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This is a revised version of the original paper where several errors have been corrected. In particular, the original said subjects performed the 
mental task “relax” with eyes closed when this was not actually the case. Also, the update rule (4) had a typo. 

Abstract 
Recent experiments have indicated the possibil-
ity to use the brain electrical activity to directly 
control the movement of robotics or prosthetic 
devices. In this paper we report results with a 
portable non-invasive brain-computer interface 
that makes possible the continuous control of a 
mobile robot in a house-like environment. The 
interface uses 8 surface electrodes to measure 
electroencephalogram (EEG) signals from which 
a statistical classifier recognizes 3 different men-
tal states. Until now, brain-actuated control of 
robots has relied on invasive approaches—
requiring surgical implantation of electrodes—
since EEG-based systems have been considered 
too slow for controlling rapid and complex se-
quences of movements. Here we show that, after 
a few days of training, two human subjects suc-
cessfully moved a robot between several rooms 
by mental control only. Furthermore, mental 
control was only marginally worse than manual 
control on the same task. 

1 Introduction 
There is a growing interest in the use of physiological 
signals for communication and operation of devices for 
physically-disabled as well as able-bodied people. Over 
the last years evidence has accumulated to show the pos-
sibility to analyze brainwaves on-line in order to deter-
mine the subjects’ mental state that is then mapped into 
actions such as selecting a letter from a virtual keyboard 
or moving a robotics device [Birbaumer et al., 1999; 
Kennedy et al., 2000; Millán, 2002; Millán et al., 2002; 
Pfurtscheller and Neuper, 2001; Roberts and Penny, 
2000; Serruya et al., 2002; Taylor et al., 2002; Wolpaw 
and McFarland, 1994; Wolpaw et al., 2002]. This alterna-
tive communication and control channel, which does not 
require the user to perform any physical action, is called 
a brain-computer interface (BCI). 
 A BCI may monitor a variety of brainwave phenom-
ena. Most BCIs use electroencephalogram (EEG) signals; 

i.e., the brain electrical activity recorded from electrodes 
placed onto the scalp. The main source of the EEG is the 
synchronous activity of thousands of cortical neurons. 
Measuring the EEG is a simple noninvasive way to moni-
tor brain electrical activity, but it does not provide de-
tailed information on the activity of single neurons (or 
small clusters of neurons) that could be recorded from 
microelectrodes surgically implanted in the cortex. 
 Some groups exploit evoked potentials—the automatic 
responses of the brain to external stimuli—recorded from 
either scalp or intracranial electrodes (for a review, see 
[Wolpaw et al., 2002]). Evoked potentials are, in princi-
ple, easy to pick up but constrain the subject to synchro-
nize themselves to the external machinery. A more natu-
ral and suitable alternative for controlling devices is to 
analyze components associated with spontaneous mental 
activity. Thus, some researchers measure slow cortical 
potentials—whose negative amplitudes are related to the 
overall preparatory excitation level of a given cortical 
network—over the top of the scalp [Birbaumer et al., 
1999]. Other groups look at local variations of EEG 
rhythms. The most used of such rhythms are related to 
the imagination of body movements and are recorded 
from the central region of the scalp overlying the sen-
sorimotor cortex [Pfurtscheller and Neuper, 2001; Wol-
paw and McFarland, 1994]. But, in addition to motor-
related rhythms, other cognitive mental tasks are being 
explored [Millán et al., 2002; Roberts and Penny, 2000] 
as a number of neurocognitive studies have found that 
different mental tasks—such as imagination of move-
ments, arithmetic operations, or language—activate local 
cortical areas at different extents. In this case, rather than 
looking for predefined EEG phenomena as when using 
slow cortical potentials or movement rhythms, the ap-
proach aims at discovering mental-specific EEG patterns 
embedded in the continuous EEG signals. Yet, another 
kind of spontaneous signals is the direct activity of neu-
rons in the motor cortex measured with implanted elec-
trodes [Kennedy et al., 2000; Serruya et al., 2002; Taylor 
et al., 2002; Wessberg et al., 2000]. 
 Recent experiments have shown the near possibility to 
use the brain electrical activity to directly control the 
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movement of robotics or prosthetic devices. In these ex-
periments, several monkeys have been implanted with 
microelectrodes recording the activity of single neurons 
(their spiking rate) in the motor and premotor areas of the 
cortex. Then, the monkey’s hand trajectory was predicted 
(and replicated online with a robot arm) from the activity 
of the neural populations [Wessberg et al., 2000]. Also, 
after appropriate training, monkeys were able to move a 
computer cursor to desired targets using only their brain 
activity [Serruya et al., 2002; Taylor et al., 2002]. Until 
now, brain-actuated control of robots has being only tried 
with this kind of invasive approaches—requiring surgical 
implantation of electrodes—since EEG-based systems 
have been considered too slow for controlling rapid and 
complex sequences of movements. In this paper we show 
that two human subjects could, within a few days, learn 
to master a portable EEG-based brain-computer interface 
that recognized three mental states. Subjects successfully 
moved a robot between several rooms by mental control 
only. Furthermore, mental control was only marginally 
worse than manual control on the same task. 

2 Brain Interface Protocol 
EEG-based brain-computer interfaces are limited by a 
low channel capacity. Most of the current systems have a 
channel capacity below 0.5 bits/second [Wolpaw et al., 
2002]. One of the main reasons for such a low bandwidth 
is that they are based on synchronous protocols where 
EEG is time-locked to externally paced cues repeated 
every 4-10 s and the response of the BCI is the average 
decision over this period [Birbaumer et al., 1999; 
Pfurtscheller and Neuper, 2001; Wolpaw and McFarland, 
1994]. In contrast, our approach uses an asynchronous 
protocol that analyzes the ongoing EEG to determine the 
subject’s mental state, which they can voluntarily change 
at any moment. The rapid responses of the BCI, together 
with its performance (see Section 3), give a theoretical 
channel capacity in between 1 and 1.5 bits/second. 
 Two volunteer healthy subjects “A” and “B” wore a 
commercial EEG cap with integrated electrodes (white 
spots in Figure 1). EEG potentials were recorded at the 8 
standard fronto-centro-parietal locations F3, F4, C3, Cz, 
C4, P3, Pz, and P4. The sampling rate was 128 Hz. The 
raw EEG potentials were first transformed by means of a 
surface Laplacian (SL) computed globally by means of a 
spherical spline of order 2 [Perrin et al., 1989, 1990]. 
This spatial filtering yields new potentials that should 
represent better the cortical activity due only to local 
sources below the electrodes. Then, we used the Welch 
periodogram algorithm to estimate the power spectrum of 
each channel over the last second. We averaged 3 seg-
ments of 0.5 second with 50% overlap, what yields a fre-
quency resolution of 2 Hz. The values in the frequency 
band 8-30 Hz were normalized according to the total en-
ergy in that band. Thus an EEG sample has 96 features (8 
channels times 12 components each). EEG samples were 
computed every 62.5 ms (i.e., 16 times per second). 

 During an initial training period of a few days, the two 
subjects learned to control 3 mental tasks of their choice. 
The subjects tried the following mental tasks: “relax”, 
imagination of “left” and “right” hand (or arm) move-
ments, “cube rotation”, “subtraction”, and “word associa-
tion”. The tasks consisted of getting relaxed, imagining 
repetitive self-paced movements of the limb, visualizing 
a spinning cube, performing successive elementary sub-
tractions by a fixed number (e.g., 64–3=61, 61–3=58, 
etc.), and concatenating related words. After a short 
evaluation, the experimental subjects “A” and “B” chose 
to work with the combination of 3 tasks relax-left-cube 
and relax-left-right, respectively. In the sequel, we will 
refer to these mental tasks as #1, #2 and #3 (i.e., relax is 
#1, left is #2, and cube or right is #3). Neither subject had 
previous experience with BCIs or mental training. 
 Each day, subjects participated in four consecutive 
training sessions of about 5 min, separated by breaks of 
5-10 min. During each training session subjects switched 
randomly every 10-15 s between the three tasks. Subjects 
received feedback online through three colored buttons 
on a computer screen. Each button is associated to one of 
the mental tasks to be recognized. A button flashed when 
an EEG sample is classified as belonging to the corre-
sponding mental task. After each training session the sta-
tistical classifier was optimized offline. After this initial 
training, subjects learned to control mentally the mobile 
robot for 2 days. The results reported here were obtained 
at the end of the second day of work with the robot. Dur-
ing this training period, the user and the BCI engaged in 
a mutual learning process where they were coupled and 
adapted to each other. 

3 Statistical Classifier 
The mental tasks (or classes) are recognized by a Gaus-
sian classifier trained to classify EEG samples as state 
#1, #2, #3 or “unknown”. In this statistical classifier, 
every unit represents a prototype of one of the classes to 
be recognized. Its output gives an estimation of the poste-
rior class probability distribution for an EEG sample. The 
challenge is to find the appropriate position, and recep-
tive field, of the prototypes in the high-dimensional input 
space described above to differentiate the desired classes. 
 Although Gaussian classifiers are well known, our im-
plementation differs from classical ones in a few re-
spects. We assume that the class-conditional density 
function of class Ck is a superposition of Nk Gaussians (or 
prototypes) and that classes have equal prior probabili-
ties. In our case, all the classes have the same number of 
prototypes, namely 4. In addition, we assume that all four 
prototypes have an equal weight of 1/4. Then, dropping 
constant terms, the posterior probability yk of class Ck for 
sample x is 
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where Nc is the number of classes and i
ka  is the activa-

tion level of the ith prototype of the class Ck 
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where i
kµ  corresponds to the center of the ith prototype 

of class Ck, Σk is the covariance matrix of class Ck, and 
|Σk| is the determinant of that matrix. In our case, Σk is 
diagonal and common to all the prototypes of the class. 
In this way, we reduce the number of parameters and 
pool data to increase the accuracy of their estimation. 
 The response of the network for sample x is the class 
Ck with the highest posterior probability provided that is 
greater than a given probability threshold of 0.85; other-
wise the response is “unknown.” This rejection criterion 
keeps the number of errors (false positives) low, because 
recovering from erroneous actions (e.g., robot turning in 
the wrong direction) has a high cost. The choice of this 
probability threshold was guided by a previous ROC 
study where different subjects only carried out the initial 
training described before [Hauser et al., 2002], and the 
actual value was selected based on the performance of 
the two subjects during the initial period of training. 
 To initialize the center of the prototypes and the co-
variance matrix of the class Ck we run a clustering algo-
rithm (typically, a self-organizing map [Kohonen, 1997]) 
to compute the position of the desired number of proto-
types. Then, the covariance matrix is 
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where Sk denotes the number of training samples belong-
ing to the class Ck and n

kµ  is the nearest prototype of this 
class to the sample xn. 
 We then improve these initial estimations iteratively 
by stochastic gradient descent so as to minimize the mean 
square error. For every sample x in the training set, the 
update rule for all the prototypes of all the classes is 
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where α is the learning rate, tk is the kth component of 
the target vector in the form 1-of-c and A is the total ac-
tivity of the network—i.e., the denominator in (1). Intui-
tively, during training, units are pulled towards the EEG 
samples of the mental task they represent and are pushed 
away from EEG samples of other tasks. 
 Finally, after every iteration over the training set, we 
estimate again the new value of Σk using expression (3). 
It is possible to estimate the covariance matrices in more 

elaborated ways, including through gradient descent in 
order to minimize their contribution to the error function. 
 The brain-computer interface responds every 0.5 s. 
Firstly, it computes the class-conditioned probability for 
each class—i.e., the mixture of Gaussians in the numera-
tor of Eq. (1). Secondly, it averages the class-conditioned 
probabilities over 8 consecutive samples. Thirdly, it es-
timates the posterior probability based on the average 
class-conditioned probability of each class using Bayes’ 
formula; cf Eq. (1). Finally, it compares the posterior 
probability with a threshold value of 0.85. At the end of 
training, errors and “unknown” responses are below 5% 
and 30%, respectively. The theoretical channel capacity 
of the interface is hence above 1bit/second (operation 
mode I). In addition, the interface could also operate in 
another mode (operation mode II) where classification 
errors are further reduced by requiring that two consecu-
tive periods of 0.5 s give the same classification re-
sponse. In this mode II errors and “unknown” responses 
are below 2% and 40%, respectively, and the theoretical 
channel capacity is about 1 bit/second. 

 
Figure 1. One of the experimental subjects while driving men-
tally the robot through the different rooms of the environment 
during the first experiment. 

4 Robot Setup and Control 
The task was to drive the robot through different rooms 
in a house-like environment (Figure 1). The robot was a 
small Khepera (5.7 cm diameter) that closely mimics a 
motorized wheelchair. The robot moved at a constant 
speed of one third of its diameter per second, similar to 
the speed of a wheelchair in an office building. 
 To make the robot move along a desired trajectory it is 
necessary to determine the speed of the motors control-
ling the wheels at each time step. Obviously, this is im-
possible by means of just three mental commands. A key 
idea is that the user’s mental states are associated to 
high-level commands (e.g., “turn right at the next occa-
sion”) that the robot executes autonomously using the 
readings of its on-board sensors. Another critical aspect 



for the continuous control of the robot is that subjects can 
issue high-level commands at any moment. This is possi-
ble because the operation of the BCI is asynchronous and 
does not require waiting for external cues, unlike syn-
chronous approaches. The robot will continue executing a 
high-level command until the next is received. 
 The robot relies on a behavior-based controller [Arkin, 
1998] to implement the high-level commands that guar-
antees obstacle avoidance and smooth turns. In this kind 
of controller, on-board sensors are read constantly and 
determine the next action to take. The mapping from the 
user’s mental states (or commands) to the robot’s behav-
iors is not simply one-to-one, but, in order to achieve a 
more flexible control of the robot, the mental states are 
just one of the inputs for a finite state automaton with 6 
states (or behaviors). The transitions between behaviors 
are determined by the 3 mental states (#1, #2, #3), 6 per-
ceptual states of the environment (as described by the 
robot’s sensory readings: left wall, right wall, wall or 
obstacle in front, left obstacle, right obstacle, and free 
space) and a few internal memory variables. Figure 2 
shows a simplified version of the finite state automaton. 
The memory variables were required to implement cor-
rectly the different behaviors. Thus, if the robot is per-
forming the behavior “forward” and perceives a wall to 
the left, it switches automatically to the behavior “follow 
left wall”. The actual transitions between the behaviors 
“forward” and “follow left/right wall” are not exactly as 
indicated in the figure, otherwise the robot would stay 
following walls forever. The transition to the behavior 
“forward” is necessary, for example, in the case the robot 
is approaching an open door and the user wants the robot 
not to enter into the room. On the other hand, the robot 
“stops” whenever it perceived an obstacle in front to 
avoid collisions (not all the transitions to the behavior 
“stop” appear in the figure for the sake of simplicity). 
Briefly, the interpretation of a mental state depends on 
the perceptual state of the robot. Thus, in an open space 
the mental state #2 means “left turn” while the same 
mental state is interpreted as “follow left wall” if a wall 
is detected on the left-hand side. Similarly, mental state 
#3 means “right turn” or “follow right wall”; mental state 
#1 always implied “move forward”. Altogether experi-
mental subjects felt that our control schema was simple 
and intuitive to use. 
 The Khepera robot is a two-wheeled vehicle. It has 8 
infrared sensors around its diameter to detect obstacles. 
The sensors have a limited perception range, what makes 
difficult the recognition of the different perceptual states 
from the raw readings. To overcome this limitation, the 
robot uses a multilayer perceptron that maps the 8 raw 
infrared sensory readings into the current perceptual 
state. 
 A final element is the use of an appropriate feedback 
indicating the current mental state recognized by the em-
bedded classifier. This is done by means of three lights 
on top of the robot, with the same colors as the buttons 
used during the training phase. The front light is green 

and is on when the robot receives the mental command 
#1. The left light is blue and is associated to the mental 
command #2, whereas the right light is red and is associ-
ated to the mental command #3. Thus, if the robot is fol-
lowing the left wall and is approaching an open door, a 
blue feedback indicates that the robot will turn left to 
continue following the left wall (and, so, it will enter into 
the room). On the contrary, a green feedback indicates 
that robot will move forward along the corridor when 
facing the doorway and will not enter into the room. This 
simple feedback allows users to correct rapidly the ro-
bot’s trajectory in case of errors in the recognition of the 
mental states or errors in the execution of the desired 
behavior (due to the limitations of the robot’s sensors). 
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Figure 2. Finite state automaton used for the control of the 
robot. Transitions between the 6 behaviors were determined by 
3 mental states (#1, #2, #3), 6 perceptual states (|o: left wall, o|: 
right wall, ô: wall or obstacle in front), and some memory vari-
ables. The memory variables and some of the perceptual states 
are not shown for the sake of simplicity. 

5 Experimental Results 
After 5 and 3 days of initial training with the interface 
operating in mode I, subjects “A” and “B”, respectively, 
achieved a satisfactory level of performance (correct rec-
ognition was above 60% while errors were below 5%). At 
this moment, subjects started to learn to control mentally 
the robot with the interface operating in mode II. During 
this second period of training subjects had to drive the 
robot mentally from a starting position to a first target 
room; once the robot arrived, a second target room was 
selected and so on. The starting position and the target 
rooms were drawn at random. 
 Figure 3 shows a trajectory generated by subject “A” 
after two days of training. The robot had to visit 3 differ-
ent rooms, drawn randomly, starting from location “S”. 
Although the figure does not show the details of the tra-



jectory inside the rooms, the robot made a short explora-
tion in each of them. During the experiment, the subject 
was driving the robot for about 10 minutes continuously. 
Although the subject brought the robot to the desired 
room each time, there were a few occasions where the 
robot did not follow the optimal trajectory. This was 
mainly because the brain interface took a longer time 
than usual to recognize the subject’s mental state. For 
instance, in one case the robot missed a turn because the 
brain interface did not recognize the appropriate mental 
state until the robot had passed the doorway of the de-
sired room, and so the subject needed to maneuver men-
tally the robot to bring it back. In other situations, the 
robot’s sensors perceived a wall or corner too close, thus 
making the robot stop automatically to avoid collisions. 
In these situations, the subject needed to turn (by mental 
control) the robot away from the phantom obstacle and 
then resume the trajectory. 

 
Figure 3. Trajectory followed by the robot under the mental 
control of subject “A” during one of the trials of the first ex-
periment. The robot started in the bottom left room and then 
visited 3 other rooms, top center, top right and bottom right, 
sequentially. The figure does not show the details of the trajec-
tory inside the rooms. 

 
Figure 4. Environment used for the second set of experiments. 

 Qualitatively, the trajectory is rather good as the robot 
visited the 4 rooms in the desired order and it was never 
necessary to make significant corrections to the robot’s 
active behaviors. But in order to evaluate quantitatively 
the performance of the brain-actuated robot, subjects “A” 
and “B” also carried out a second set of experiments in a 
slightly different arrangement of the rooms that were now 
located along the two sides of a corridor (Figure 4). 
 In a given trial, the robot must travel from a starting 
room to a target room as well as also visiting an interme-
diate room. The rooms and their order were selected at 
random. First, the subject made the robot visit the desired 
sequence of rooms by mental control. In a later session, 
the subject drove the robot along the same sequence of 
rooms by manual control. In this case, the subject used 
the same controller described above but, instead of send-
ing mental commands to the robot, he simply pressed one 
of three keys. This procedure allowed us to compare 
mental and manual control for a system that is identical 
in all other aspects. In addition, the manual trajectory 
should be quite close to the optimal path that can be gen-
erated with the current controller. It is worth noting that 
the reason why the subject controls the robot mentally 
first and only afterwards manually is to avoid any learn-
ing process that could facilitate mental control. 
 Table 1 gives the time in seconds necessary to generate 
the desired trajectory for three different trials for the two 
subjects. For each trial, the table indicates the time re-
quired for mental control and manual control. Surpris-
ingly, we can see that mental control was only marginally 
worse than manual control. On average, brain-actuated 
control of the robot is only 35% longer than manual con-
trol for both subjects. 

Table 1. Time in seconds for three different trials where subjects 
“A” and “B” controlled the robot first mentally and then manually. 

Subject Trial Mental Manual 
1 149 124 
2 183 135 
3 191 129 “A” 

Average 174 129 
1 219 156 
2 189 155 
3 175 117 “B” 

Average 194 143 

6 Discussion 
In this paper we have reported first results of a brain-
actuated mobile robot by means of a portable non-
invasive BCI. Although the quality and resolution of the 
brain signals measured with our EEG system are not 
comparable to those recorded by implanted electrodes, 
they are sufficient to operate robots in indoor environ-
ments. This is possible because of the combination of 
advanced robotics, an asynchronous protocol for the 



analysis of online EEG signal, and machine learning 
techniques. 
 The work described in this paper suggests that it could 
be possible for human subjects to mentally operate a 
wheelchair. But porting the current results to the wheel-
chair is not straightforward for, at least, two reasons. 
First, the performance of the BCI will suffer once the 
subject is seated on a mobile platform. This will require 
longer training times for the subject. Second, the current 
finite state automaton only allows for simple control ac-
tions, and so the resulting wheelchair could be too con-
strained for practical use in cluttered environments. In 
this respect, recent progress in EEG analysis [Michel et 
al., 2001] suggests that a sufficient number of mental 
states can be recognized to control robotics and pros-
thetic devices and in a more natural and flexible way. In 
this approach we will transform scalp poten-
tials―recorded with a sufficiently high number of elec-
trodes (32, 64 or more)―to brain maps to get detailed 
information on the activity of small cortical areas. The 
Gaussian classifier embedded in the BCI would work 
upon selected parts of these brain maps instead of using 
EEG features. 
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