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Abstract. Most conventional features used in speaker authentication are based on estimation
of spectral envelopes in one way or another, in the form of cepstrums, e.g., Mel-scale Filterbank
Cepstrum Coefficients (MFCCs), Linear-scale Filterbank Cepstrum Coefficients (LFCCs) and
Relative Spectral Perceptual Linear Prediction (RASTA-PLP). In this study, Spectral Subband
Centroids (SSCs) are examined. These features are the centroid frequency in each subband. They
have properties similar to the formant frequency but are limited to a given subband. Preliminary
empirical findings, on a subset of the XM2VTS database, using Analysis of Variance and Linear
Discriminant Analysis suggest that, firstly, a certain number of centroids (up to about 16) are
necessary to cover enough information about the speaker’s identity; and secondly, that SSCs could
provide complementary information to the conventional MFCCs. Theoretical findings suggest that
mean-subtracted SSCs are more robust to additive noise. Further empirical experiments carried
out on the more realistic NIST2001 database using SSCs, MFCCs (respectively LFCCs) and their
combinations by concatenation suggest that SSCs are indeed robust and complementary features
to conventional MFCC (respectively LFCCs) features often used in speaker authentication.
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1 Introduction

Speech recognition is the task of determining the linguistic contents of a speech signal, while speaker
authentication is the task of verifying whether a person really is who he or she claims to be. Even
though both tasks are very different, the front-end processing of speech signals is often common.
Although there exists some research efforts in designing new and effective speech features for speaker
authentication [10] (i.e., Line Spectrum Pairs, Time-Frequency Principal Component and Discriminant
Components of the Spectrum), Mel-scale Frequency Cepstral Coefficients (MFCCs) features, which
are commonly used in speech recognition, remain the state-of-the-art features, as long as speaker
authentication is concerned. Empirical studies in [14] showed that Linear-scale Frequency Cepstral
Coefficients [13] (LFCCs) achieve comparable performance to that of MFCCs [14]. According to the
same study, Perceptual Linear Prediction (PLP) cepstral coefficients, which are widely used in speech
recognition, did not perform significantly better than MFCCs. Furthermore, in the same experiment
setting, the performance of PLP with RASTA-preprocessing [7] (RASTA-PLP) was slightly worse
than PLP alone. Hence, features that work better in speech recognition may not always work better
in speaker authentication.

The aim of this study is double-fold: to provide complementary features that describe information
not captured by the conventional state-of-the-art MFCC features for speaker authentication tasks; and
to examine how these features perform alone, as compared to MFCC features. One such information
is the spectral information. In [1, Sec. 3.3], frequency and amplitude information are extracted from
“spectral lines” [4]. Spectral lines are extracted from the spectrogram of a signal by using thinning
and skeletonisation algorithms that are often used in image-processing. Low frequency spectral lines in
this case actually correspond to the fundamental frequency or pitch. The pair (frequency, amplitude)
hence represents a point on this 2D space. With quantisation on frequency and amplitude, this
frequency/amplitude encoded data is classified using a feed-forward network and is shown to achieve
lower generalisation error as compared to the encoding scheme which uses fixed frequency intervals
with their corresponding amplitude values. The study suggests that frequency information, when
encoded properly, can increase the robustness of a speech recognition system.

Contrary to the first approach, in the context of speaker authentication, Sönmez et al directly
estimated the (long-term) pitch information using parametric models called log-normal tied mixture
model [17]. A follow-up work [16] used the (local variation of) pitch dynamics which contain speaker’s
intonation (speaking style). In both works, the resultant pitch system is combined with the cepstral
feature-based system by summation of (log-)likelihood scores over the same utterance. They all show
improvement over the baseline system.

In the context of speech recognition, frequency information is represented in the form of Spectral
Subband Centroids (SSCs) [12], which represent the centroid frequency in each subband. In conven-
tional MFCC features, the power spectrum in a given subband is often smoothed out, so that only the
(weighted) amplitude of the power spectrum is kept. Therefore, SSCs provide different information
to conventional MFCCs. It has been demonstrated [12] that SSCs, when used in conjunction with
MFCCs, result in better speech recognition accuracy than that of the baseline MFCCs; when used
alone, SSCs achieve performance that is comparable (but with slight degradation) to that of MFCCs.

Would frequency information enhance the performance of a speaker authentication system? Ac-
cording to [16, 17], the answer is yes. How should this information be incorporated into an existing
system based on MFCC features? In this work, SSCs are used as a preliminary study because they
can be incorporated at the frame-level (and of course at classifier-score level) while this is not possible
in [16, 17]. Furthermore, in these works, spectral information other than pitch (e.g. higher frequency
band) is not used at all. Secondly, SSCs have not been applied to speaker authentication, which in
this case, constitute an interesting research question.

The rest of this paper is organised as follows: Section 2 explains briefly the experiment setting.
Analysis of SSCs is discussed in Section 3. This is followed by empirical results in Section 4 and
conclusions in Section 5.
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2 Experiment Setup

As a preliminary study, subsets of XM2VTS and NIST2001 are used. XM2VTS is used here to study
the features under clean conditions and with only limited vocabulary (i.e., digits only). NIST2001
is used to evaluate how well these features perform on telephone data with and without additive
environmental noise, on speaker authentication tasks.

In the case of XM2VTS [9], 6 male and 6 female speakers were chosen randomly. For each speaker,
8 recordings are available from 4 sessions and each session has 2 utterances. Sessions were recorded at
one-month intervals. As for the NIST2001 database [11], which comes from the Switchboard-2 Phase
3 Corpus collected by the Linguistic Data Consortium, only the female subset (which is known to
be slightly more difficult than the male subset) is used for evaluation. In the original database two
different handsets were used (i.e., carbon and electret). However, only data from electret handsets are
used (5 speakers who used the carbon handsets were removed) so that any variation of performance,
if any, will not be attributed to this factor. This database was separated into three subsets: a training
set for the world model, a development set and an evaluation set. The female world model was trained
on 218 speakers for a total of 3 hours of speech. For both development and evaluation (female) clients,
there was about 2 minutes of telephone speech used to train the models and each test access was less
than 1 minute long. The development population consisted of 45 females while there were 506 females
in the evaluation set. The total number of accesses for the development population was 2694 and
32029 for the evaluation population with a proportion of 10% of true accesses. Four types of noise
(white, oproom (for operational room), factory and lynx), taken from the NOISEX-92 database [19],
were used to contaminate the NIST2001 dataset.

The classifier used in this paper is based on Gaussian Mixture Models (GMMs). It models the
statistical distribution of training feature vectors for each client. Given a claim for client C’s identity
and a set of (test) feature vectors X = {~xi}

NV

i=1
supporting the claim, the average log likelihood (over

NV feature vectors) of the claimant being the true claimant is found with:

L(X |λC) =
1

NV

∑NV

i=1
log p(~xi|λC), (1)

where λC is a set of GMM parameters associated with client C. Given the average log likelihood of
the claimant being an impostor, the opinion on the claim is found using average Log Likelihood Ratio
(LLR), as follows:

LLR(X) = L(X |λC) −L(X |λC) (2)

In its general form, a GMM model with parameter λ can be described by:

p(~x|λ) =
∑NG

j=1
wj N (~x; ~µj ,Σj), (3)

λ = {wj , ~µj ,Σj}
NG

j=1
. (4)

where N (~x; ~µ,Σ) is a D-dimensional Gaussian function with mean ~µ and diagonal covariance matrix Σ,

NG is the number of Gaussians and wj is the weight for Gaussian j (with constraints
∑NG

j=1
wj = 1 and

∀ j : wj ≥ 0). A common impostor GMM (also called a world or universal background model [15]) is
used to model the statistics of the mentioned 218 female speakers. It is trained using the Expectation-
Maximization (EM) algorithm [2]. This world model is then adapted to each client’s speech features
using Maximum a Posteriori (MAP) estimation [15]. The world model was used to evaluate the
hypothesis of an impostor’s access while a client-adapted model was used to evaluate the hypothesis
of a client’s access. To make a decision, average LLR (Eqn. (2)) is compared to a threshold chosen on
a development data.

The commonly used Half Total Error Rate (HTER) is used as evaluation criterion. It is defined
as (FAR + FRR)/2, where FAR is False Acceptance Rate and FRR is False Rejection Rate. Here,
we assume that the costs of false acceptance and false rejection are equal and that the prior (class)
distribution of clients and impostors are equal as well. The HTER is calculated based on a threshold
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which itself is estimated from a development set. This threshold is estimated such that |FAR(θ) −
FRR(θ)| is minimised with respect to θ. It is then used to make decisions on an evaluation set. Hence,
the HTER is unbiased with respect to the evaluation set since its associated threshold is estimated
a priori on the development set. We call the resultant measure an a priori HTER and is used whenever
an evaluation set is used. The smaller HTER is, the better the classification result.

3 SSCs: An Investigation

This section contains several studies on SSCs: Section 3.1 introduces the basic ideas of SSCs. Sec-
tion 3.2 discusses the use of analysis of variance on SSCs to determine the number of centroids1. This
is confirmed by an empirical study reported in Section 3.3. Section 3.4 justifies why mean-subtraction
can also be applied to SSCs. A preliminary series of experiments is reported in Section 3.5 to demon-
strate empirically that mean-subtraction and temporal information (i.e., two techniques which are
commonly used in MFCC features) can also be applied to SSCs to improve the performance.

3.1 SSC Features

Let the frequency band [0, Fs/2] be divided into M subbands, where Fs is the sampling frequency.
For the m-th subband, let its lower and higher edges be lm and hm, respectively. Furthermore, let
the filter shape be wm(f) and P γ(f) be the power spectrum at location f raised to the power of γ.
The m-th subband centroid, according to [12], is defined as:

Cm =

∫ hm

lm
fwm(f)P γ(f)df

∫ hm

lm
wm(f)P γ(f)df

. (5)

Note that the term wm(f)P γ(f) can be viewed as a bias which influences where the centroid should
be. A peak in this term leads to a higher weight in the corresponding f . Typically, wm(f) takes on
the shape of either a square window (ones over the m-th subband and zeros everywhere else) or a
triangular window (which gives a maximum response around its center and decreases towards both
of it edges). In the case of MFCCs, wm is a triangular window. This same window is used here.
The use of γ parameter in this function is rather a design parameter and is not motivated by any
psychological aspect of hearing. The γ parameter has been used elsewhere in the literature [3] as
part of feature extraction (which is called a two-dimensional root spectrum) for speech recognition.
According to that study, γ is a design parameter which can be optimised on a given data set and task
at hand. Hence, the introduction of γ is only for practical reasons from engineering point of view. In
this report, γ is set to 1.

Figure 1 shows a conventional spectrogram overlaid with the SSC features with 5 equally-spaced
bands, calculated using square windows. This is done so to verify what exactly SSCs represent. This
utterance contains three digits: zero, one and two. It can be observed that, firstly, when there is no
speech, SSCs in a given frequency subband tend to be the center of the band. On the other hand, with
the presence of speech, SSCs show some regular trends: the trajectory of SSCs in a given subband
actually locates the peaks of the power spectrum limited in that given subband. This coincides with
the idea of spectral lines [4] discussed earlier. However, in this context, the representation is limited
to one value per subband. Secondly, the medium to long-term time-trajectory of SSCs can be an
interesting feature set as well, as demonstrated in [16]; this is not the subject of study here but will be
examined in the future. Thirdly, if there are not enough centroids, then SSCs will not cover enough

1Additional experiments based on Linear Discriminant Analysis for testing class-separability and complementary
based on SSCs and MFCCs, and others based on F-ratio tests of these two features can be found in the Appendix. The
results of these findings suggest that class labels (speaker’s identities) not separable in one feature space are probably
separable in another feature space; and that the feature space induced by MFCCs is more separable than that induced
by SSCs, thus predicting that the performance due to MFCCs under matched conditions is probably better than that
due to SSCs.



IDIAP–RR 03-62 5

2 

3 

4 

5 

6 

7 

8 

9 

10

11

Time (ms)

F
re

qu
en

cy
 (

H
z)

50 100 150 200 250 300

625 

1250

1875

2500

3125

3750

  ze   −−    ro              one          two 

Figure 1: SSC features across time

information. On the other hand, if there are too many centroids, additional centroids will only add
to the unnecessary dimensionality of the data, without adding any more information. Therefore, it
is important to measure the amount of information covered using techniques discussed in the next
subsection.

3.2 ANOVA Analysis of SSCs and MFCCs

Linear Discriminant Analysis (LDA), under the Analysis of Variance (ANOVA) framework has already
been used elsewhere in the literature [8], in the context of speech recognition. LDA assumes that the
sources captured by the speech features have a unimodal multi-variate Gaussian distribution. These
sources could be useful or harmful. In the context of text-independent speaker authentication, useful
variance of sources are speaker’s intonation, habitual speaking rate and physical articulatory features,
while harmful sources of variance are linguistic content, context variability (e.g. free-conversation,
telephone interview), environmental (hence assumed additive) noise and channel (assumed additive
and/or convolutional) noise (e.g. handset difference, telephone-and microphone-induced room acous-
tics, reverberation, etc) [6, Section 4.1]. However in this context, we do not use LDA to design
discriminative features but firstly, to approximate the number of centroids that is needed to obtain
optimal features; and secondly, to analyse and visualise the interaction between the within- and
between-class variance.
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Table 1: LDA analysis
No. of No. of LDA coefs

coefficients/ capturing 99% of var.
centroids SSC MFCC

4 4 4
8 6 7

12 8 9
16 9 9
24 9 9
30 9 −

6 male and 6 female speakers, each with 8 utterances of digits, taken from XM2VTS are used here.
Each feature frame is labeled with the speaker’s identity. The first analysis consists of finding the
number of optimal centroids in SSCs. This is done as follows:

1. Compute SSC features using M bands

2. Label each feature frame according to the speaker’s identity

3. Calculate the between-class variance Σb and the within-class variance Σw, both with dimension
M × M .

4. Calculate the eigen-values λ by solving eig(Σ−1
w Σb).

5. Find the number of eigen-values d needed to accumulate 99% of variance, i.e.,

argmind

{

d : d ∈ N, 1 ≤ d ≤ M,
∑d

i=1
λi/

∑M

i=1
λi ≥ 0.99

}

.

This procedure is repeated for different values of M in increasing order. We also perform the same
analysis for MFCCs with different numbers of coefficients. Here, the number of filter-banks is fixed at
24. The results are shown in Table 1. Since there are 12 speakers, we note that d can be at most 11.
As can be seen, for the case of SSCs, at first, 4 centroids are shown to be mutually independent from
each other. That is why in the LDA space, all 4 orthogonal vectors are needed to describe (99% of
variance of) discriminant directions that best separate the speakers. However, as more centroids are
used, less and less orthogonal vectors are needed as compared to the number of centroids used. We
note that the number of orthogonal vectors (or the LDA eigen-values that capture 99% of variance)
stays at about 9 (which is less than 11) even though the number of centroids increases beyond 16. This
shows that additional information due to adding the number of centroids beyond 16 is not likely to
contain more information that what has already been covered. Hence, excessive number of centroids
will add unnecessarily to computational cost on the part of the classifier. As for the MFCCs, the same
explanation as in SSCs applies. Note that in the last row, it is not possible to derive 30 coefficients
from 24 filter-banks. The maximum number of coefficients possible is 24 in this case. Also, according
to the LDA analysis, only 9 orthogonal vectors (even though 11 is the maximum) are used to describe
discriminant directions for speaker authentication even though the number of coefficients is increased
from 12 to 24. This would probably explain why 12 to 24 coefficients are commonly used in speech
and speaker recognition. We conjecture that the relevant number of coefficients are dependent on a
given task and a given dataset (which can be tuned by empirical procedures such as cross-validation).

3.3 The Number of Centroids: An Empirical Study

To further verify the number of centroids to use, several experiments are conducted by varying the
number of centroids2. Mean-subtraction is applied here to compensate for channel noise. In fact,

2The silence-speech segmentation is not optimal in this experiment. Furthermore, delta features are not added, and
0-4000 Hz frequency is used instead of 300-3400 Hz. Hence, the result is sub-optimal. Here, the purpose is to give an
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Figure 2: A posteriori HTERs (in %) of SSCs (with mean-subtraction) using
different number of centroids on the female development subset of NIST2001
database

without mean-subtraction, the results would have been unacceptably high (a justification of mean-
subtraction is given in Section 3.4). Two types of scales are used: Mel-scale and linear-scale which
are labeled as “tr mel” and “tr lin” in Figure 2 respectively. The filter-bank windows are triangular
windows centered on the critical band. Throughout the experiments, 128 Gaussian components are
used (see Section 2). This number is chosen by cross-validation based on LFCCs-induced GMMs.
The HTER curves for the two window types exhibit a general trend: as the number of centroids
increases, HTER reduces and reaches a minimum around 16-18 centroids before increasing again.
This is somewhat in accordance with the LDA analysis done in Section 3.2.

3.4 Resistance to Noise with Mean Subtraction

Since SSCs are derived from the power spectrum, they are also affected by channel and additive noise.
In this section, we will show how noise is compensated via SSCs mean subtraction.

Let S(n, ω) be the result of applying Fourier Transform on the n-th windowed signal, where ω is
the discretised frequency (in radians). Furthermore, let the power spectrum of S(n, ω) be S̃n(f) =
|S(n, ω)|2, where f = ω/2π. S̃n(f) is often called a spectrogram. This term will be referred to as S̃n

here. The decomposition of the signal in the Fourier domain will be:

S̃n = S̃o,n + Ṽn, (6)

where S̃o,n is the power spectrum of the clean speech signal and Ṽn is that of the additive noise

idea of how the number of centroids can influence the overall relative performance.
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component. We can rewrite Eqn. (5) as:

C =

∫
fS̃n(f)df
∫

S̃n(f)df
=

∫
fS̃o,n(f)df +

∫
Ṽn(f)df

∫
S̃n(f)df

, (7)

where, C has the same meaning as in Eqn. (5); the subscript m and filterbank edges lm and hm are
omitted. The expected value of C with respect to time (n) can be calculated as:

En{C} = En

{∫
fS̃o,n(f)df
∫

S̃n(f)df

}

+ En

{∫
fṼn(f)df
∫

S̃n(f)df

}

.

Then C − En{C} would be:

∫
fS̃o(f)df
∫

S̃n(f)df
− En

{∫
fS̃o,n(f)df
∫

S̃n(f)df

}

︸ ︷︷ ︸

+

∫
fṼn(f)df
∫

S̃n(f)df
− En

{∫
fṼn(f)df
∫

S̃n(f)df

}

︸ ︷︷ ︸

. (8)

Assuming that the additive component of the noise is stationary, i.e., Ṽn(f) = Ṽ (f), the second
underbraced term can be simplified to:

∫

fṼ (f)df

(

1
∫

S̃n(f)df
− En

{

1
∫

S̃n(f)df

})

,

∫

fṼ (f)df

(

1
∫

S̃o,n(f)df + K
−

1
∫

En{S̃o,n(f)}df + K

)

,

where, K =
∫

Ṽ (f)df is introduced into the term.

When K �
∫

S̃o,n(f)df (i.e., the SNR is very small), the second underbraced term will approach
zero. This will leave the first underbraced term only in Eqn. (8). The denominator

∫

S̃n(f)df =

∫

S̃o, n(f) +

∫

Ṽn(f)df

is unfortunately still influenced by the additive noise. Therefore, mean-subtracted SSCs can only
compensate for additive noise but cannot remove it completely.

On the other hand, since a large portion of noise has already been canceled due to the second
underbraced term of Eqn. (8), the net effect is that C−En{C} is more robust than C. In fact, empirical
results in Section 3.5 confirm that without mean-subtraction, SSCs’ performance is unacceptable in
practice. Whether SSCs can compensate convolutional noise or not is an open research issue not dealt
here.

3.5 Investigation of Deltas and Mean-Subtraction on SSCs: An Empirical

Study

Besides mean-subtraction, delta information is also known to carry useful information [18]. Several
experiments are carried out and the results are shown in Table 2. MFCCs with Cepstral Mean Sub-
traction (CMS) perform better than MFCCs without CMS. This shows that the NIST2001 database
contains some unknown telephone channel noise. The performance of the baseline SSCs with 16 cen-
troids is 34.4% of HTER. By adding delta information, the system achieves a HTER close to 30%.
Similar trend is observed with systems using mean-subtracted version of SSCs. Furthermore, the
latter two systems are better than the former two systems. Hence, we conclude that mean-subtraction
is also useful for SSCs.
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Table 2: A posteriori HTERs (in %) of SSCs and MFCCs with different post-processing evaluated on
the female development subset of NIST2001 database

Features HTER (%)

MFCC(24/12), delta 27.568
MFCC(24/12), CMS, delta 16.747

SSC(16) 34.405
SSC(16), delta, 29.996
SSC(16), MS 19.600

SSC(16), MS, delta, 17.192

4 Empirical Results in Mismatched Conditions

Preliminary studies in Section 3 show that the following configuration of SSCs is probably optimal
for speaker authentication task: 16 centroids, sampled using triangular windows and spaced linearly
on the Mel-scale, with delta information and mean-subtraction. This configuration was used on the
female evaluation subset (contrary to the development subset used in Section 3). Furthermore, only
bands in the 300-3400 Hz frequency range are used. The log of delta energy is also used. The
absolute log energy is not used as a form of energy normalisation. There are two goals: to investigate
how resistant SSCs are to mismatched noisy conditions; and to see if concatenation of SSCs with
conventional features will help in authentication. Two conventional features are used here: LFCCs
and MFCCs. The LFCCs are extracted using 24 filterbanks with 16 cepstrum coefficients. MFCCs
are extracted using 24 filterbanks with 12 cepstrum coefficients3. Several noise types are artificially
added to the database at the following Signal-to-Noise Ratios (SNRs): 18, 12, 6 and 0 decibels. Two
sets of experiments are conducted: in the first set, MFCCs, SSCs and their combined features are
trained in clean conditions and tested in different noisy conditions. Hence the combined MFCC-SSC
features have 12 + 16 = 28 dimensions. With delta information, which also has 28 dimensions and
log energy, the resultant features have 57 (28 × 2 + 1) dimensions. Using the same configuration,
the second set of experiments used LFCCs instead. The resultant LFCC-SSC combined features
have 65 ((16 + 16) × 2 + 1) dimensions. GMMs with 128 Gaussians are used as back-end classifiers
for all experiments. The number of Gaussians was found by cross-validation based on the LFCCs
features. The results are shown in Figures 3 and 4 for these two sets of experiments. For both sets of
experiments, it can be observed that MFCCs (respectively LFCCs) perform better than SSCs under
clean conditions but not as good as SSCs under noisy conditions. When MFCCs (respectively LFCCs)
are combined with SSCs, the resultant feature sets perform better than any of the features when used
alone, in both clean and noisy conditions. Hence, SSCs are potentially useful as complementary
features for speaker authentication.

5 Conclusions

Spectral Subband Centroids (SSCs) are a recent set of features that exploit the dominant frequency
in each subband. The use of SSCs in recent literature has shown some successes in speech recognition.
In this study, the potential use of SSCs in text-independent speaker authentication task was studied
using analysis of variance and Linear Discriminant Analysis on a small digits datasets taken from the
XM2VTS database. Experiments done on the female development subset of the NIST2001 Switch-

3This configuration gives 16.747% a posteriori HTER on the NIST2001 development set. Another commonly used
configuration has the following parameters: 24 filterbanks with cepstrums C1, . . . , C23 , hence throwing out C0. Although
the latter configuration is more robust to noise, in this experiment, its performance is 17.131% a posteriori HTER in
clean conditions.
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Figure 3: A priori HTERs (in %) of SSCs, MFCCs and MFCC+SSC feature sets on the female
evaluation subset of NIST2001 database, under mismatched conditions, using threshold estimated
from clean development data

Board database were used at the same time to validate the findings using ANOVA and LDA. Hence,
based on the Half Total Error Rate (HTER), we can conclude that:

1. Mean-subtracted SSCs (MS-SSCs) with triangular windows on Mel-scale filterbank with 16
subbands give optimal results for speaker authentication;

2. MS-SSCs are more resistant to noise than the original SSCs;

3. MS-SSCs’ first temporal derivative features are an important secondary set of features;

4. MS-SSCs are slightly inferior to conventional MFCCs with cepstral mean subtraction in clean
conditions

Moreover, experiments done on the female evaluation subset of NIST2001 database, using the above
SSCs configuration, showed that SSCs perform somewhat better than MFCCs in noisy conditions; and
that combining SSCs with MFCCs (and respectively LFCCs) improves the accuracy of the system in
both clean and noisy conditions compared to using any of the feature sets alone.
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Figure 4: A priori HTERs (in (%) of SSCs, LFCCs and LFCC+SSC feature sets on the female
evaluation subset of NIST2001 database, under mismatched conditions, using threshold estimated
from clean development data

Hence, dominant frequencies represented by SSCs indeed contain speaker discriminative infor-
mation, different from what MFCCs (respectively LFCCs) provide. In short, SSCs feature are a
complementary and yet robust set of features for speaker authentication.
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APPENDICES

The following two analyses are based on a subset of XM2VTS discussed in Section 2. The goals of these
additional studies are two-fold: to visualise the class-separability of MFCCs and SSCs, and to test
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Figure 5: A plot of SSC with 16 centroids using the first two principal LDA components of 16 speakers
from the XM2VTS database. Each number in the legend corresponds to an identity. The mean for
each identity is represented as a dot while the first standard deviation along the two axes are shown
as a circle centered on the mean.

the degree of separability of these two features. The first goal is achieved using Linear Discriminant
Analysis (LDA) while the second goal is achieved using the F-Ratio test.

A Projection of Features onto the LDA Space

In this analysis using LDA, we extracted 16 centroids (for SSCs) and 12 MFCCs (using 24 filter-banks)
and projected them onto the LDA space using all the eigen-vectors of Σ−1

w Σb. The mean and standard
deviation of the first two components of LDA are plotted in Figure 5 for SSCs and Figure 6 for MFCCs.
An immediate observation about these figures is that the between-class variance is many more times

smaller than the within-class variance. Another interesting aspect to observe is that speaker 3 and 6
have almost the same mean in the MFCC-induced LDA space (hence difficult to separate) but have
different means in SSC-induced LDA space (hence separable). The same observation can be made for
speaker 5 and 12 in the SSC-induced LDA space. Hence, speakers which are difficult to separate in
one feature might stand a higher chance to be separable in another feature space. This complementary
characteristic is what one seeks in order to improve the performance by some combination mechanisms.
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Figure 6: A plot of MFCC with 12 cepstrums using the first two principal LDA components of 16
speakers from the XM2VTS database

B Comparison of MFCCs and SSCs Using F-Ratio

We wish to compute the F-ratio statistics using det|Σb|
det|Σw| . The bigger this value is, the easier the features

are to be classified. A preliminary study using this F-ratio on this dataset reveals that this value is
indeed very small, when the covariance matrix dimension (due to the features) is large4.

For practical reasons, we propose two solutions to compute the F-ratios: calculate the log of F-

ratio, i.e., log
(

det|Σb|
det|Σw|

)

; and use the matrix trace of the between- and within-class covariance matrix

instead, i.e., trace|Σb|
trace|Σw | .

4The determinant of a matrix x is equivalent to det|x| =
Q

i
λi, where λi for i = 1 . . .D are the eigen values of the

matrix x of D×D dimensions. When λi → 0,
Q

i
λi will approach zero while

P

i
λi (which is the definition of the trace

of x, i.e, trace(x)) will not be influenced by small values of λi. This is especially true when the dimension D of the
matrix x is very high.
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Table 3: Different F-ratio criteria applied on the covariance matrices of MFCCs, PCA-transformed
MFCCs, SSC and PCA-transformed SSCs.

Features F-ratio criteria

log
(

det|Σb|
det|Σw |

)
trace|Σb|
trace|Σw |

MFCC -101.961 0.0123
MFCC PCA (95%) -57.366 0.0120
MFCC PCA (100%) -101.714 0.0123

SSC -260.109 0.0091
SSC PCA (95%) -182.299 0.0091
SSC PCA (100%) -107.241 0.0084

The calculating of log
(

det|Σb|
det|Σw |

)

can be performed as follows:

log

(
det|Σb|

det|Σw|

)

= log(det|Σb|) − log(det|Σw|)

= log

(
∏

i

λb
i

)

− log

(
∏

i

λw
i

)

=
∑

i

log(λb
i ) −

∑

i

log(λw
i )

where λb
i and λw

i are the eigen values of the between- (Σb) and within-class (Σw) matrix, respectively.
In theory, the determinant of the similarity transform of a matrix is equal to the determinant of

the original matrix [5, pp 311], i.e.,

det|BAB
−1| = det|B| det|A| det|B−1|

= det|B| det|A|
1

det|B|
= det|A|

The same property also applies to a matrix trace. Hence, we can literally take the features, transform
them in another space (we use principal component analysis or PCA, in this case), calculate the
covariance matrix and find its F-ratio. This F-ratio should be similar to the one calculated using the
covariance matrix on the features directly. A simple experiment is performed on this dataset and the
results are shown in Table 3. It can be seen that the F-ratios calculated using the determinant of the
between- and within-class matrix are affected by small numbers while the F-ratios calculated using
the matrix trace are not, i.e., the former F-ratios have greater differences than the ones using the
latter, even though the log function is applied. In either case, the F-ratio of MFCCs is larger than
that of SSCs. Hence, we expect that in terms of performance for the task of speaker authentication,
MFCCs will be better than SSCs. Empirical results in Sections 3.5 and 4 confirm this observation.
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