
Vessel Segmentation and Branhing Detetionusing an Adaptive Pro�le Kalman Filter inRetinal Blood Vessel Struture AnalysisPedro Quelhas1;2 and James Boye11 King's College London, Department of PhysisStrand, London, Englandjames.boye�kl.a.ukhttp://www.kl.a.uk/Physis2 IDIAP - Dalle Molle Institute for Pereptual Arti�ial IntelligeneRue Du Simplon 4, Martigny, Switzerlandpedro.quelhas�idiap.hhttp://www.idiap.hAbstrat. This paper presents an improved traking based method forretinal vessel segmentation that uses blood vessel morphology to adaptthe traking parameters. The method inludes branhing detetion andavoidane methods. A bi-level threshold method, based on loal vesselinformation, is used for segmentation. Traking is based on Kalman �lter-ing. The results are ompared with existing ground truth. It is onludedthat ground truth segmentation is not easily omparable.1 IntrodutionSeveral diseases a�et blood vessels in the human body, making blood vesselappearane an important indiator for many diagnoses [1℄. The retina is oneplae in the human body where the network of blood vessels an be vieweddiretly in vivo and examined for pathologial hanges [2℄. The struture of theblood vessels in the retina an in this way be used in the grading of diseaseseverity [3℄.Retinal analysis in done through image olletion. At present the analysis ofthese images an only be made by quali�ed medial sta�, but there is a shortageof personnel to perform suh examinations. An automated method to analyzethe images from the retina would be a preious tool. There are two types ofimages that an be olleted of the retinal blood vessels: retinal angiograms andretinal fundus images. Fundus images were used in this work beause, althoughhaving lower ontrast, they are aptured by a non-invasive tehnique and heneare preferred by the medial ommunity.Two strategies have been employed in the past for the automati detetionof the retinal blood vessels [4℄: sanning [5{7℄ and traking [4, 8, 9℄. Sanningis normally a two-pass operation. First feature points are enhaned, followedby a threshold to obtain a binary image. Chaining enterline midpoints is then
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2 Pedro Quelhas and James Boyeused to reognize the vessel struture while exluding isolated points. Trakingis a single-pass operation that starts from a given position and extrats imagefeatures, gathering strutural information, while proeeding using the ontinuityproperties of the vessel. Sanning methods always provide total image segmen-tation but result in diÆult to extrat and normally inomplete strutural data.Traking methods easily gather strutural information but require vessel onti-nuity for stable operation, and a seleted starting point. Sanning methods aremore omputationally intensive than traking based methods [4℄.We hose to use a traking method for its omputational eÆieny and ease ofstrutural information extration. Kalman �lter [11℄ based traking was hosensine it has proven itself to be adequate in this type of appliation [4, 9, 10℄.Retinal struture traking methods must segment the image into vessel/non-vessel pixels. Three approahes exist: amplitude segmentation [8, 9℄, templatemathing [4{6, 12℄ and parametri model �tting [10, 15℄. Thresholding is alwaysneeded, either on the �lter response (mathing) or on the segmentation level(amplitude segmentation/model �tting).Traking methods segment the vessel based on its image intensity transversesetion (pro�le). The pro�le is normally modelled as deriving from a Gaussianshape, aused by the reetion urve from the outer layer of a ylindrial olumn.In some vessels, due to light refration on the olumn of blood within the vessel'swall, light is reeted to the amera ausing a 'dip' at the top of the Gaussianshape [14℄. Gao et al. [13℄ analyzed several models and onluded that the bestmodel for blood vessel pro�les in retinal fundus images where the 'dip' e�etours is the di�erene of two Gaussian funtions.2 MethodsBased on aepted biologial properties the following assumptions have beenmade onerning the appearane of vessels on retinal fundus images:Piee-Wise Linear Struture: Piee-wise linear, i.e. small urvature, has beenassumed in all previous traking proesses [4, 9, 10℄. This assumption enablesthe setting of an upper limit for the urvature of the vessel, so that we anonstrain the Kalman �lter to a more stable operation point.Binary Branhing Tree: The binary nature of the vessel branhing tree an beeasily reognized in retinal images. Thus, there an only be two vessels emanatingfrom a branhing point [2℄.Constant Vessel Width Between Branhing Points: The average width variationin interbranh setions of the vessel an be ignored, in low pathology inidene.Useful in the detetion and avoidane of pathologies and rossing, improving thetraking stability.Used in past literature without proof [8, 9℄, this property was here veri�ed byobserved results. A total of 520 vessel pro�les were gathered from linear setions



Adaptive Pro�le Kalman Filter Retinal Blood Vessel Struture Analysis 3of several di�erent vessels with di�erent widths. The variation of those vessels'width was measured. Using the Kolmogorov-Smirnov statistial the estimate forthe average width variation is 0�0.32 pixels with a on�dene of 95%.2.1 Blood Vessel TrakingThe Kalman �lter implements a preditor-orretor type estimator that is op-timal in the sense that it minimizes the estimated error ovariane in optimalonditions. Though the onditions neessary for optimality rarely exist the �lterworks well for many appliations [16℄.The ase of Kalman �lter traking of blood vessels deserves speial attentionsine the �lter applied to the traking proess is modi�ed so that the alulationsbeome simpler. Pk�1 - Previous vessel profile.Pk - Current vessel profile.Pk+1 - Next vessel profile.P'k+1 - Preliminary vessel profile.Ck�1 - Previous profile entre point.Ck - Present profile entre point.Ck+1 - Next profile entre point.C'k+1- Predited entre point.V'k - Predited diretion of traking.Vk - Diretion of traking.Vk�1 - Previous diretion of traking.Fig. 1. Traking algorithm shematis.Fig. 1 shows the spatial shematis for the used Kalman �lter. The algorithmuses the previous and urrent pro�le's enter to predit the vessel's trajetory.Measurement is done and a new pro�le is obtained giving the orret vessel'strajetory.p̂x(k + 1) = �� px(k) (1)p = " xvxax! ; yvyay!# (2)� = (100 T10 12T 2T1 ) (3) px(k + 1) = p̂x(k + 1) + � � P (k) (4)P (k) =8<: Z(k)1T � 32Z(k) � 2Z(k � 1) + 12Z(k � 2)�1T2 (Z(k) � 2Z(k � 1) + Z(k � 2)) 9=; (5)Equations 1-5 give the applied Kalman �lter mathematial struture, whereT is the traking step size, px(k) is the state vetor, p̂x(k) is the predited statevetor, Z(k) is the measurement from the image, � is the �lter mixing gain andk is the urrent traking step. In literature the gain � is normally one, givingabsolute on�dene to the measurements [9, 10℄. Some authors try to assess avalue depending on the assumed errors in eah of the model's variables [4℄.



4 Pedro Quelhas and James Boye� = �0; urrent width variation > 2 � standard deviation1; urrent width variation < 2 � standard deviation (6)We here introdue a novel traking gain that varies as a funtion of thevessel's width. Based on the onstant width priniple introdued in Setion 2 weassume that if the width doesn't vary the vessel is being followed orretly and sowe keep the gain high. Signi�ant hanges in width our only in branh points,rossings or pathology, in those ases the �lter's gain is redued, thus ausingthe traking to follow the predited path without deviation. Gain variation wasimplemented aording to the rules presented in equation 6.
(a) (b) () (d)Fig. 2. Traking examples: (a) and (b) show orret traking resulting from variablegain usage (white line marks the pro�le where gain was varied), ontrary to theseresults, �xed gain produed the erroneous results in images () and (d).Fig. 2 shows the results from the developed traking method. Comparing theresults in (a) and (b) with (), respetively, and (d) its is easy to see that �xedgain methods an ause both trajetory () and measurement errors (d).Often, after branhing or rossing, several vessels will be deteted vessel. Theproblem of hoosing from the several possible vessels is solved based on similaritywith the previously traked vessel. Similarity is measured by eulidian distanein a two dimensional feature spae based on width di�erene and trajetorydeviation. The hoie is onstrained to smaller vessel than the one previouslytraked sine resulting vessels are always thinner [2℄. If no vessel an be foundthat �ts the requirements traking is terminated and pathology is reported.2.2 Vessel SegmentationThe objetive of this work is the analysis of the retinal vessel struture so anaurate method for vessel segmentation is needed. Mathing is known to havelow auray [12℄. Parameterized model tehniques presented in [10, 15℄ were in-apable of providing good results in the presene of low ontrast or very thinvessels. Single-level diret segmentation [8, 9℄ was tested using half-height thresh-old, the results were unsatisfatory sine it is more prone to produe sub-divisionof wider vessel and false positives, as an be seen in Fig. 3 (b).
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(a) (b)Fig. 3. Bi-Level versus half height segmentation: (a) shows the results from the bi-level thresholding method developed in this work, (b) shows the result from a normalhalf-height thresholding method as presented in [9℄.Here we present a diret segmentation method based on bi-level segmentationwith subsequent agglomeration. The values gathered from the previous pro�lesare used to give the values for thresholding. Information of the last four vesselpro�les (if available) is averaged to obtain the maximum (M) and minimum (m)levels used to set the thresholds.Thresholds are set by equation 7.� t1 = m+ 0:33 � (M �m)t2 = m+ 0:66 � (M �m) (7)Any pixel having intensity above t2 is lassi�ed as vessel (ondition 1) andall points above t1 that have a neighbor above t2 are also lassi�ed vessel (ondi-tion 2). This is repeated until there are no more vessel in ondition 2. Fig. 3 (a)show the �nal result of this method.In literature great importane is plaed upon the reprodution of ground-truth data [5, 12℄. This is logial sine we are trying to replae the human inter-pretation of the retinal images.It was found that, in existing data [5℄, ground-truth segmentation levelsare asymmetri, as an be observed in Fig. 4 (b). Sine the used segmenta-tion method produes a symmetri segmentation, ground truth was impossibleto reprodue with the presented method. Fig. 4 (a) shows the ROC urves fora symmetri and asymmetri ground-truth blood vessel respetively. In Fig. 4(a) the point of operation of a simple half-height segmentation method on asymmetri ground-truth blood vessel is marked by a plus sign.It is believed that the human observer tends to bias its segmentation based onthe illumination of the vessel. The ash light used to take the images produesshadow on one of the vessel's side and not in the other due to the spherialgeometry of the retina. This makes the ground truth segmentation omplex.
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(a) (b)Fig. 4. Ground-truth omparison results: (a) shows the resulting ROC urves fromsymmetri and asymmetri ground-truth blood vessels, (b) shows an example of asym-metri ground-truth blood vessel segmentation.2.3 Branhing DetetionMost of the traking methods existing in literature [9, 10℄ ignore branhing ofvessels or base detetion on the loal urvature of the vessel [4℄. The �rst optiongives reliable results only during linear setions of the vessel; the seond ignoresall the small vessels that an branh o� the main vessel.Currently there is no strategy that fully solves this problem: this is beausebranhing is highly irregular and branhing rules are not easily gathered fromimages [2℄.
(a) (b)Fig. 5. Branhing Detetion Method. (a) shows the traking of the vessel with twowhite lines at eah side of the vessel, this is where the branhing vessels are going tobe searhed, (b) shows the gathered pixel values and deteted vessels in the left sideline.Although the traking method presented here detets branhing points whihwould perturb the traking so that they an be ompensated, there are some ves-



Adaptive Pro�le Kalman Filter Retinal Blood Vessel Struture Analysis 7sels that are either too small to perturb the traking or are missed beause theyexist between pro�le samples. To solve the problem we propose the olletion ofthe grey levels in two lines parallel to eah side of the vessel, this allows searhingfor branhing vessels using the bi-level threshold used in the main vessel. Fig. 5shows results of branh detetion.The deteted branhes an then be used as seed points for the main trakingalgorithm.3 ResultsThe performane of the variable gain traker when in presene of branhes orrossings was proven to be e�etive in the available set of images, as an beobserved in Fig. 2. This allowed for a better quality in the aquired struturaldata.The introdued blood vessel bi-level threshold detetion method was foundto be more e�etive than the normally used half-height method [9, 8℄ as an beseen in Fig. 3 (a). It an be seen that in the presene of symmetri ground-truththis method has higher segmentation quality.The assumption that blood vessels don't hange width between branhingpoints was found to be orret by statistial inferene and onsequential results.4 DisussionThe strategy used to develop this algorithm was found to be adequate for retinalblood vessel segmentation. Traking was shown to allow the integration of loalstatistial information, e�etively allowing for improvement in the traker eÆ-ieny. The variable gain allowed for the avoidane of singularities that otherwisemight disturb traking and orrupt the strutural data.The bi-level threshold tehnique enabled the orret detetion of the vesseleven in presene of signi�ant 'dip' e�ets and nearby smaller vessels.The proposed method for branhing detetion gave promising results and isbelieved to be a good base for a method apable of omplete segmentation.The asymmetry of the ground truth made the reprodution of human seg-mentation impossible with the presented method. If the proposed dependeny ofthe ground-truth data on illumination is proven, the authors believe that orretsegmentation may by possible even in asymmetri ases. However further studyis needed.5 AknowledgementsThis work was the result of the dissertation work for the M.Res. in Image andX-Ray Physis at King's College London, founded by EPSRC. Retinal imageswere supplied as a part of a ollaboration with St. George's Hospital, Tooting.



8 Pedro Quelhas and James BoyeThis work was done with the �nanial support of the Portuguese Foundationfor Siene and Tehnology (FCT) and the European Soial Fund (FSE) throughthe sholarship SFRH/BM/8054/2002.The authors aknowledge �nanial support provided by the Swiss NationalCenter of Competene in Researh (NCCR) on Interative Multimodal Informa-tion Management (IM)2. The NCCR is managed by the Swiss National SieneFoundation on behalf of the Federal Authorities.Referenes1. Amerian Aademy of Ophthalmology: Ophthalmi Pathology. Basi and ClinialSiene Courses, Setion 11,179,(1991).2. M. Martinez-Perez: Computer Analysis of the Geometry of the Retinal Vasulature.PhD. thesis of the University of London, Imperial College, November 2000.3. M. Figueiredo, and J. Leitao: A Nonsmmoothing Approah to the Estimation of theVessel Contours in Angiograms. IEEE Trans. in Med. Imag., V. 14, 162-172, 1995.4. O. Chutatape, L. Zheng, and S. Krishnan: Retinal Blood Vessel Detetion andTraking by Mathed Gaussian and Kalman Filters. 20th Annual InternationalConferene of the IEEE Engineering in Mediine and Biology Soiety, Hong Kong,29 Otober - 1 November 1998,3144-3149.5. A. Hoover, V. Kouznetsova, and M. Goldbaum: Loating Blood Vessels in Reti-nal Images by Pieewise Threshold Probing of a Mathed Filter Response. IEEETransation on Medial Image, V. 19, N. 3, 203-210, 2000.6. S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum: Detetion ofblood vessels in retinal images using two-dimensional mathed �lters. IEEE Trans.on Medial Imaging, V. 8, N. 3, 263-269, September 1989.7. B. Cote, W. Hart, M. Goldbaum, P. Kude, and M. Nelson: Classi�ation of bloodvessels in oular fundus images. Computer Siene and Engineering DepartmentUniversity of California, San Diego, Tehnial Report, 1994.8. Y. Tolias, and M. Panas: A fuzzy vessel traking algorithm for retinal images basedon fuzzy lustering. IEEE Trans. on Medial Imaging, V. 17, N. 2, 263-273, 1998.9. Y. Sun: Automated Identi�ation of Vessel Contours in Coronary Arteriograms byan Adaptive Traking Algorithm. IEEE Trans. on Med. Imag., V. 8, N. 1,1989.10. A. Zhou, M. Rzeszotarski, and L. Singerman: The detetion and quanti�ation ofretinopathy using digital angiograms. IEEE Trans. on Med. Imag., V. 13, N. 4, 1994.11. R. Kalman: A New Approah to Linear Filtering and Predition Problems. Trans-ation of the ASMEJournal of Basi Engineering, 82, Series D, 35-45, 1960.12. L. Gang, O. Chutatape, and S. Krishnan: Detetion and Measurement of RetinalVessels in Fundus Images Using Amplitude Modi�ed Seond-Order Gaussian Filter.IEEE Trans. on Biomedial Engineering, V. 49, N. 2, February 2002.13. X. Gao, A. Bharath, A. Stanton, A. Hughes, N. Chapman, and S. Thom: Towardsretinal vessel parameterisation. SPIE onferene on medial imaging, 1997.14. O. Brinhman-Hansen, and H. Heier: Theoretial Relations between Light StreakCharateristis and Optial Properties of Retinal Vessels. Ata Ophthalmologia,Supplement 179, 33, 1986.15. X. Gao, A. Bharath, A. Stanton, A. Hughes, N. Chapman, and S. Thom: Measure-ment of Vessel Diameters on Retinal Images for Cardiovasular Studies. Departmentof Clinial Pharmaology, Imperial College Shool of Mediine, London, UK, 2001.16. G. Bishop, G. Welh: An Introdution to the Kalman Filter. University of NorthCarolina, Department of Computer Siene, Course 8, SIGGRAPH 2001,.


