either client or impostor. We adopt the convention that the mean
of yk=C

i is greater than that of yk=I
i .

Suppose yk
i,j is the j-th observed sample of the i-th response of class k, recalling that i = 1, . . . , N

and k = {C, I}. We assume that this observed variable has a deterministic component and a noise
component and that their relation is additive. The deterministic component is due to the fact that
the class is discrete in nature, i.e., during authentication, we know that a user in either a client or
an impostor. The noise component is due to some random processes during biometric acquisition
(e.g. degraded situation due to light change, miss-alignment, etc) which in turn affects the quality
of extracted features. Indeed, it has a distribution governed by the extracted feature set fe (s(x)))
often in a non-linear way. By ignoring the source of distortion in extracted biometric features, we
actually assume the noise component to be random (while in fact they may be not if we were able to
systematically incorporate all possible variations into the base-expert model).

Let µk
i be the deterministic component. Note that its value is only dependent on the class k =

{C, I} and independent of j. We can now model yk
i,j as a sum of this deterministic value plus the

noise term wk
i,j , as follows:

yk
i,j = µk

i + wk
i,j , (3)

for k ∈ {C, I} where wk
i,j follows an unknown distribution W k

i with zero mean and (σk
i )2 variance, i.e.,

wk
i,j ∼ W k

i

(
0, (σk

i )2
)
. By adopting such a simple model, from the fusion point of view, we effectively

encode the i-th response of a biometric system as the sum of a deterministic value and another random
variable, in a class-dependent way. Following Eqn. (3), we can deduce that yk

i,j ∼ Y k
i ≡ W k

i

(
µk

i , (σk
i )2
)
.

Hence, the expectation of Y k
i (over different j samples) is:

E[Y k
i ] = E[µk

i ] + E[W k
i ] = µk

i . (4)

Note that different from [16], here we do not require µk
i to take on specific values such as −1 for

k = I and 1 for k = C. This assumption is true for discriminative training (i.e., using Multi-Layer
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Perceptrons (MLPs) or Support Vector Machines (SVMs)), but not applicable for distance-based
scores or log-likelihood ratios. Hence, removal of such assumption makes the analysis applicable to a
wider context.

Let us consider two cases here. In the first case, for each access, N responses are available and
are used independently of each other. The average of variance of Y k

i over all i = 1, . . . , N , denoted
as (σk

AV )2 is, according to [16]:

(
σk

AV

)2
=

1

N

N∑

i=1

Cov(Y k
i , Y k

i )

=
1

N

N∑

i=1

E[W k
i W k

i ]

≡ 1

N

N∑

i=1

(
σk

i

)2
, (5)

where we adopted the following notation: Cov(Y k
i , Y k

j ) as the covariance between Y k
i and Y k

j , for any

i, j ∈ {1, . . . , N}. By definition, Cov(Y k
i , Y k

j ) ≡ E[W k
i W k

j ]. When i = j, we obtain the variance of

Y k
i , which is denoted as (σk

i )2.
In the second case, all N responses are used together and are combined using the mean operator;

the resultant score can be written as:

Y k
COM =

1

N

N∑

i=1

Y k
i , (6)

for any k ∈ {C, I}. The variance of Y k
COM (over many accesses), denoted as (σk

COM )2, is called the
variance of average, and can be calculated as follows (see [16] for details of this derivation):

(
σk

COM

)2
= Cov(Y k

COM , Y k
COM )

=
1

N2

N∑

j=1

(
σk

j

)2
+

2

N2

N∑

m=1,m<n

ρk
m,nσk

mσk
n,

=
1

N

(
σk

AV

)2

︸ ︷︷ ︸

+

2

N2

N∑

m=1,m<n

ρk
m,nσk

mσk
n

︸ ︷︷ ︸

, (7)

where ρk
m,n is the correlation coefficient between Y k

m and Y k
n for k ∈ {C, I}. The first underbrace

term is the average variance of the base-experts while the second underbrace term is the covariance
between Y k

m and Y k
n for m 6= n. This is because the term ρk

m,nσk
mσk

n is by definition equivalent to
correlation, i.e.,

ρk
m,nσk

mσk
n = E[W k

mW k
n ], (8)

Note that ρk
n,n = 1 for k ∈ {C, I}. The VR analysis shows that [16]:

(
σk

COM

)2 ≤
(
σk

AV

)2
. (9)
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When 0 ≤ ρk
m,n ≤ 1, it can be shown that:

1

N

(
σk

AV

)2 ≤
(
σk

COM

)2
. (10)

In other words, the upper bound of
(
σk

COM

)2
is shown in Eqn. (9) and its lower bound is shown in

Eqn. (10). They are attained in perfect correlation in the former case and uncorrelated case in the

latter case. Any other positive correlation values will cause
(
σk

COM

)2
to take on values between these

bounds. Hence, by combining N responses using the mean operator, the resultant variance is assured
to be smaller than the average (not the minimum) variance.

3.2 Equal Error Rate Analysis

Let µk=C
p and µk=I

p be the means of client and impostor access scores of a given experiment p. Without

loss of generality, we assume that µk=C
p > µk=I

p . Let σk=C
p and σk=I

p be the standard deviation of
the client and impostor scores. In BA, there are two types of errors committed by the system, often
measured by False Acceptance Rates (FARs) and False Rejection Rates (FRRs). FAR(∆) is calculated
by integrating the impostor score distribution from a given threshold ∆ in the score space to +∞
while FRR(∆) is calculated by integrating the client distribution from −∞ to ∆. Equal Error Rate
(EER) is a unique point where FAR equals FRR. By assuming that the client and impostor scores
follow Gaussian distributions, one can derive the EER of a given experiment p as (see [16] for details
of this derivation) :

EERp =
1

2
− 1

2
erf

(
F-ratiop√

2

)

, (11)

where

F-ratiop =
µk=C

p − µk=I
p

σk=C
p + σk=I

p

, (12)

and

erf(z) =
2√
π

∫ z

0

exp
[
−t2

]
dt. (13)

It should be noted that the term F-ratio is used here because this value is somewhat similar to
the standard Fisher ratio, but not defined exactly in the same way. In a two-class problem, the Fisher
ratio [2, pg. 107] is defined as

µk=C
p − µk=I

p

(σk=C
p )2 + (σk=I

p )2
(14)

F-ratio is used here just to underpin the idea that the degree of separability of the class distribution
affects the authentication performance measured by EER. There exists similar measures such as the
d-prime metric proposed by Daugman [5]. It measures how separable the client distribution is from
its impostor counterpart. It is defined as:

d′ =
|µk=C

p − µk=I
p |

√
1

2
(σk=C

p )2 + 1

2
(σk=I

p )2.
(15)

In our opinion, F-ratio should be used instead since it is directly related to EER by Eqn. (11)).
We call the EER based on Gaussian assumption the theoretical EER, to distinguish it from the

empirical EER, which is calculated by direct minimisation of the following criterion:

∆∗ = argmin
∆

|FAR(∆) − FRR(∆)|, (16)

where ∆ is the threshold, and approximated by the commonly used Half Total Error Rate:

HTERmin =
FAR(∆∗) + FRR(∆∗)

2
. (17)
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HTERmin is minimum at ∆∗. This is because FRR is an increasing function (a cumulative density
function; cdf) and FAR is a decreasing function (one minus cdf). ∆∗ is the point where these two
functions intersect. Let EERCOM be the EER of the combined scores and EERAV be the EER of
the average of scores of N responses. Using Eqns. (11 and 12), their corresponding F-ratios can be
defined as follow:

F-ratioCOM =
µk=C

COM − µk=I
COM

σk=C
COM + σk=I

COM

(18)

F-ratioAV =
µk=C

AV − µk=I
AV

σk=C
AV + σk=I

AV

. (19)

In order to show the hypothesis that the EER of the combined scores is less than the EER of the the
average of N responses, i.e.,

EERCOM ≤ EERAV , (20)

we first need to calculate µk
p and σk

p for k = {C, I} and p = {COM, AV }. σk
p |p = {COM, AV } were

defined by Eqns. (5 and 7), respectively. µk
AV is the average of N responses when used separately. It

is defined as:

µk
AV ≡ 1

N

N∑

i=1

µk
i , (21)

µk
COM is the mean of the combined scores of N responses (used simultaneously). It is defined as:

E[Y k
COM ] ≡ µk

COM =
1

N

N∑

i=1

E[Y k
i ]

=
1

N

N∑

i=1

µk
i = µk

AV . (22)

Hence, µk
COM = µk

AV . Since F-ratio is non-linearly and inversely proportional to EER as shown in
Eqn. (11), the inequality of Eqn. (20) can be rewritten as:

F-ratioCOM ≥ F-ratioAV , (23)

Replacing the two F-ratio terms using Eqns. (22 and 21) into Eqn. (23) and using the relation µk
COM =

µk
AV , we obtain:

µk=C
COM − µk=I

COM

σk=C
COM + σk=I

COM

≥ µk=C
AV − µk=I

AV

σk=C
AV + σk=I

AV

σk=C
COM + σk=I

COM ≤ σk=C
AV + σk=I

AV
∑

k={C,I}

σk
COM ≤

∑

k={C,I}

σk
AV (24)

This inequality confirms the upper bound already found in Eqn. (9). Hence, the inequality of Eqn. (20)
is true, i.e., fusing scores can reduce variance which results in reduction of EER (with respect to the
case where scores are used separately). This formed the argument in [16] for why fusion using multiple
modalities, features, and classifiers works for BA tasks.

3.3 Validity of the Gaussian Assumption

To check how accurate the EER function is as compared to its empirical counterpart, we conducted
as many as 1186 experiments on the BANCA database as described in Section 2. There are 490
experiments from the output of Multi-Layer Perceptrons (MLPs), 182 experiments from the output of
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Support Vector machines (SVMs) and 514 experiments from the output of Gaussian Mixture Models
(GMMs). Two approaches are adopted here. The first approach is to test whether for each of the 1186
experiments, the respective client and impostor scores are normally distributed or not. The second
approach is to directly compare the empirical EER against its theoretical counterpart (assuming that
client and impostor distributions are normally distributed).

For the first approach, we applied the Lillie-test [4]. It evaluates the hypothesis that a set of
(client or impostor) scores has a normal distribution with unspecified mean and variance against
the alternative that the set of scores does not have a normal distribution. This test is similar to
Kolmogorov-Smirnov (KS) test, but it adjusts for the fact that the parameters of the normal distri-
bution are estimated from the set of scores rather than specified in advance. Using this test, we found
that 22.85% of impostor scores and 25.89% of client scores (out of 1186 experiments) supported the hy-
pothesis that they are Gaussian distributed. Hence, only approximately a quarter of the distributions
are Gaussian according to the Lillie-test.

The results of the second approach are shown in Figure 1. From Figure 1(a), it can be seen that
both the theoretical and empirical EERs are non-linearly and inversely proportional to their F-ratio.
Removing the F-ratio, we compared the theoretical EER directly with its empirical counterpart in
Figure 1(b). Here the output of different classifiers are plotted with different symbols. If the theoretical
EER matches exactly its empirical EER, the points (each one corresponding to a single experiment)
should be on the diagonal line. One measure of agreement is to use correlation. Its value is evaluated
to be 0.9573, indicating the the variables are strongly correlated. In other words, knowing theoretical
EER, one can use the correlation to approximately estimate the empirical EER.

Figure 1(c) plots the absolute EER difference (between theoretical EER and empirical EER)
versus the average KS-statistics of their respective client and impostor distributions (note that from
each experiment, we will have two KS-statistics values, one for each distribution). The KS-statistics
measures the degree of divergence from normal distribution. As can be seen, the output of MLPs
(trained using sigmoid output function) gives high KS-statistics whereas the outputs of SVMs and
GMMs conform better to the Gaussian assumption.

Prior to this experiment, we thought that deviation from Gaussian would mean large absolute EER
difference. If this was the case, absolute EER difference would have been increasing proportionally
with respect to the KS-statistics. It turns out that this is not the case. In Figure 1(c), despite high KS-
statistics of MLP outputs, their corresponding absolute EER differences are spread below 0.06; some
are even near 0! Hence, deviation from Gaussian does not mean large absolute EER difference. In other
words, the theoretical EER is fairly robust to deviation from the Gaussian assumption.

It should be noted that a more interesting issue to investigate is the relative values of EER,
i.e., if the empirical EER of experiment a is more than the empirical EER of experiment b, does the
theoretical EER of these experiments also follow the same trend? Using the data at hand, we calculated
all the possible combinations of two EER experiments. This turns out to be 1186C2 = 702, 705
combinations. The number of “disagreement”, d, can be calculated as follows:

d =
∣
∣
∣(EERemp

a > EERemp
b ) − (EERtheo

a > EERtheo
b )

∣
∣
∣ (25)

for (a, b) ∈ {(1, 2), (1, 3), . . . , (1185, 1186)} and

(z1 > z2) =

{
1 if true
0 otherwise.

(26)

The percentage of disagreement turns out to be 11%. If the 1186 experiments are representative of
biometric authentication tasks, we can conclude that to compare any two experiments, 89% of the
time, the theoretical EER (calculated from the F-ratio) can give a correct answer as compared to
using the empirical EER as the ground-truth. Of course, a mixture of Gaussians or non-parametric
Parzen window with Gaussian kernel could have been used to accurately model the underlying client
and impostor distributions. In so doing, we may not be able to further perform the analysis in sections
that follow.
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The VR-EER analysis presented here is not simply theoretical. In the following section, we propose
to put this analysis to test.

4 Score Normalisation

To begin with, we would like to fuse the scores of two systems using the simple mean operator
(trainable weighted sum and non-linear functions could be included in this analysis in the future).

Before fusing the scores, it is necessary to normalise them so that the scores of a given base-
expert with high variance will not dominate the fused decision. We used the zero-mean unit-variance
approach. This is done by subtracting an input score from its global mean (estimated from a training
set) and divide it by its standard deviation. Let yk

i be a raw output score which follows the distribution

Y k
i . The normalised score distribution, Y norm,k

i , can be written as follows:

Y norm,k
i =

Y k
i − E[Y all

i ]
√

Cov(Y all
i , Y all

i )

≡ Y k
i − µall

i

σall
i

, (27)

for k ∈ {C, I} and Y all
i = 1/2(Y k=C

i +Y k=I
i ), i.e, the union of the two distributions. When combining

the scores using mean, we obtain:

Y norm,k
COM =

1

N

N∑

i=1

Y norm,k
i . (28)

The expected value of Y norm,k
COM , for k = {C, I}, is:

µnorm,k
COM ≡ E[Y norm,k

COM ]

=
1

N

N∑

i=1

E[Y norm,k
i ]

=
1

N

N∑

i=1

E[Y k
i ] − µall

i

σall
i

=
1

N

N∑

i=1

µk
i − µall

i

σall
i

. (29)

Using Eqns. (4), (27) and (28), the variance of Y norm,k
COM is:

(σnorm,k
COM )2 = Cov(Y norm,k

COM , Y norm,k
COM )

= E

[(

Y norm,k
COM − E[Y norm,k

COM ]
)2
]

= E





(

1

N

N∑

i=1

Y k
i − µall

i

σall
i

1

N

N∑

m=1

µk
i − µall

i

σall
i

)2




= E





(

1

N

N∑

i=1

Y k
i − µk

i

σall
i

)2




= E





(

1

N

N∑

i=1

W k
i

σall
i

)2


 . (30)
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To expand Eqn. (30), one should take care of possible correlation between different W k
m and W k

n ,
similar to Eqn. (7), as follows:

(σnorm,k
COM )2 = E

[

1

N2

(
N∑

m=1

N∑

n=1

W k
mW k

n

σall
m σall

n

)]

=
1

N2

N∑

j=1

E[W k
j W k

j ]

σall
j

+
2

N2

N∑

m=1,m<n

E[W k
mW k

n ]

σall
m σall

n

.

≡ (V k
AV )2 + (V k

COV )2, (31)

for any k ∈ {C, I}. The term (V k
AV )2 is the average normalised variance of the base-expert scores

while the second term (V k
COV )2 is the normalised covariance between Y norm,k

m and Y norm,k
n for m 6= n.

The F-ratio is:

F-rationorm
COM =

µnorm,k=C
COM − µnorm,k=I

COM

σnorm,k=C
COM + σnorm,k=I

COM

. (32)

5 Effects of Correlation, Variance of Base Expert Scores on

Fusion

Having derived all the parameters in the VR-EER analysis in the previous section, namely, µnorm,k
COM ,

σnorm,k
COM , and F-rationorm

COM , we carried out experiments on the BANCA fusion database, each time
combining only two experts. These experiments can be divided into two types: multimodal fusion
(fusion of two different modalities, i.e, face and speech experts) and intramodal expert fusion (of
two face experts or two speech experts). We expect multimodal fusion to be less correlated while
intramodal fusion to be more correlated. This is an important aspect so that both sets of experiments
will cover a large range of correlation values.

A naive approach to analyse fusion is to find empirically the relationship between minimum a
posteriori HTER and the sum of correlation of client and impostor distributions. Let the client and
impostor-dependent correlations between two baseline systems (to be fused) be the scalars ρC and
ρI , respectively2. The results are shown in Figure. 2. From this figure, it can be observed that
multimodal fusion experiments have less correlated scores while multi-feature fusion experiments have
high correlated scores. One would have expected that the minimum a posteriori HTER is somewhat
proportional to ρC + ρI . This is actually partially true because the variance of base-experts are not
taken into account. As a result, there is no clear trend in this graph and one cannot conclude that
HTER is proportional to correlation.

By making use of the enhanced VR-EER analysis with zero-mean unit-variance normalisation, we
propose to evaluate the theoretical versus empirical parameters in the VR-EER analysis. For each of
the parameters tested here, theoretical means that the respective parameter is directly estimated using
the unnormalised input score set. This score set is of dimension two, since only two expert scores are
fused at a time. Empirical means that the respective parameter is estimated using the resultant fused
score.

Figure 3(a) shows empirical F-ratio versus its theoretical counterpart calculated uniquely on the
development set. As can be seen both empirical and theoretical F-ratio are exactly the same. Their
equivalence can be shown mathematically (see Appendix A). Hence, the performance of fusion is

2In general, the correlation of scores of N responses are a matrix of N by N with elements ρm,n. It has the property
that ρm,m = 1 and ρm,n = ρn,m. In the case of two responses, we simply write ρ in place of ρ1,2.
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determined by F-ratio, assuming that the scores are normally distributed, as defined in Eqn. (32).
The fused and normalised mean and variance is defined in Eqn. (29) and Eqn. (31), respectively.
From Eqn. (31), we know that the fused and normalised variance has two components: variance and
covariance. Based on the Gaussian assumption, fusion performance consists of three factors: (1) mean
difference (the nominator of Eqn. (32)), (2) variance and (3) covariance of baseline experts. The first
component measures how far the client mean of the fused score is from its impostor counterpart.
The second component corresponds to the sum of square-root of the diagonal terms of covariance
matrix of the fused scores (for both client and impostor scores). This term measures, in average, how
good the base-experts are, when acting alone. The last component corresponds to the sum of square-
root of the non-diagonal terms of covariance matrix of the fused scores (for both client and impostor
scores). Note that the last two factors cannot be separated due to the square-root of variance in the
denominator of F-ratio. Understanding how these three factors are related (by F-ratio) can guide us
to understand how EER should be minimised or how F-ratio should be maximised, i.e., maximising
the mean difference and minimising the variance and covariance components. Because of these three
interrelated factors, analysing any one of them alone, as done in Figure 2 or in Figure 3(c), does not
lead to any convincing conclusion.

The above analysis was performed by combining two baseline experts. It is natural to ask if the
analysis would work by combining more than two experts. We repeated the above experiments for
combining three and four experts and were able to predict the F-ratio accurately. The results are
similar to those presented in Figure 3(a) (not shown here). This is somewhat expected because the
VR-EER analysis is not limited to two experts. Similarly, the analytical proof showing the equivalence
between empirical F-ratio and theoretical F-ratio in Appendix A is a general framework that, of course,
includes fusion of N experts.

Figure 3(b) plots the F-ratio found on the development set versus the F-ratio found on the evalua-
tion set. They are not exactly the same this time because there is a mismatch between these two data
sets. Nevertheless, their correlation is 0.90, indicating that knowing F-ratio from the development set,
it is possible to predict reasonably F-ratio of the evaluation set. A follow-up study using weighted
sum [15], instead of mean as done here, also showed that using weighted sum operator, where weights
are found on a development set, empirical F-ratios of fusion experiments (using all possible combi-
nation of base-experts) match approximately the F-ratio on the evaluation set. The plot of F-ratio
between the development and the evaluation sets is similar to Figure 3(b) (not shown here), i.e., strong
correlation is also observed. More details on how to derive the F-ratio of weighted-sum fusion (instead
of mean as done here) can be found in [15].

Figure 3(c) shows a 2D plot of the following two variables: correlation of client and that of impostor
scores. The overall correlation between these two variables is 0.83. This indicates that knowing the
covariance (or correlation; since one is proportional to the other as shown in Eqn. (8)) of the impostor
scores, one can approximate the covariance of the client scores. Note that all intramodal fusion
experiments have high correlation values. Figure 3(c) thus has two clusters. The cluster in the upper
right corner belongs to intramodal fusion experiments whereas the cluster in the lower left corner
belongs to multimodal fusion experiments.

6 Analysis of Commonly Encountered Scenarios in Biometric

Authentication

Suppose we have the following scenarios:

1. Combining 2 uncorrelated experts with very different performances

2. Combining 2 highly correlated experts with very different performances

3. Combining 2 uncorrelated experts with very similar performances

4. Combining 2 highly correlated experts with very similar performances
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The first and third cases are often encountered in multimodal fusions while the second and fourth
cases are encountered in intra-modal (multi-feature) fusions. Fusing experts of similar and different
performances are encountered in almost all biometric authentication problems. It should be noted
that empirical evidences of these scenarios have been examined in [17] but unfortunately there was a
lack of theoretical explanation.

To make analysis simple, let us assume that (i) the two base-experts have the same numerator of F-
ratio and that (ii) for each base-expert, the variance and covariance of client and impostor distributions
are proportional. The first assumption is actually reasonable because scores can be normalised to have
canonical client and impostor means. For instance, we can map σk

i to σk,′
i by constraining that they

have the same F-ratio while assuming that µk
i of the resultant conversion takes on −1 for impostor

distribution and 1 for client distribution, as follows:

F-ratio =
µk=C

i − µk=I
i

σk=C
i + σk=I

i

=
1− (−1)

σk=C,′
i + σk=I,′

i

. (33)

The solution is:
σk,′

i = αiσ
k
i , (34)

where,

αi =
2

µk=C
i − µk=I

i

,

for k = {C, I}.
By taking the square of Eqn. (34) and applying the definition of variance of yi, we obtain

(σk,′
i )2 = (αi)

2E
[
(yk

i − E[yk
i ])2

]

= E
[(

αi(y
k
i − E[yk

i ])
)2
]

(35)

Since αi is not dependent on the class label k, Eqn. (35) is also valid when applying to yi, instead
of yk

i . Therefore, to map the client and impostor means to canonical values, one needs to modify
the variance without affecting the F-ratio and the corresponding EER. This simply translates into
multiplying score yi with αi.

The second assumption implies that σk=C
i ∝ σk=I

i for system i ∈ {1, 2} as well as their covariance

ρk=Iσk=C
1 σk=C

2 ∝ ρk=Cσk=I
1 σk=I

2 .

It is rather intuitive and actually not necessary. It just simplifies the analysis so that one considers
only one class at a time. The variance of the two classes can be merged by using the relation found
in the denominator of Eqn. (32). Hence, the class label k can be dropped.

For the first case, without loss of generality, we assume σ1 ≤ σ2 (i.e., system 1 is better than
system 2) and ρ ' 0. Hence, for the combination to be better than the best system, i.e., system 1, it
is required that:

σ2

COM < σ2

1

σ2
1 + σ2

2 + 2ρσ1σ2

4
< σ2

1 (36)

σ2
COM is calculated using Eqn. (7) with N=2.

We see that:
σ2

2 < 3σ2

1 − 2ρσ1σ2.

Note that in general, the covariance ρ ≥ 0. For instance, in multimodal fusion, c is around zero while
in multi-feature fusion, ρ is positive.

Hence, the combined system will benefit from the fusion when σ2
2 is at most less than 3 times of

σ2
1 since ρ ' 0.
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Furthermore, correlation (or equivalently covariance; one is proportional to the other; See Eqn. (8))
between the two systems penalises this margin of 3σ2

1 . This is particularly true for the second case
since ρ > 0. Also, it should be noted that ρ ≤ 0 (which implies negative correlation) could allow for
larger σ2

2 . As a result, adding another system that is negatively correlated, but with large variance
(hence large EER) will improve fusion. Unfortunately, in biometric authentication, 2 systems are
either positively correlated or not correlated, unless these systems are jointly trained together by
algorithms such as negative correlation learning [3].

For the third and fourth cases, we have σ2
1 ' σ2

2 . Hence, Eqn. (36) becomes

ρσ2

2 < σ2

1 . (37)

Note that for the third case, ρ ' 0 which will satisfy the constraint of Eqn. (37). Therefore, fusion will
definitely lead to better performance. On the other hand, for the fourth case where ρ ' 1, according
to Eqn. (37), fusion may not necessarily lead to better performance.

7 Relation to Ambiguity Decomposition

We would like to link our findings with those of Krogh and Vedelsby [12] (see also [2, pages 368]), who
showed that, in our context:

E[Y k
COM − µk

COM ]2 =
∑

i

αiE
(
Y k

i − µk
COM

)2

−
∑

i

αiE
(
Y k

i − Y k
COM

)2

(σk
COM )2 ≡ acck − divk, (38)

where αi are the weights in weighted sum combination. This equation is also true for the normalised
version of Y k

COM , i.e., Y norm,k
COM . Note that αi = 1/N because we are using the mean operator instead

of weighted sum. The first term, denoted as acc (or “accuracy”), measures how accurate each base-
expert is with respect to the mean score of the combined mechanism. It depends only on the individual
base-experts. The second term, denoted as div (or “divergence”), measures the spread of prediction
of the base-experts relative to the score of combined mechanism.

Based on the definition of accuracy in Eqn. (38), the accuracy of Y norm,k
COM as discussed in section 4

is:

acck =
1

N

∑

i

E[Y norm,k
COM − µnorm,k

COM ]

=
1

N

∑

i

E




Y k

i − µall
i

σall
i

− 1

N

∑

j

µk
j − µall

i

σall
j





2

=
1

N

∑

i

E[W k
i W k

i ]

(σall
i )2

= (V k
AV )2. (39)

From Eqns. (38) and (31), it is obvious that divergence is simply:

divk = −(V k
COV )2. (40)

The negative sign in this term shows that the divergence is indeed negatively proportional to the
covariance component. Hence, conclusions drawn in Section 5 also apply here: divergence (negative
covariance) is not a sufficient metric for measuring classification error diversity. This explains why a
number of heuristics to define classification error diversity have been proposed in the literature [18],
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all based on zero-one loss function where a threshold has already been applied. What we really want
to do is in fact measuring the diversity without fixing the threshold in advance. For a specific case in
biometric authentication, this can be done via EER as proposed in Section 3.2 and [16]. By so doing,
one assumes that the client and impostor scores can be modeled by Gaussian distributions, and that
the prior class distributions and cost of two types of errors are equal.

8 Relation to Bias-Variance-Covariance Decomposition

Ueda and Nakano [19] presented the bias-variance-covariance decomposition while Brown [3] provided
the link between this concept and the ambiguity decomposition. However, both discussions were
limited to the context of regression, as clearly pointed out by Brown [3, Sec. 3.1.2]. So far, we
have not discussed about mismatch between training and test conditions. The introduction of bias in
classification can actually be very useful for countering such a problem, as will become clear later.

Suppose that the noise model in Eqn. (3) can only be calculated from a training set. During
testing, the noise model deviates from the one observed during training, i.e., there is a mismatch
between training and testing. Suppose that the new noise model now is:

yk,′
i = µk,′

i + wk
i , (41)

where

µk,′
i = µk

i + hk
i . (42)

In other words, hk
i is a bias. By using the new noise model, we also assume that the noise term wk

i |∀i

do not change in both training and test sessions. By rewriting Eqn. (41) using Eqn. (42), we obtain:

yk,′
i = µk

i + hk
i + wk

i . (43)

Note that Eqn. (43) is also true for Y k
COM and their normalised counterparts (i.e., Y k,norm

COM and

Y k,norm
i ). Therefore, it is also valid to write:

ynorm,k,′
COM = µnorm,k

COM + hnorm,k
COM + wnorm,k

COM , (44)

By definition of ynorm,k
COM , it follows that:

hnorm,k
COM =

1

N

N∑

i=1

hk
i

σi

, (45)

and wnorm,k
COM is defined similarly.

With the noise model in Eqn. (44), the mean of Y norm,k,′
COM is:

µnorm,k,′
COM = E

[

Y norm,k,′
COM

]

=
1

N

N∑

i=1

E
[

µnorm,k,′
i

]

=
1

N

N∑

i=1

µk
i + hk

i − µall
i

σall
i

= µnorm,k
COM +

1

N

∑

i

hk
i

σall
i

≡ µnorm,k
COM + hnorm,k

COM . (46)
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Using Eqn. (46), the class-dependent Mean-Squared Error (MSE) due to this mismatch can be calcu-
lated as follows:

E

[(

Y norm,k
COM − µnorm,k,′

COM ]
)2
]

= E

[(

Y norm,k
COM − µnorm,k

COM − hnorm,k
COM

)2
]

=
(

hnorm,k
COM

)2

+ E

[(

Y norm,k
COM − µnorm,k

COM

)2
]

=
(

hnorm,k
COM

)2

︸ ︷︷ ︸

+ (V norm,k
AV )2 + (V norm,k

COV )2
︸ ︷︷ ︸

. (47)

where the first underbraced term is bias2 and the second underbraced term is variance of the fused
score (found in the training set). As defined in Eqn. (31), the second term can be further decomposed

into (V norm,k
AV )2 (i.e., the average variance of all experts when used separately) and (V norm,k

COV )2 (i.e.,
the spread of prediction; negative divergence as found in Eqn. (40)). Eqn. (47) is the so-called bias-
variance-covariance decomposition. Note that this is a decomposition of MSE. In the context of
classification, MSE is not relevant; Half Total Error Rate (HTER) is. HTER has already been defined
in Eqn. (17) as a function of threshold ∆ (note that HTERmin is only a specific case where the
threshold gives minimum EER).

The variance of Y norm,k,′
COM is:

(σnorm,k,′
COM )2 ≡ E

[(

Y norm,k,′
COM − E

[

Y norm,k,′
COM

])2
]

= E










(

Y norm,k
COM + hnorm,k

COM

)

−
(

µnorm,k
COM + hnorm,k

COM

)





2





= E

[(

Y norm,k
COM − µnorm,k

COM

)2
]

= (σnorm,k
COM )2 (48)

Under the new noise model, it is interesting to note that the class-dependent variance of the fused
score is indeed not affected by the bias, whereas the MSE is. However, the paragraphs that follow will
show that the presence of bias can adversely affect the classification error measured by HTER.

When one knows the amount of mismatch (i.e, one has access to the test data), the a posteriori
F-ratio is:

F-rationorm
COM,apost

=
µnorm,k=C,′

COM − µnorm,k=I,′
COM

σnorm,k=C,′
COM + σnorm,k=I,′

COM

=

(
(µnorm,k=C

COM + hnorm,k=C
COM )−

(µnorm,k=I,′
COM + hnorm,k=I

COM )

)

σnorm,k=C
COM + σnorm,k=I

COM

. (49)

Note that at the a posteriori F-ratio and its corresponding a posteriori EER, their corresponding
threshold is at:

∆apost =

(
(µk=I,norm

COM + hk=I,norm
COM )σC

i +

(µk=C,norm
COM + hk=C,norm

COM )σI
i

)

σI
i + σC

i

. (50)
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The corresponding Half Total Error Rate (HTER) will be:

HTERnorm
COM,apost ≡ EERnorm

COM,apost

=
1

2
− 1

2
erf

(
F-rationorm

COM,apost√
2

)

. (51)

When one does not know the amount of mismatch, the a priori threshold that will be used is the one
that is estimated from the training set, i.e.,

∆apri =
µk=I,norm

COM σC
i + µk=C,norm

COM σI
i

σI
i + σC

i

. (52)

This threshold is then applied to the mismatched test set. As a result, the a priori HTER (on the
test set) will be:

HTERnorm
COM,apost ≡ HTERnorm

COM (∆apost) (53)

where, in a general context, for any given ∆, the corresponding HTER is:

HTERnorm
COM (∆) =

1

2
(FARnorm

COM (∆) + FRRnorm
COM (∆)) , (54)

where

FARnorm
COM (∆) =

1

2
− 1

2
erf

(

∆ − µk=I,norm
COM − hk=I,norm

COM

σk=I,norm
COM

√
2

)

, (55)

and

FRRnorm
COM (∆) =

1

2
+

1

2
erf

(

∆ − µk=C,norm
COM − hk=C,norm

COM

σk=C,norm
COM

√
2

)

. (56)

It is possible to show that

HTERnorm
COM,apost < HTERnorm

COM,apri.

This can be done by showing that HTERnorm
COM,apost is the global minimum, i.e.,

∆apost = arg min
∆

HTERnorm
COM (∆). (57)

Hence any ∆ 6= ∆apost will not be optimal, including ∆apri. In fact this global minimum happens
at EER where FAR=FRR because FRR is an increasing function of the threshold and FAR is a
decreasing function of the threshold.

In summary, this section shows that the bias-variance-covariance decomposition (of MSE) is not
relevant for classification problems. Specifically, in a two-class problem such as biometric authenti-
cation, the concepts of a priori and a posteriori threshold play an important role in decision-making
because these thresholds directly affect a specific classification error called EER3. Under mismatch
between training and test data sets (due to the bias parameter hi), the optimal threshold will not be
the one found on the training data. This section actually provides a realistic theoretical framework
that can be used to measure the amount of error due to this mismatch (in terms of HTER) by using
Eqns. (54–56). Under such mismatch, the best decision one can make, supposing that one has access
to the test data, is to use the a posteriori threshold. Of course in reality, the mismatch is unknown
in advance. One possible solution will be to estimate the probable mismatch and then to pick the
corresponding bias hk

i . This bias can then be used to calculate the new threshold using Eqn. (50).

3This idea can be extended to the general classification error but this is not the focus of this paper. The last
paragraph of Section 9 drafts a procedure to do so.
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9 Limitations and Future Extensions

It should be noted that the present theoretical study is limited to the mean operator. An extension to
the weighted sum was investigated in [15]. To decide whether to perform fusion or not, the best way is
perhaps to directly perform the fusion experiments. However, a more efficient way to achieve the same
goal is to predict the fusion performance based on F-ratio (without explicitly running the experiments)
as done in [15]. Performance estimation is particularly useful to select a subset of experts that will
provide the best fusion performance in a more efficient way as compared to direct experimentation.
This is our current research direction.

This study is also limited to the assumption that the client and impostor score distributions
are Gaussian. However, as shown in this study, deviation from such assumption did not severely
impact the predicted EER performance. This may be due to the unimodal nature of the class-
dependent distribution. To make the analysis more general, one obvious way is to avoid the Gaussian
assumption. One possible research direction is to use different distributions to fit the nature of the
scores (e.g., Poisson distribution for distance scores, X 2 distribution for log-likelihood ratios, etc) or
by an emprical procedure that finds the most suitable and existing distribution using the KS-statistics.
Another direction is to use a mixture of Gaussians. In this case, an analytical study such as the one
done here may not be possible. Yet another direction is to make the client-dependent scores more
normally distributed. This will maintain the analytical solution while tolerating for imprecision due
to non-confirmity of the Gaussian assumption.

Although this study considers only zero-mean unit-variance normalisation (or z-score), one can
replace the global mean and standard deviation parameters to any bias and scaling values estimated by
different procedure. Suppose that these two parameters are called B and A. Any linear transformation
will necessarily make use of these two parameters. As a result, our analysis can be directly extended
to any linear score transformation (or normalisation), such as those proposed in [8]. However, the
same analysis cannot be proceeded for non-linear score transformation. One way to get around this
issue is to estimate the VR-EER analysis parameters on the transformed (or normalised) scores by
the respective non-linear function instead of working on the unnnormalised score space.

Lastly, although only the EER value is studied here (as in Section 3.2), one can extend the present
finding to a more general case, whereby the EER constraint by its definition, i.e, EER(∆) = FAR(∆) =
FRR(∆), does not hold anymore. Given the mean and variance of client and impostor distributions,
the following procedure can be used to find FAR and FRR for an arbritary threshold ∆:

FAR(∆) = 1 −
∫ ∆

−∞

Y k=Idy (58)

and

FRR(∆) =

∫ ∞

∆

Y k=Cdy (59)

When they are assumed to be Gaussian distributed, they have the following parametric forms:

FAR(∆) =
1

2
− 1

2
erf

(
∆ − µk=I

σk=I
√

2

)

, (60)

and

FRR(∆) =
1

2
+

1

2
erf

(
∆ − µk=C

σk=C
√

2

)

(61)

where the erf function is defined in Eqn. (13). When applying the constraint FAR(∆) = FRR(∆), one
obtains Eqn. (11). For any other values of ∆, there is unfortunately no simple expression, without
further introducing simplication to the erf function. However, they can be computed numerically for
each of the ∆ values, using Eqns. (58) and (59), or Eqns. (60) and (61) when assuming that the
class-dependent scores are normally distributed. Because of the need of using numerical calculation,
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analysis from Section 6 onwards is cumbersome, although not impossible. Note that the plot of
(FAR(∆), FRR(∆)) for all ∆ values is called the Receiver’s Operating Curve (ROC) or the DET
curve when plotted on a non-linear scale. When derived using Eqns. (60) and (61), they are truely
Gaussians and will show up as straight lines on the Decision Errror Trade-off (DET) curve. Hence, as
can be seen, extending the finding from EER to the more general case is possible. However, numerical
simulation is unavoidable4.

10 Conclusion

Combining multiple information sources such as subbands, streams (with different features) and multi
modal data has shown to be a very promising trend, both in experiments and to some extent in
real-life biometric authentication applications. Despite considerable efforts in fusion, there is a lack
of understanding on the roles and effects of correlation and variance (of both the client and impostor
scores of base-experts). In this paper, we proposed a theoretical model of Equal Error Rate as a
function of F-ratio, which itself is a function of correlation, variance of base-expert and the difference
of mean of both client and impostor distributions. The fundamental assumption is that the under-
lying client and impostor scores distributions are Gaussian. Although this assumption is not always
true, based on 1186 experiments taken from the BANCA multimodal database, it was found that
the predicted theoretical EER points based on the Gaussian assumption match approximately the
EER points computed empirically from the scores directly. This is a strong indication the Gaussian
assumption is acceptable in practice.

This analysis takes into account the effect of score normalisation. While there exists a lot of litera-
ture on fusion, scores are often assumed to be independent. Here, we explicitly considered this factor
and verified the proposed theoretical model using the BANCA multimodal database. Experimental
results show that the higher the variance of base-experts and its covariance counterpart, the lower
the F-ratio will be and consequently the higher Equal Error Rate (EER) will be. This is because
F-ratio is inversely proportional to EER. Variance of base-experts determines how good their average
quality is when each base-expert acts individually. Lower variance means better performance. Co-
variance among base-experts measures how dependent they are (note that by definition, correlation is
a“normalised covariance”, hence correlation is proportional to covariance). The more dependent they
are, the lesser the gain one can benefit out of fusion.

Furthermore, through the VR-EER analysis, it is discovered that variance and covariance of base-
experts are not the only criterion that determine fusion performance, the mean difference between
fused client and impostor scores is another. The bigger it is, the better F-ratio and hence the lower
EER will be.

Using a mean operator as fusion, we analysed four commonly encountered scenarios in biometric
authentication which include fusing correlated/uncorrelated base-experts of similar/different perfor-
mances. The analysis explains and shows that fusing two systems of different performances is not
always beneficial. The theoretical analysis shows that if the weaker base-expert has (class-dependent)
variance three times larger that of the best base-expert, the gain due to fusion breaks down. This is
even more true for correlated base-experts as correlation penalises this limit further. We also showed
that fusing two uncorrelated base-experts of similar performance always result in improved perfor-
mance. Finally, fusing two correlated base-experts of similar performance will be beneficial only when
the covariance of the two base-experts are less than the variance of the best expert. In any case,
positive correlation “hurts” fusion.

We also linked the concepts of ambiguity decomposition and bias-variance-covariance decompo-
sition to classification problems using EER evaluation criterion. The result of analysis shows that
“diversity”, which measures the spread of prediction score with respect to the fused score, is actually
negative of covariance. As a result, analysing diversity alone is necessary but not sufficient to esti-

4Due to limited space, we only describe the procedure to do so here, even though the DET curve could have been
plotted as an illustration
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mate good fusion, unless measures are taken to normalise the variance against a “canonical” mean
(Section 6). This somewhat confirms the findings in [3]. By linking bias-variance-covariance decom-
position to classification problems, we showed that bias or mismatch between training and test sets
of scores of the base-experts can affect the mean and variance components of the fused scores. It is
found that if the bias of base-experts can be learned from the data, such bias can be incorporated
into the fusion system.

Finally, several limitations of our analysis were presented in Section 9. Future research directions
will concentrate on removing the Gaussian assumption, extending the analysis to the more general
linear combination of scores (instead of mean). Although zero-mean unit-variance normalisation was
used here, we also showed that the analysis can be generalised easily to any linear score transformation
or normalisation (on a per base-expert basis). Although EER is studied here, the more general case of
error whereby the constraint FAR=FRR does not hold any more can be extended easily. Unfortunately,
in this case, numerical analysis (instead of analytical analysis as done here) would have been required.

A Proof of Equivalence between Empirical F-ratio and Theo-

retical F-ratio

The estimated theoretical and empirical parameters can be shown to be exactly the same mathemat-
ically. Suppose there are Mk accesses, where Mk=C are the number of client accesses and Mk=I are
the number of impostor accesses. Suppose also that Y k

i,u is the output of the i-expert and u-th access

given that the class label is k = {C, I}, and i = 1, . . . , N and u = 1, . . . , M k. µk
i can be estimated by:

µ̂k
i ≡ 1

M

k Mk

∑

u=1

Y k
i,u ≡ Ȳ k

i,·. (62)

For the u-th access, the combined score is:

1

N

N∑

i=1

Y k
·,u ≡ Ȳ k

·,u. (63)

The empirical estimate of µk
COM , µ̂k

COM,emp is given by:

1

M

Mk

∑

u=1

Ȳ k
·,u ≡ Ȳ k

·,·. (64)

Note that:

µ̂k
COM,emp =

1

M

Mk

∑

u=1

Ȳ·,u

=
1

N

N∑

i=1

Ȳi,·

(
interchange the

i and u summations

)

=
1

N

N∑

i=1

µ̂k
i

= µ̂k
COM,theo. (65)

Hence, they are the same. The empirical variance can be calculated as follows:

(
σ̂k

COM,emp

)2
=

1

M

M∑

u=1

(
Ȳ·,u − Ȳ·,·

)
(66)
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The theoretical variance is obtained by estimating the terms (σk
i )2 and ρk

i,jσ
k
i σk

j in the expression of

(σk
COM )2, as shown in Eqn. (7). The estimate of (σk

i )2 is given by:

1

M

M∑

u=1

(
Y k

i,u − Ȳ k
i,·

)2
. (67)

The estimate of ρk
i,jσ

k
i σk

j is given by:

1

M

M∑

u=1

(
Y k

i,u − Ȳ k
i,·

) (
Y k

j,u − Ȳ k
j,·

)2
. (68)

Plugging in these two estimates into the expression for (σk
COM )2, we get the theoretical estimate of

the variance of the fused scores as:
(
σ̂k

COM,theo

)2

=
1

N

N∑

i=1

[

1

M

M∑

u=1

(
Y k

i,u − Ȳ k
i,·

)

]

+
2

N

N∑

i=1,j>i

[(
Y k

i,u − Ȳ k
i,·

) (
Y k

j,u − Ȳ k
j,·

)]

=
1

M

M∑

u=1




1

N2

N∑

i,j=1

(
Y k

i,u − Ȳ k
i,·

) (
Y k

j,u − Ȳ k
j,·

)





=
1

M

M∑

u=1

(
Ȳ·,u − Ȳ·,·

)

=
(
σ̂k

COM,emp

)2
. (69)

Because the empirical and theoretical µk
COM and σk

COM are the same, the empirical and theoretical
F-ratios will be exactly the same. Using the definition of F-ratio in Eqn. (12), the theoretical F-ratio
of the combined score can be defined as:

F-ratioCOM,theo ≡
µ̂k=C

COM,theo + µ̂k=I
COM,theo

σ̂k=C
COM,theo + σ̂k=I

COM,theo

. (70)

The empirical F-ratio is:

F-ratioCOM,emp ≡
µ̂k=C

COM,emp + µ̂k=I
COM,emp

σ̂k=C
COM,emp + σ̂k=I

COM,emp

=
µ̂k=C

COM,theo + µ̂k=I
COM,theo

σ̂k=C
COM,theo + σ̂k=I

COM,theo

= F-ratioCOM,theo (71)

Hence, the theoretical F-ratio is exactly the same as the empirical F-ratio. This applies also for
normalised version of Y . �
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Figure 1: Results of experiments carried out using all the available 1186 experiments on the BANCA
score database: (a) Theoretical EER and empirical EER (HTER) versus their common F-ratio (b)
Theoretical EER versus empirical EER (HTER) using output of different classifiers – 490 MLPs, 182
SVMs and 514 GMMs; the correlation coefficient between the two variables is 0.9573. (c) Absolute
EER difference between theoretical EER and empirical EER versus the average KS-statistics between
the corresponding client and impostor distributions. KS-statistics measures the degree of deviation
from Gaussian assumption.
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Figure 2: Empirical EER of combining 2 baseline experts versus ρC + ρI using the BANCA database.
The crosses represent experiments combining 2 modalities while the circles represent those combining
2 features of the same modality. The correlation between the two variables is 0.38.
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Figure 3: Experiments carried out on fusion of 5C2 × 7 = 70 experiments, i.e., combining 2 expert
systems each time out of five available systems, for all the 7 BANCA protocols: (a) Empirical F-ratio
versus theoretical F-ratio on the development set. (b) F-ratio of development set versus its evaluation
set counterpart. The correlation between the two variables is 0.90. (c) Correlation of client scores
versus correlation of impostor scores. The correlations between the two variables (class-dependent
correlations) on the development and evaluation sets are 0.85 and 0.80, respectively.


