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Abstract. Particle filtering is now established as one of the most popular method for
visual tracking. Within this framework, two assumptions are generally made. The first
is that the data are temporally independent given the sequence of object states. In this
paper, we argue that in general the data are correlated, and that modeling such depen-
dency should improve tracking robustness. The second assumption consists of the use
of the transition prior as proposal distribution. Thus, the current observation data is not
taken into account, requesting the noise process of this prior to be large enough to handle
abrupt trajectory changes. Therefore, many particles are either wasted in low likelihood
area, resulting in a low efficiency of the sampling, or, more importantly, propagated on
near distractor regions of the image, resulting in tracking failures. In this paper, we
propose to handle both issues using motion. Explicit motion measurements are used
to drive the sampling process towards the new interesting regions of the image, while
implicit motion measurements are introduced in the likelihood evaluation to model the
data correlation term. The proposed model allows to handle abrupt motion changes
and to filter out visual distractors when tracking objects with generic models based on
shape or color distribution representations. Experimental results compared against the
CONDENSATION algorithm have demonstrated superior tracking performance.
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1 Introduction

Visual tracking is an important problem in computer vision, with applications in telecon-
ferencing, visual surveillance, gesture recognition, and vision based interfaces [4]. Though
tracking has been intensively studied in the literature, it is still a challenging task in adverse
situations, due to the presence of ambiguities (e.g. when tracking an object in a cluttered
scene or when tracking multiple instances of the same object class), the noise in image
measurements (e.g. lighting problems), and the variability of the object class (e.g. pose
variations).

In the pursuit of robust tracking, Sequential Monte Carlo methods [1, 6, 4] have shown to
be a successful approach. In this temporal Bayesian framework, the probability of the object
configuration given the observations is represented by a set of weighted random samples,
called particles. This representation allows to simultaneously maintain multiple-hypotheses
in the presence of ambiguities, unlike algorithms that keep only one configuration state [5],
which are therefore sensitive to single failure in the presence of ambiguities or fast or erratic
motion.

Visual tracking with a particle filter requires the definition of two main elements : a data
likelihood term and a dynamical model. The data likelihood term evaluates the likelihood of
the current observation given the current object state, and relies on the object representation
we have chosen. The object representation corresponds to all the information that explicitly
or implicitly characterize the object like the target position, geometry, appearance, motion
etc. Parametrized shapes like splines [4] or ellipses [18] and color distributions [13, 5, 11, 18]
are often used as target representation. One drawback of these generic representations is that
they are quite unspecific which augment the chances of ambiguities. One way to improve
the robustness of a tracker consists of combining low-level measurements such as shape and
color [18]. A step further to render the target more discriminative is to use appearence-
based models such as templates [15, 16], leading to very robust trackers. However, such
representations do not allow for large changes of appearence, unless adaptation is performed
or more complex global appearence models are used (e.g. eigen-space [2] or set of examplars
[17]).

The dynamical model characterizes the prior on the state sequence. Examples of such
models range from simple constant velocity models to more sophisticated oscillatory ones or
even mixtures of these [8]. A common assumption in particle filtering approaches is to use
the dynamics as proposal distribution (or importance function), that is, as the function that
predicts the new state hypotheses where the data likelihood will be evaluated. Thus, with this
assumption, the variance of the noise process in the dynamical model implicitly defines some
search range for the new hypotheses. This assumption raises difficulties in the modeling of
the dynamics since this term should fulfill two contradictory objectives. On one hand, as
prior, dynamics should be tight to avoid the tracker being confused by distractors in the
vicinity of the true object configuration, a situation that is likely to happen for unspecific
object representations such as generic shapes or color distributions. On the other hand,
as proposal distribution, it should be broad enough to cope with abrupt motion changes.
Besides, the proposal distribution does not take into account the most recent observations.
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Thus, particles drawn from it will probably have a low likelihood, which results in a low
efficiency of the sampling mechanism. Overall, such a particle filter is likely to be distracted
by background clutter.
Different approaches have been proposed to address these issues. For instance, auxiliary
information, if available, can be used to draw samples from, like color in [7], or audio in the
case of audio-visual tracking [3]. An important advantage of this approach is to allow for
automatic (re)initialization. However, from a filtering point of view, one drawback is that,
since these additional samples are not related to the previous samples, the evaluation of the
transition prior term for one new sample involves all past samples, which can become very
costly. To avoid this effect, [12] proposed another auxiliary particle filter. The idea is to use
the likelihood of a first set of predicted samples at time t + 1 to resample the seed samples at
time t, and to then apply the standard propagation and evaluation steps on these seed samples.
The feedback from the new data acts by increasing or decreasing the number of descendents
of a sample according to its “predicted” likelihood. Such a scheme, however, works well
only if the variance of the transition prior is small, which is usually not the case in vision
tracking. [14] proposed to use the unscented particle filter to generate importance densities.
Although attractive, it is still likely to fail in the presence of abrupt motion changes, and the
method needs to convert likelihood evaluations (e.g. color) into state space measurements
(e.g. translation, scale). This would be difficult with color distribution likelihoods and for
some state parameters. In [14], only a translation state is considered. .

In this paper we propose a new particle filter tracking method based on visual motion.
More precisely, we first argue that a standard hypothesis of this filter, namely the indepen-
dence of observations given the state sequence [2, 4, 7, 14, 17, 18], is inaccurate in the case
of visual tracking. In this view, we propose a model that assumes that the current observation
depends on the current and previous object configuration as well as on the past observation.
As we will show, the proposed model can be exploited to introduce an implicit object motion
likelihood in the data term. Secondly, we will make a further use of visual motion by exploit-
ing explicit motion measurements in the proposal distribution and in the likelihood term. The
benefits of this new model are two-fold. On one hand, it increases the sampling efficiency
by handling unexpected motion, allowing for a reduced noise variance in the propagation
process as well as the introduction of non-gaussian prior. On the other hand, the introduction
of data-correlation between successive images will turn generic trackers like shape or color
histogram trackers into more specific ones without resorting to complex appearence based
models. As a consequence, it reduces the sensitivity of the algorithm to the difference noise
variances setting in the proposal and prior since, when using a larger values, potential dis-
tractors should be filtered out by the introduced correlation and visual motion measurements.

The rest of the paper is organized as follows. In the next Section, we briefly present the
standard particle filter algorithm. Our approach is motivated in Section 3, while Section 4
describes the proposed model. Section 5 presents the results and Section 6 provides some
concluding discussions.
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2 Particle filtering

Particle filtering is a technique for implementing a recursive Bayesian filter by Monte-Carlo
simulations. The key idea is to represent the required density function by a set of random
samples with associated weights. Let c0:k = {cl, l = 0, . . . , k} (resp. z1:k = {zl, l =
1, . . . , k}) represents the sequence of states (resp. of observations) up to time k. Further-
more, let {ci

0:k, w
i
k}

Ns

i=1 denote a set of weighted samples that characterizes the posterior
probability density function (pdf) p(c0:k|z0:k), where {ci

0:k, i = 1, . . . , Ns} is a set of sup-
port points with associated weights wi

k. The weights are normalized such that
∑

i w
i
k = 1.

Then, a discrete approximation of the true posterior at time k is given by :

p(c0:k|z1:k) ≈
Ns∑

i=1

wi
kδ(c0:k − ci

0:k) . (1)

The weights are chosen using the principle of Importance Sampling (IS). More precisely,
suppose that we could draw the samples ci

0:k from an importance (also called proposal) den-
sity q(c0:k|z1:k). Then the proper weights in (1) that lead to an approximation of the posterior
are defined by :

wi
k ∝

p(ci
0:k|z1:k)

q(ci
0:k|z1:k)

. (2)

The goal of the particle filtering algorithm is the recursive propagation of the samples and
estimation of the associated weights as each measurement is received sequentially. After
some calculus and using Bayes rule, we obtain the following recursive update equation [1, 6]:

wi
k ∝ wi

k−1

p(zk|c0:k, z1:k−1)p(ck|c0:k−1, z1:k−1)

q(ck|c0:k−1, z1:k)
, (3)

= wi
k−1 p(zk|c

i
k) (4)

where Eq. 4 derives from three commonly made hypotheses :

H1 : The observations {zk}, given the sequence of states, are independent. This leads to
p(z1:k|c0:k) =

∏k

i=1 p(zk|ck), which requires the definition of the individual data-
likelihood p(zk|ck) ;

H2 : The state sequence c0:k follows a first-order Markov chain model, characterized by the
definition of the dynamics p(ck|ck−1).

H3 : The prior distribution p(x0:k) is employed as importance function.
In this case, q(ck|c0:k−1, z1:k) = p(ck|ck−1).

It is known that importance sampling is usually inefficient in high-dimensionnal spaces
[6], which is the case of the state space c0:k as k increases. To solve this problem, an ad-
ditional resampling step is necessary, whose effect is to eliminate the particles with low
importance weights and to multiply particles having high weights, giving rise to more vari-
ety around the modes of the posterior after the next importance sampling step. Altogether,
we obtain the particle filter that is displayed in Fig. 2.
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(a)

kk-1 k+1

observations

states

(b)
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Figure 1: Graphical models for tracking. (a) standard model (b) proposed model.

1. Initialisation : For i = 1, . . . , Ns, sample ci
0 ∼ p(c0) and set k = 1

2. Importance sampling step : For i = 1, . . . , Ns, sample c̃i
k ∼ q(ci

k|c
i
0:k−1, z1:k) and

evaluate the importance weights : w̃i
k using equations (3) or (4).

3. Selection step : Resample with replacement Ns particles {ci
k, w

i
k = 1

Ns
} from the sam-

ple set {c̃i
k, w̃

i
k}. Set k = k + 1 and go to step 2

Figure 2: The particle filter algorithm.

3 Approach and motivations

In this Section, we propose a new method that embeds motion in the particle filter. This is
first obtained by incorporating motion information into the measurement process. This can
be achieved by modifying the traditional graphical model represented in Fig. 1a, by making
the current observation dependent not only on the current object configuration but also on the
object configuration and observation at the previous instant (see Fig. 1b). Secondly, we will
propose to use explicit motion measurements in order to obtain a better proposal distribution.
In this Section, we justify this approach.

3.1 Revisiting particle hypothesis

The filter described in Fig. 2 is based on the standard probabilistic model for tracking dis-
played in Fig. 1a and corresponding to hypotheses H1 and H2 of the previous section.

In visual tracking, hypothesis H1 may not be very accurate.1 In most of the tracking
algorithms, the configuration state includes the parameters of a geometric transformation T .
Then, the measurements consist of implicitly or explicitly extracting some part of the image
by :

z̃ck
(r) = zk(Tck

r) ∀r ∈ R , (5)

where r denotes a pixel position, R denotes a fixed reference region, and Tck
r represents the

1For contour tracking, the assumption is quite valid as the temporal auto-correlation function of contours is
peaked.
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Figure 3: Images at time t and t + 3. The two local patches corresponding to the head and
extracted from the two images are strongly correlated.

application of the transform T parameterized by ck to the pixel r. The data likelihood is then
computed from this local patch : p(zk|ck) = p(z̃ck

), with z̃ck
denoting the patch casted in

the reference frame according to (5). However, if ck−1 and ck correspond to two consecutive
states of a given object, it is reasonable to assume :

z̃ck
(r) = z̃ck−1

(r) + noise ∀r ∈ R (6)

where noise usually takes some small value. This point is illustrated in Figure 3. Equa-
tion (6) is at the core of all motion estimation and compensation algorithms like MPEG and
is indeed a valid hypothesis. Thus, according to this equation, the independence of the data
given the sequence of states is not a valid assumption. More precisely :

p(zk|z1:k−1, c1:k) 6= p(zk|ck) (7)

which means that we can not reduce the left hand side to the right one as usually done. A
better model for visual tracking is thus represented by the graphical model of Fig. 1b.

The new model can be incorporated in the particle framework. All calculus leading to
Eq. 3 are general and do not depend on assumptions H1, H2 and H3. Starting from there,
replacing H1 by the new model and keeping H2 and H3, it is easy to see that the new weight
update equation is given by :

wi
k ∝ wi

k−1 p(zk|zk−1, c
i
k, c

i
k−1) (8)

in replacement of equation (4).

3.2 Proposal and dynamical model

Modeling the dynamics, i.e. the transition prior, of the state sequence is a very important
step. However, in visual tracking, finding a good model is very difficult because of the
low temporal sampling rate and the presence of fast and unexpected motions, due either to
camera or object (human) movments. To illustrate this, let us consider the following simple
dynamical model :

ck = ck−1 + ċk−1 + wk (9)
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where ċ denotes the state derivative and models the evolution of the state. As state, consider
the horizontal position of the head of the sequence in Fig. 8. We manually ground-truthed the
head position in 200 images of this sequence. Fig. 4a reports the prediction error w calculated
using ground-truth data and obtained by estimating ċ with a simple auto-regressive model :

ċk−1 = ck−1 − ck−2 (10)

As can be seen, this prediction is noisy. Furthermore, there are large peak errors (up to
30% of the head width). To cope with these peaks, the noise variance in the dynamics,
used as proposal distribution, has to be set to a large enough value, with the downside that
many particles are wasted in low likelihood areas, or spread on local distractors that can
ultimately lead to tracking failure. On the other hand, exploiting the inter-frame motion to
estimate ċ and predict the new state value (using the coefficient of a robustly estimated affine
motion model, see Section 4.2) can lead to a reduction of both the noise variance and of the
error peaks (Fig. 4b).
There is another advantage of using image-based motion estimates. Let us first note that
the previous state values (here ck−1, ck−2) used to predict the new state value ck are affected
by noise, due to measurement errors and uncertainty. Thus, in the standard AR approach,
both the state ck−1 and state derivative ċk−1 in Eq. 9 are affected by this noise, resulting in
large errors (Fig. 4c). When using the inter-frame motion estimates, the estimation of ċ is
almost not affected by noise (whose effect is to slightly modify the support region used to
estimate the motion), as illustrated in Fig. 5, resulting again in a lower noise variance process
(Fig. 4d).

Thus, despite needing more computation resources, inter-frame motion estimates are
usually more precise than auto-regressive models to predict new state values of geometric
transformation parameters; as a consequence, they are a better choice when designing a pro-
posal function. This observation is supported by experiments on other parameters -vertical
position, scale- and on other sequences.

4 The proposed model

In this Section, we describe more precisely the implementation of our method.

4.1 Object representation and state space

We follow an image-based standard approach, where the object is represented by a region
R subject to some valid geometric transformation, and is characterized by a shape. For geo-
metric transformations, we have chosen a subspace of the affine transformations comprising
a translation T, a scaling factor s, and an aspect ratio e :

Tαr =

(
Tx + xsx

Ty + ysy

)
, (11)
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Figure 4: a) Prediction error of the x position, when using an AR2 model (σw=2.7). b)
Prediction error, but exploiting the inter-frame motion estimation (σw=0.83). c) and d), same
as a) b) but now adding a random gaussian noise (stdev=2 pixels) on the x measurements
used for the prediction. In the AR2 model (Fig. c) both the previous state and state derivative
estimates are affected by noise (σw=5.6), while with visual-motion (Fig. d) the noise only
affects the previous measurement (σw=2.3).

where r = (x, y) denotes a point position in the reference frame, α = (T, s, e), and :
{

s = sx+sy

2

e = sx

sy

and

{
sx = 2es

1+e

sy = 2s
1+e

(12)

A state is then defined as ck = (αk, αk−1).

4.2 Proposal distribution

As mentionned in the previous Section, we use inter-frame motion estimates to predict the
new state values. More precisely, an affine displacement model ~dΘ parameterized by Θ =
(ai), i = 1..6 is computed using a gradient-based robust estimation method described in
[10]2. ~dΘ is defined by:

~dΘ(r) =

(
a1 + a2x + a3y

a4 + a5x + a6y

)
, r = (x, y) , (13)

2We use the code available at http://www.irisa.fr/vista
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Figure 5: Example of motion estimates between two images from noisy states. The 3 ellipses
correspond to different state values. Although the estimation support regions only cover part
of the head and enclose textured background, the head motion estimate is still good.

This method takes advantage of a multiresolution framework and an incremental scheme
based on the Gauss-Newton method. It minimizes an M-estimator criterion to ensure the
goal of robustness, as follows :

Θ̂(ck) = argmin
Θ

∑

r∈R(ck)

ρ (DFDΘ(r))

with DFDΘ(r) = zk+1(r + ~dΘ(r)) − zk(r) , (14)

where zk and zk+1 are the images, and ρ(x) is a robust estimator (bounded for high values
of x). Owing to the robustness of the estimator, an imprecise region definition R(ck) due
to a noisy state value does not sensibly affect the estimation (see Fig. 5). Moreover, the
algorithm delivers the covariance matrix of the affine parameters. From these estimates, we
can construct an estimate ̂̇αk of the variation of the coefficients between the two instant,

with their variance ̂̇Λk. For instance, assuming that coordinates in Eq. 13 are expressed with
respect to the current object center (located at T in the image), we have for the derivative
estimates :

{
Ṫx = a1

Ṫy = a4
and

{
ṡx = a2sx

ṡy = a6sy

and

{
ṡ = s

1+e
(a2e + a6)

ė = e(a2 − a6)
(15)

Denoting the predicted value α̂k+1 = αk + ̂̇αk, and assuming the noise on the estimate ̂̇αk

independent of the noise process w (see Eq. 9), we define the proposal distribution to be
used in Equation 3 as :

q(ck+1|c0:k, z1:k+1) ∝ N (αk+1; α̂k+1, Λ̂k+1) (16)

where N (.; µ, Λ) represents a gaussian distribution with mean µ and Λ variance, and Λ̂k+1 =
̂̇Λk + Λwp

, Λwp
being the variance of the process noise wp.
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4.3 Dynamics definition

To model the prior, we use a standard second order auto-regressive model (cf Eq. 10) for
each of the components of α. However, to account for outliers (i.e. unexpected and abrupt
changes) and reduce the sensitivity of the prior in the tail, we model the noise process with a
Cauchy distribution ρc(x, σ2) = σ

π(x2+σ2)
. This leads to :

p(ck+1|ck) =

4∏

j=1

ρc

(
αk+1,j − (2αk,j − αk−1,j), σw

2
d,j)

)
. (17)

where σw
2
d,j denotes the dynamics noise variance of the j th component.

4.4 Data likelihood modeling

To implement the new particle filter, we considered the following data likelihood :

p(zk|zk−1, ck, ck−1) = pc(zk|zk−1, ck, ck−1) × po(zk|ck) (18)

where the first probability pc() models the correlation between the two observations and po()
is an object likelihood. This choice decouples the model of the dependency existing between
two images, whose implicit goal is to ensure that the object trajectory follows the optical
flow field implied by the sequence of images, from the shape or appearence object model.
We assumed that these two terms are independent. When the object is modeled by a shape,
this assumption is valid since shape measurement will mainly involve measurements on the
border of the object, while the correlation term will apply to the regions inside the object.

Object shape observation model

The observation model assumes that objects are embedded in clutter. Edge-based measure-
ments are computed along L normal lines to a hypothesized contour, resulting for each line
l in a vector of candidate positions {ν l

m} relative to a point lying on the contour ν l
0. With

some usual assumptions [4], the shape likelihood po(zk|ck) = psh(zk|ck) can be expressed as

psh(zk|ck) ∝
L∏

l=1

max

(
K, exp(−

‖ν̂l
m − νl

0‖
2

2σ2
)

)
, (19)

where ν̂ l
m is the nearest edge on l, and K is a constant used when no edges are detected.

Image correlation measurement

We model this term in the following way :

pc(zk|zk−1, ck, ck−1) ∝ pc1(α̂k, αk)pc2(z̃ck
, z̃ck−1

) (20)

with :
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pc1(α̂k, αk) ∝ N (α̂k; αk, Λ̂k) (21)

pc2(z̃ck
, z̃ck−1

) ∝ exp−λcdc(z̃ck
,z̃ck−1

) (22)

where dc denotes a distance between two image patches. The first probability term in this
expression compares the parameter values predicted using the estimated motion with the
sampled values. This term assumes a Gaussian noise process in parameter space. This
assumption, however, is only valid around the predicted value. Thus, to introduce a non-
Gaussian modeling, we use a second term that compares directly the patches around ck and
ck−1 using the similarity distance dc. Its purpose can be illustrated using Fig. 5. While all
the three predicted configurations will be weighted equally from pc1 (assuming their esti-
mated variance are approximately the same), the second term pc2 will downweight the two
predictions whose corresponding support region is covering part of the background which is
undergoing a different motion than the head.

The definition of pc2 requires the specification of a patch distance. Many such distances
have been defined and used in the literature [15, 17]. The choice of the distance should take
into account the followings considerations :

1. the distance should still model the underlying motion content, i.e. the distance should
increase as the error in the predicted configuration grows;

2. the random nature of the prediction process in the SMC filtering will rarely produce
configurations corresponding to exact matches(this is particularly true when using a
small number of samples);

3. particles covering both background and object undergoing different motion should
have a low likelihood.

For these purposes, we found out that it was preferable not to use robust norms such as L1
saturated distance or a Haussdorf distance [17]. Additionnaly, we needed to avoid distances
which might a priori favor patches with specific contents. This is the case for instance of
the L2 distance (which corresponds to an additive Gaussian noise model in Eq.(6)), which
will generally provide lower scores for patches with large uniform areas. Thus, to avoid this
effect, we used the normalized-cross correlation coefficient defined as :

dc(z̃1, z̃2) =

∑
r∈R (z̃1(r) − ¯̃z1) · (z̃2(r) − ¯̃z2)√

Var(z̃1)
√

Var(z̃2)
(23)

where ¯̃z1 represents the mean of z̃1. Regarding the above equation, it is important to again
emphasize that the method is not performing template matching, as in [15]. No object tem-
plate is learned off-line or defined at the begining of the sequence, and the tracker does not
maintain a single template object representation at each instant of the sequence. Thus, the
correlation term is not object specific (except through the definition of the reference region
R). A particle “lying” on the background would thus receive a high weight if the predicted
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motion is in adequation with background motion. Nevertheless, the methodology could be
the extended to be more object dependent, by allowing the region R to vary over time (using
examplars for instance).

5 Results

To illustrate the method, we have considered three sequences involving head tracking. To
differentiate the different elements of the model, we have considered 3 configurations :

• shape tracker M1 : this tracker corresponds to the standard CONDENSATION algo-
rithm [4], with the shape likelihood combined with the same AR model with Gaussian
noise for the proposal and the prior.

• shape+implicit correlation tracker M2 : it corresponds to CONDENSATION, with the
addition of the implicit motion likelihood term in the likelihood evaluation (i.e now
equal to psh.pc2). This method does not use explicit motion measurements.

• motion proposal tracker M3 : it is the full model. The samples are drawn from the
motion proposal, Eq. 16, and the weight update is performed using Eq. 3. After sim-
plification, he update equation becomes :

wi
k = wi

k−1 psh(zk|ck)pc2(z̃ck
, z̃ck−1

)p(ck|ck−1) (24)

For this model, the motion estimation is not performed for all particles since it is
robust to variations of the support region. At each time, the particles are clustered into
K clusters. The motion is estimated using the mean of each cluster and exploited for
all the particles of the cluster. Currently we use max(20,Ns/10) clusters.

Currently, for 200 particles, the shape tracker runs in real time (on a 2.5GHz P IV machine),
the shape+implicit correlation at around 20 image/s, and the full model at around 4 image/s.
In all experiments, all the common parameters are kept identical.

The first sequence (Fig. 6) illustrates the benefit of the implicit method in the presence
of ambiguities. Despite the presence of a highly textured background producing very noisy
shape measurements, the camera and head motion, the change of appearence of the head, and
partial occlusion, the head is correcly tracked using our methods (on all runs using different
seeds). Whatever the number of particles or the noise variance in the dynamical model, the
shape tracker alone is unable to perform a correct tracking after time t12.

The second sequence is a 12 s sequence of 330 frames (Fig. 7) extracted from a hand-
held home video. Table 1 reports the tracking performance of the three trackers for different
dynamics and sampling rates (all other parameters are left unchanged). A tracking failure is
considered when the tracker looses the head and locks on another part of the image. As can
be seen, while CONDENSATION performs quite well for tuned dynamics (D1), it breaks
down rapidly, even for slight increases of dynamics variances (D2 to D4). Fig. 7 illustrates
a typical failure due to the small size of the head at the begining of the sequence, the low
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t1 t15
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Figure 6: Head tracking 1 : 2 first rows : shape tracker only (CONDENSATION). 2 last
rows : shape+implicit correlation (Ns=100). Same performance with the motion proposal
tracker.

contrast at the left of the head, and the clutter. On the other hand, the implicit tracker M2
performs well under almost all circumstances, showing its robustness against clutter, partial
measurements (around time t250 and partial occlusion (end of the sequence). Only when the
number of samples is low (100 in S2) does the tracker fail. These failures are occuring at
different parts of the sequence. Finally, in all experiments, the M3 tracker produces a correct
tracking rate equal to 98%, even with a small number of samples, up to the partial occlusion.
At this part of the sequence, as the occlusion reaches 50% of the tracked head, the motion
estimation sometimes lock onto the woman’s head motion, leading to the reported tracker
failures.

The last sequence (Fig. 8) illustrates more clearly the benefit of using the motion pro-
posal. This 24s sequence acquired at 12 frame/s is specially difficult because of the oc-
curence of several head turns3 and abrupt motion changes (translations, zooms in and out),
the large variations of scale, and importantly, the absence of head contours as the head moves

3The head turn is indeed a difficult case for the new method, as in the extreme case, the motion inside the
head region indicates a right (or left) movement while the head outline remains static.
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Tracker D1 D2 D3 D4 S1 S2

CONDENSATION 88 36 2 0 0 0
M2 (Implicit) 100 98 100 94 90 50

M3 (with proposal) 70 82 92 90 96 80

Table 1: Successful tracking rate (in %, out of 50 trials with different seeds) with different
dynamics and sampling. Experiments D1 to D4 correspond to Ns=500, with dynamics D1
(2,0.01), D2 (3,0.01), D3(5,0.01) D4(8,0.02), the 1st (resp. 2nd) number corresponds to
the dynamics and proposal noise standard deviation of the T (resp. s) state component.
Experiments S1 and S2 use a (5,0.01) dynamics, with 250 (S1) and 100 (S2) samples.

in front of the bookshelves. Because of these, CONDENSATION is again lost very quickly.
On the other hand, the M2 tracker successfuly tracks the head at the beginning, but usually
gets lost when the person moves in front of the bookshelves (around frames t130-t145), due to
the lack of contour measurements coupled with a large zooming effect. This latter problem
is resolved by the motion proposal, which better capture the state variations, and allows a
successful track of the head until the end of the sequence (time t340).

6 Conclusion

We presented a methodology to embed data-driven motion into particle filters. This was
first achieved by introducing a likelihood term that models the temporal correlation existing
between successive images of the same object. This term modelizes the visual motion in
an implicit way. Secondly, explicit motion estimates were exploited to predict more pre-
cisely the new state values. This data-driven approach allows for designing better proposals
that take into account the new image. Altogether, the algorithm allows to better handle unex-
pected and fast motion changes, to remove tracking ambiguities that arise when using generic
shape-based or color-based object models, and to reduce the sensitivity to the different pa-
rameters of the prior model. The method is general and could be used to track deformable
objects by integrating motion measurements along the shape curve, as described in [9].
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